Digital Transistors (BRT) $R1 = 22 k\Omega$, $R2 = 22 k\Omega$

NPN Transistors with Monolithic Bias Resistor Network

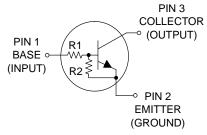
This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a baseemitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector-Base Voltage	V_{CBO}	50	Vdc
Collector–Emitter Voltage	V_{CEO}	50	Vdc
Collector Current – Continuous	IC	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	10	Vdc


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


ON Semiconductor®

www.onsemi.com

PIN CONNECTIONS

MARKING DIAGRAMS

= Specific Device Code XXX = Date Code* M

= Pb-Free Package

X ML₁

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.

SOT-1123

CASE 524AA STYLE 1

Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping [†]
MUN2212T1G, NSVMUN2212T1G*	8B	SC-59 (P-Free)	3000 / Tape & Reel
MMUN2212LT1G, NSVMMUN2212LT1G*	A8B	SOT-23 (P-Free)	3000 / Tape & Reel
MUN5212T1G, SMUN5212T1G*	8B	SC-70/SOT-323 (P-Free)	3000 / Tape & Reel
DTC124EET1G, SDTC124EET1G*	8B	SC-75 (P-Free)	3000 / Tape & Reel
DTC124EM3T5G	8B	SOT-723 (P-Free)	8000 / Tape & Reel
NSBC124EF3T5G	L	SOT-1123 (P-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

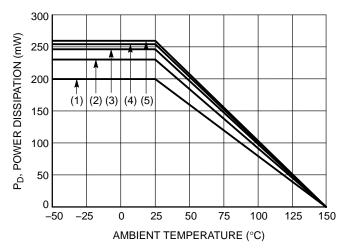


Figure 1. Derating Curve

- (1) SC-75 and SC-70/SOT323; Minimum Pad
- (2) SC-59; Minimum Pad
- (3) SOT-23; Minimum Pad
- (4) SOT-1123; 100 mm², 1 oz. copper trace
- (5) SOT-723; Minimum Pad

Table 2. THERMAL CHARACTERISTICS

	Characteristic	Symbol	Max	Unit
THERMAL CHARACTERISTIC	CS (SC-59) (MUN2212)			
Total Device Dissipation $T_A = 25^{\circ}C \qquad \text{(Note 1)} \\ \text{(Note 2)} \\ \text{Derate above } 25^{\circ}C \\ \text{(Note 2)}$	(Note 1)	P _D	230 338 1.8 2.7	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	540 370	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	$R_{ hetaJL}$	264 287	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SOT-23) (MMUN2212L)			
$ \begin{aligned} & \text{Total Device Dissipation} \\ & T_{\text{A}} = 25^{\circ}\text{C} \qquad \text{(Note 1)} \\ & \text{(Note 2)} \\ & \text{Derate above 25}^{\circ}\text{C} \\ & \text{(Note 2)} \end{aligned} $	(Note 1)	P _D	246 400 2.0 3.2	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	508 311	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	$R_{ heta JL}$	174 208	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SC-70/SOT-323) (MUN5212)	Ţ	•	
Total Device Dissipation T _A = 25°C (Note 1) (Note 2) Derate above 25°C (Note 2)	(Note 1)	P _D	202 310 1.6 2.5	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	618 403	°C/W
Thermal Resistance, Junction to Lead (Note 2)	(Note 1)	$R_{ heta JL}$	280 332	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SC-75) (DTC124EE)			
Total Device Dissipation $T_A = 25^{\circ}C \qquad \text{(Note 1)}$ (Note 2) Derate above 25°C (Note 2)	(Note 1)	P _D	200 300 1.6 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ heta JA}$	600 400	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTIC	CS (SOT-723) (DTC124EM3)	<u>, </u>		
Total Device Dissipation $T_A = 25^{\circ}C \qquad \text{(Note 1)}$ (Note 2) Derate above 25°C (Note 2)	(Note 1)	P _D	260 600 2.0 4.8	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{ hetaJA}$	480 205	°C/W
Junction and Storage Temper	ature Range	T_{J}, T_{stg}	-55 to +150	°C

- 1. FR-4 @ Minimum Pad.

- FR-4 © Millindin Pad.
 FR-4 © 1.0 x 1.0 Inch Pad.
 FR-4 © 100 mm², 1 oz. copper traces, still air.
 FR-4 © 500 mm², 1 oz. copper traces, still air.

Table 2. THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
THERMAL CHARACTERISTICS (SOT-1123) (NSBC124EF3)		-	
Total Device Dissipation T _A = 25°C (Note 3) (Note 4) Derate above 25°C (Note 3) (Note 4)	P _D	254 297 2.0 2.4	mW mW/°C
Thermal Resistance, (Note 3) Junction to Ambient (Note 4)	$R_{ heta JA}$	493 421	°C/W
Thermal Resistance, Junction to Lead (Note 3)	R _θ JL	193	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

- 1. FR-4 @ Minimum Pad.
- 2. FR-4 @ 1.0 x 1.0 Inch Pad.
- FR-4 @ 100 mm², 1 oz. copper traces, still air.
 FR-4 @ 500 mm², 1 oz. copper traces, still air.

Table 3 FLECTRICAL CHARACTERISTICS (T. - 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	I _{CBO}	_	_	100	nAdc
Collector–Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0)	I _{CEO}	_	_	500	nAdc
Emitter-Base Cutoff Current (V _{EB} = 6.0 V, I _C = 0)	I _{EBO}	_	_	0.2	mAdc
Collector–Base Breakdown Voltage ($I_C = 10 \mu A, I_E = 0$)	V _(BR) CBO	50	_	_	Vdc
Collector–Emitter Breakdown Voltage (Note 5) (I _C = 2.0 mA, I _B = 0)	V _(BR) CEO	50	-	_	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 5) (I _C = 5.0 mA, V _{CE} = 10 V)	h _{FE}	60	100	_	
Collector–Emitter Saturation Voltage (Note 5) $(I_C = 10 \text{ mA}, I_B = 0.3 \text{ mA})$	V _{CE(sat)}	_	-	0.25	Vdc
Input Voltage (off) ($V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$)	V _{i(off)}	_	1.2	0.8	Vdc
Input Voltage (on) (V _{CE} = 0.3 V, I _C = 5.0 mA)	V _{i(on)}	2.5	1.6	_	Vdc
Output Voltage (on) ($V_{CC} = 5.0 \text{ V}, V_B = 2.5 \text{ V}, R_L = 1.0 \text{ k}\Omega$)	V _{OL}	_	_	0.2	Vdc
Output Voltage (off) ($V_{CC} = 5.0 \text{ V}, V_B = 0.5 \text{ V}, R_L = 1.0 \text{ k}\Omega$)	V _{OH}	4.9	-	_	Vdc
Input Resistor	R1	15.4	22	28.6	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS MUN2212, MMUN2212L, NSVMMUN2212LT1G, MUN5212, DTC124EE, DTC124EM3

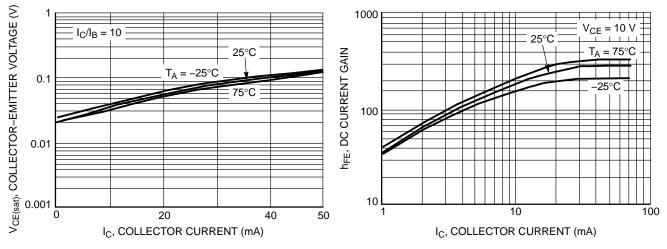


Figure 2. V_{CE(sat)} vs. I_C

Figure 3. DC Current Gain

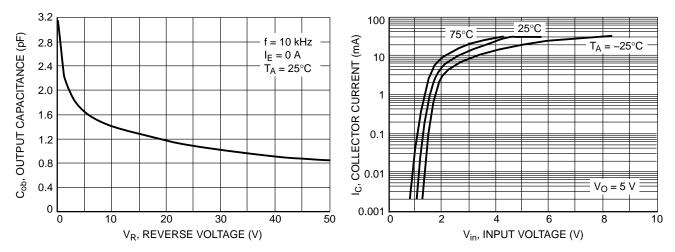


Figure 4. Output Capacitance

Figure 5. Output Current vs. Input Voltage

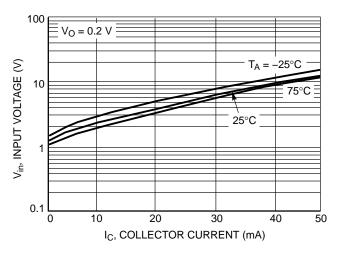


Figure 6. Input Voltage vs. Output Current

TYPICAL CHARACTERISTICS - NSBC124EF3

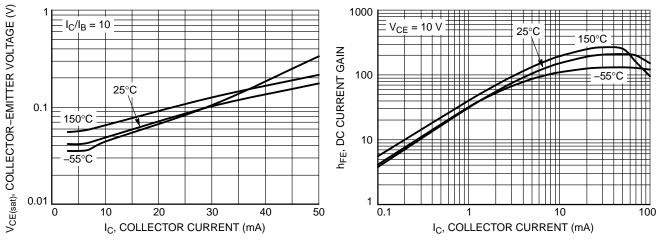


Figure 7. V_{CE(sat)} vs. I_C

Figure 8. DC Current Gain

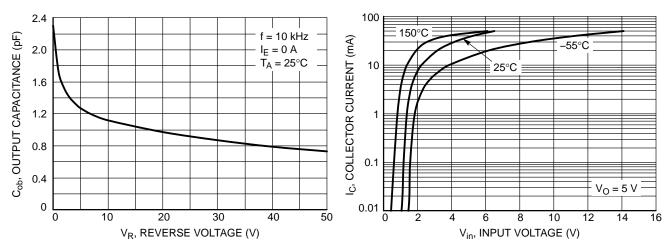


Figure 9. Output Capacitance

Figure 10. Output Current vs. Input Voltage

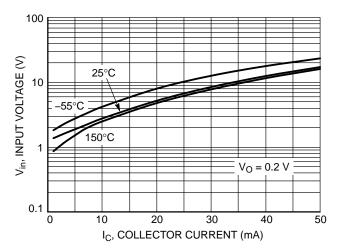
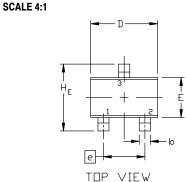
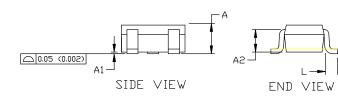


Figure 11. Input Voltage vs. Output Current


SC-70 (SOT-323) CASE 419 ISSUE R

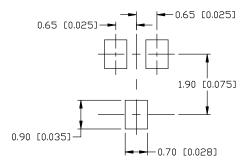

DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS				INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF	-		0.028 BS	C
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC		0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

GENERIC MARKING DIAGRAM



XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the IIN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

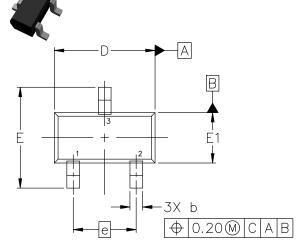
DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1

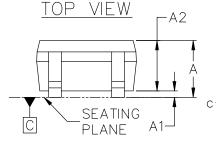
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

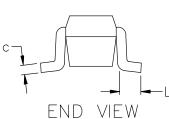
SC75-3 1.60x0.80x0.80, 1.00P

CASE 463 ISSUE H

DATE 01 FEB 2024


NOTES:


- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.


DIM	М	ILLIMETER	?S	
DIM	MIN.	NOM.	MAX.	
А	0.70	0.80	0.90	
A1	0.00	0.05	0.10	
A2	0.80 REF.			
b	0.15	0.20	0.30	
С	0.10	0.15	0.25	
D	1.55	1.60	1.65	
Е	1.50	1.60	1.70	
E1	0.70	0.80	0.90	
е	1.00 BSC			
L	0.10	0.15	0.20	

-0.356

0.787

SIDE VIEW

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. BASE 2. EMITTER

3. COLLECTOR

STYLE 2: PIN 1. ANODE 2. N/C 3 CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3 CATHODE

SC75-3 1.60x0.80x0.80, 1.00P

RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES

1.803

0.508

REFERENCE MANUAL, SOLDERRM/D.

1.000

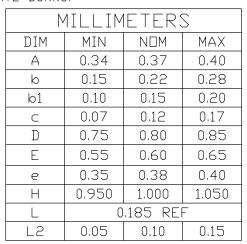
STYLE 4:	STYLE 5:
PIN 1. CATHODE	PIN 1. GATE
2. CATHODE	2. SOURCE
3. ANODE	3. DRAIN

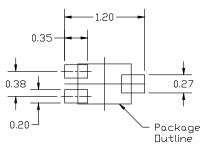
DESCRIPTION:

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASB15184C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PAGE 1 OF 1

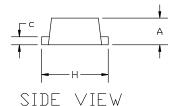


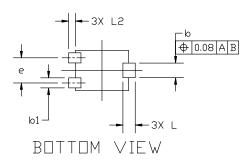

SOT-1123 0.80x0.60x0.37, 0.35P CASE 524AA ISSUE D

DATE 18 JAN 2024

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3, MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS
 OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.




RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download th e □N Semiconductor Soldering and Mounting Techniques Reference manual, S□LDERRM/D.

D A B

TOP VIEW

GENERIC MARKING DIAGRAM*

X = Specific Device Code

M = Date Code

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

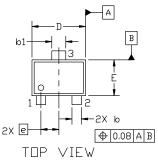
STYLE 1:	STYLE
PIN 1. BASE	PIN
2. EMITTER	
COLLECTOR	:

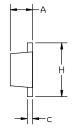
STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. GATE 2. SOURCE

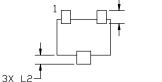
DOCUMENT NUMBER:	98AON23134D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-1123 0.80x0.60x0.37,	0.35P	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

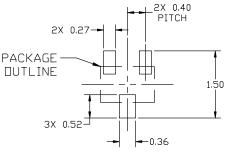



SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E

DATE 24 JAN 2024


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.



BOTTOM VIEW

MILLIMETERS DIM MIN. $N\square M$. MAX. 0.45 0.50 0.55 Α 0.15 0.21 0.27 b b1 0.25 0.31 0.37 0.07 0.12 0.17 \subset D 1.25 1.15 1.20 Ε 0.75 0.80 0.85 0.40 BSC е Н 1.20 1.25 1.15 0.29 REF L L2 0.15 0.20 0.25

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	CATHODE	SOURCE
COLLECTOR	CATHODE	CATHODE	ANODE	DRAIN

DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-723 1.20x0.80x0.50, 0	0.40P	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

MUN2212T1 MUN5212T1 MMUN2212LT1 MMUN2212LT1G MMUN2212LT3 MMUN2212LT3G DTC124EET1

DTC124EET1G DTC124EM3T5G MUN2212T1G MUN5212T1G NSBC124EF3T5G SMUN2212T1G

NSVMUN2212T1G SDTC124EET1G NSVMMUN2212LT1G SMUN5212T1G