## MUN2132, MMUN2132L, MUN5132, DTA143EE, DTA143EM3, NSBA143EF3

## **Digital Transistors (BRT)** R1 = 4.7 k $\Omega$ , R2 = 4.7 k $\Omega$

# PNP Transistors with Monolithic Bias Resistor Network

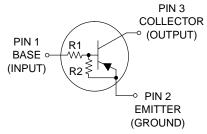
This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base–emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

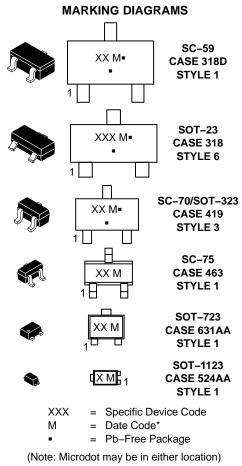
#### Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

#### **MAXIMUM RATINGS** (T<sub>A</sub> = $25^{\circ}$ C)

| Rating                         | Symbol               | Max | Unit |
|--------------------------------|----------------------|-----|------|
| Collector-Base Voltage         | V <sub>CBO</sub>     | 50  | Vdc  |
| Collector–Emitter Voltage      | V <sub>CEO</sub>     | 50  | Vdc  |
| Collector Current – Continuous | Ι <sub>C</sub>       | 100 | mAdc |
| Input Forward Voltage          | V <sub>IN(fwd)</sub> | 30  | Vdc  |
| Input Reverse Voltage          | V <sub>IN(rev)</sub> | 10  | Vdc  |


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.




### **ON Semiconductor®**

www.onsemi.com





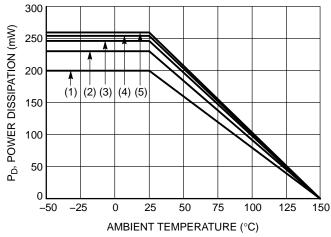


\*Date Code orientation may vary depending upon manufacturing location.

#### **ORDERING INFORMATION**

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.

## MUN2132, MMUN2132L, MUN5132, DTA143EE, DTA143EM3, NSBA143EF3


#### Table 1. ORDERING INFORMATION

| Device                         | Part Marking | Package                    | Shipping <sup>†</sup> |
|--------------------------------|--------------|----------------------------|-----------------------|
| MUN2132T1G, NSVMUN2132T1G*     | 6J           | SC–59<br>(Pb–Free)         | 3000 / Tape & Reel    |
| MMUN2132LT1G, NSVMMUN2132LT1G* | A6J          | SOT-23<br>(Pb-Free)        | 3000 / Tape & Reel    |
| MUN5132T1G, NSVMUN5132T1G*     | 6J           | SC-70/SOT-323<br>(Pb-Free) | 3000 / Tape & Reel    |
| DTA143EET1G                    | 43           | SC-75<br>(Pb-Free)         | 3000 / Tape & Reel    |
| DTA143EM3T5G, NSVDTA143EM3T5G* | 6J           | SOT-723<br>(Pb-Free)       | 8000 / Tape & Reel    |
| NSBA143EF3T5G                  | A (90°)*     | SOT–1123<br>(Pb–Free)      | 8000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

\*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

\*\*  $(xx^{\circ}) = Degree rotation in the clockwise direction.$ 



(1) SC-75 and SC-70/SOT-323; Minimum Pad
(2) SC-59; Minimum Pad
(3) SOT-23; Minimum Pad
(4) SOT-1123; 100 mm<sup>2</sup>, 1 oz. copper trace
(5) SOT-723; Minimum Pad

Figure 1. Derating Curve

#### **Table 2. THERMAL CHARACTERISTICS**

|                                                                                                                                                          | Characteristic               | Symbol                            | Max                      | Unit        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|--------------------------|-------------|
| THERMAL CHARACTERISTIC                                                                                                                                   | CS (SC–59) (MUN2132)         |                                   |                          |             |
| Total Device Dissipation<br>$T_A = 25^{\circ}C$ (Note 1)                                                                                                 |                              | PD                                | 230                      | mW          |
| (Note 2)<br>Derate above 25°C<br>(Note 2)                                                                                                                | (Note 1)                     |                                   | 338<br>1.8<br>2.7        | mW/°C       |
| Thermal Resistance,<br>Junction to Ambient                                                                                                               | (Note 1)<br>(Note 2)         | R <sub>θJA</sub>                  | 540<br>370               | °C/W        |
| Thermal Resistance,<br>Junction to Lead (Note 2)                                                                                                         | (Note 1)                     | R <sub>θJL</sub>                  | 264<br>287               | °C/W        |
| Junction and Storage Tempera                                                                                                                             | ature Range                  | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150              | °C          |
| THERMAL CHARACTERISTIC                                                                                                                                   | CS (SOT-23) (MMUN2132L)      |                                   |                          |             |
| $\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 1) \\ (Note 2) \\ \mbox{Derate above } 25^\circ C \\ (Note 2) \end{array}$ | (Note 1)                     | PD                                | 246<br>400<br>2.0<br>3.2 | mW<br>mW/°C |
| Thermal Resistance,<br>Junction to Ambient                                                                                                               | (Note 1)<br>(Note 2)         | $R_{	hetaJA}$                     | 508<br>311               | °C/W        |
| Thermal Resistance,<br>Junction to Lead (Note 2)                                                                                                         | (Note 1)                     | R <sub>θJL</sub>                  | 174<br>208               | °C/W        |
| Junction and Storage Tempera                                                                                                                             | ature Range                  | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150              | °C          |
| THERMAL CHARACTERISTIC                                                                                                                                   | CS (SC-70/SOT-323) (MUN5132) |                                   |                          |             |
| Total Device Dissipation<br>$T_A = 25^{\circ}C$ (Note 1)<br>(Note 2)                                                                                     |                              | P <sub>D</sub>                    | 202<br>310               | mW          |
| Derate above 25°C<br>(Note 2)                                                                                                                            | (Note 1)                     |                                   | 1.6<br>2.5               | mW/°C       |
| Thermal Resistance,<br>Junction to Ambient                                                                                                               | (Note 1)<br>(Note 2)         | $R_{	heta JA}$                    | 618<br>403               | °C/W        |
| Thermal Resistance,<br>Junction to Lead (Note 2)                                                                                                         | (Note 1)                     | $R_{	heta JL}$                    | 280<br>332               | °C/W        |
| Junction and Storage Tempera                                                                                                                             | ature Range                  | T <sub>J</sub> , T <sub>stg</sub> | –55 to +150              | °C          |
| THERMAL CHARACTERISTIC                                                                                                                                   | CS (SC-75) (DTA143EE)        |                                   |                          |             |
| Total Device Dissipation<br>$T_A = 25^{\circ}C$ (Note 1)<br>(Note 2)<br>Derate above 25^{\circ}C                                                         | (Note 1)                     | P <sub>D</sub>                    | 200<br>300<br>1.6        | mW<br>mW/°C |
| (Note 2)<br>Thermal Resistance,<br>Junction to Ambient                                                                                                   | (Note 1)<br>(Note 2)         | R <sub>θJA</sub>                  | 2.4<br>600<br>400        | °C/W        |
| Junction and Storage Tempera                                                                                                                             |                              | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150              | °C          |
| THERMAL CHARACTERISTIC                                                                                                                                   | 5                            | 0, SiQ                            | I                        |             |
| Total Device Dissipation<br>$T_A = 25^{\circ}C$ (Note 1)<br>(Note 2)<br>Derate above 25^{\circ}C                                                         | (Note 1)                     | PD                                | 260<br>600<br>2.0        | mW<br>mW/°C |
| (Note 2)<br>Thermal Resistance,<br>Junction to Ambient                                                                                                   | (Note 1)<br>(Note 2)         | R <sub>θJA</sub>                  | 4.8<br>480<br>205        | °C/W        |
|                                                                                                                                                          |                              |                                   |                          |             |

2. FR-4 @ 1.0 x 1.0 Inch Pad.

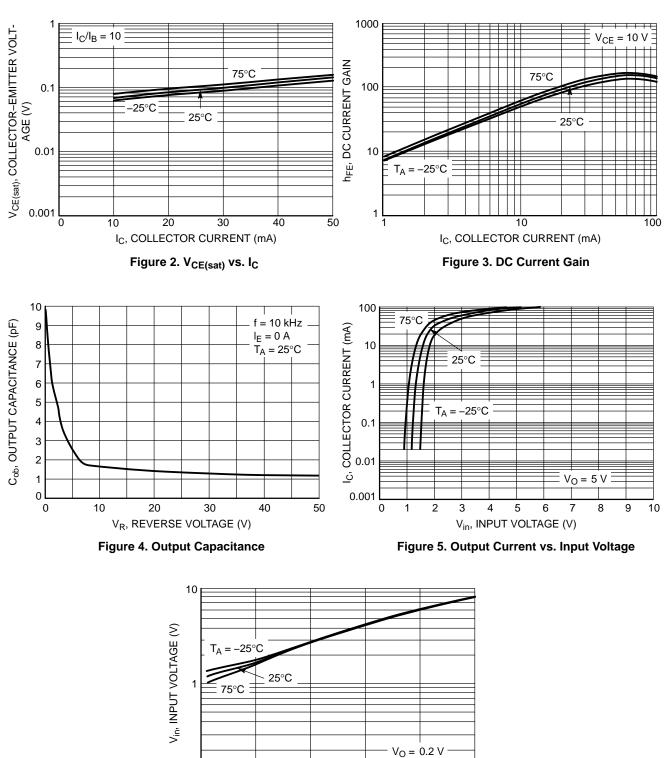
FR-4 @ 100 mm<sup>2</sup>, 1 oz. copper traces, still air.
 FR-4 @ 500 mm<sup>2</sup>, 1 oz. copper traces, still air.

#### **Table 2. THERMAL CHARACTERISTICS**

| Characteristic                                                                                                        | Symbol                            | Max                      | Unit        |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|-------------|
| THERMAL CHARACTERISTICS (SOT-1123) (NSBA143EF3)                                                                       |                                   |                          |             |
| Total Device Dissipation<br>$T_A = 25^{\circ}C$ (Note 3)<br>(Note 4)<br>Derate above 25^{\circ}C (Note 3)<br>(Note 4) | P <sub>D</sub>                    | 254<br>297<br>2.0<br>2.4 | mW<br>mW/°C |
| Thermal Resistance,(Note 3)Junction to Ambient(Note 4)                                                                | $R_{	hetaJA}$                     | 493<br>421               | °C/W        |
| Thermal Resistance, Junction to Lead<br>(Note 3)                                                                      | R <sub>θJL</sub>                  | 193                      | °C/W        |
| Junction and Storage Temperature Range                                                                                | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150              | °C          |

1. FR-4 @ Minimum Pad.

FR-4 @ 1.0 x 1.0 Inch Pad.
 FR-4 @ 100 mm<sup>2</sup>, 1 oz. copper traces, still air.
 FR-4 @ 500 mm<sup>2</sup>, 1 oz. copper traces, still air.


#### Table 3. ELECTRICAL CHARACTERISTICS ( $T_A = 25^{\circ}C$ , unless otherwise noted)

| Characteristic                                                                                                     | Symbol                         | Min | Тур | Max  | Unit |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|-----|------|------|
| OFF CHARACTERISTICS                                                                                                |                                |     |     |      |      |
| Collector–Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$                                                   | I <sub>CBO</sub>               | _   | _   | 100  | nAdc |
| Collector–Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$                                                | I <sub>CEO</sub>               | _   | _   | 500  | nAdc |
| Emitter–Base Cutoff Current<br>( $V_{EB} = 6.0 \text{ V}, I_C = 0$ )                                               | I <sub>EBO</sub>               | _   | -   | 1.5  | mAdc |
| Collector–Base Breakdown Voltage $(I_C = 10 \ \mu A, I_E = 0)$                                                     | V <sub>(BR)CBO</sub>           | 50  | _   | -    | Vdc  |
| Collector–Emitter Breakdown Voltage (Note 5) $(I_{C} = 2.0 \text{ mA}, I_{B} = 0)$                                 | V <sub>(BR)</sub> CEO          | 50  | _   | -    | Vdc  |
| ON CHARACTERISTICS                                                                                                 |                                |     | -   |      |      |
| DC Current Gain (Note 5)<br>( $I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$ )                                      | h <sub>FE</sub>                | 15  | 27  | _    |      |
| Collector–Emitter Saturation Voltage (Note 5) $(I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA})$                        | V <sub>CE(sat)</sub>           | _   | _   | 0.25 | Vdc  |
| Input Voltage (off)<br>(V <sub>CE</sub> = 5.0 V, I <sub>C</sub> = 100 μA)                                          | V <sub>i(off)</sub>            | _   | 1.2 | 0.5  | Vdc  |
| Input Voltage (on)<br>( $V_{CE} = 0.3 \text{ V}, I_C = 20 \text{ mA}$ )                                            | V <sub>i(on)</sub>             | 3.0 | 2.4 | -    | Vdc  |
| Output Voltage (on) $(V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 2.5 \text{ V}, \text{ R}_{L} = 1.0 \text{ k}\Omega)$ | V <sub>OL</sub>                | _   | _   | 0.2  | Vdc  |
| Output Voltage (off) (V <sub>CC</sub> = 5.0 V, V <sub>B</sub> = 0.25 V, R <sub>L</sub> = 1.0 k $\Omega$ )          | V <sub>OH</sub>                | 4.9 | _   | _    | Vdc  |
| Input Resistor                                                                                                     | R1                             | 3.3 | 4.7 | 6.1  | kΩ   |
| Resistor Ratio                                                                                                     | R <sub>1</sub> /R <sub>2</sub> | 0.8 | 1.0 | 1.2  |      |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle  $\leq 2\%$ .

### MUN2132, MMUN2132L, MUN5132, DTA143EE, DTA143EM3, NSBA143EF3



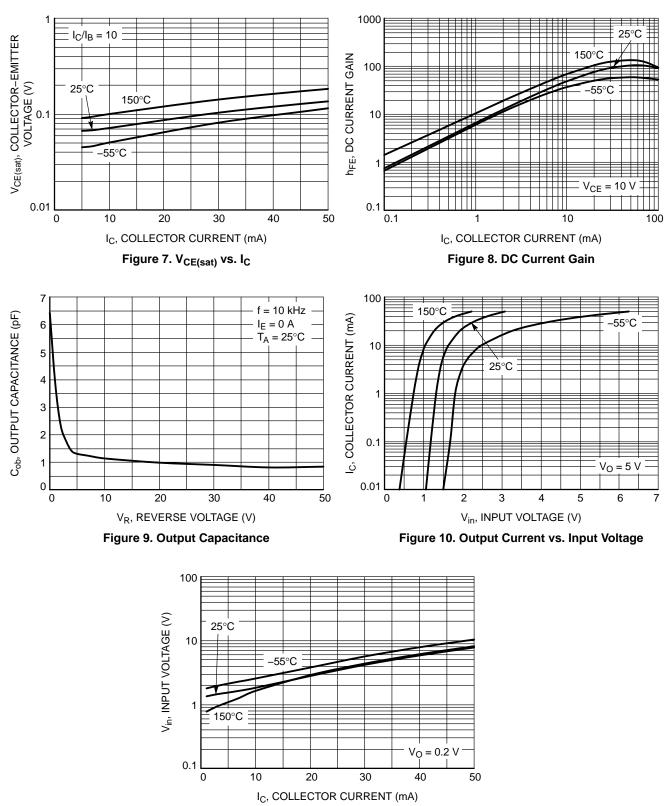
TYPICAL CHARACTERISTICS MUN2132, MMUN2132L, MUN5132, DTA143EE, DTA143EM3

I<sub>C</sub>, COLLECTOR CURRENT (mA) Figure 6. Input Voltage vs. Output Current

30

40

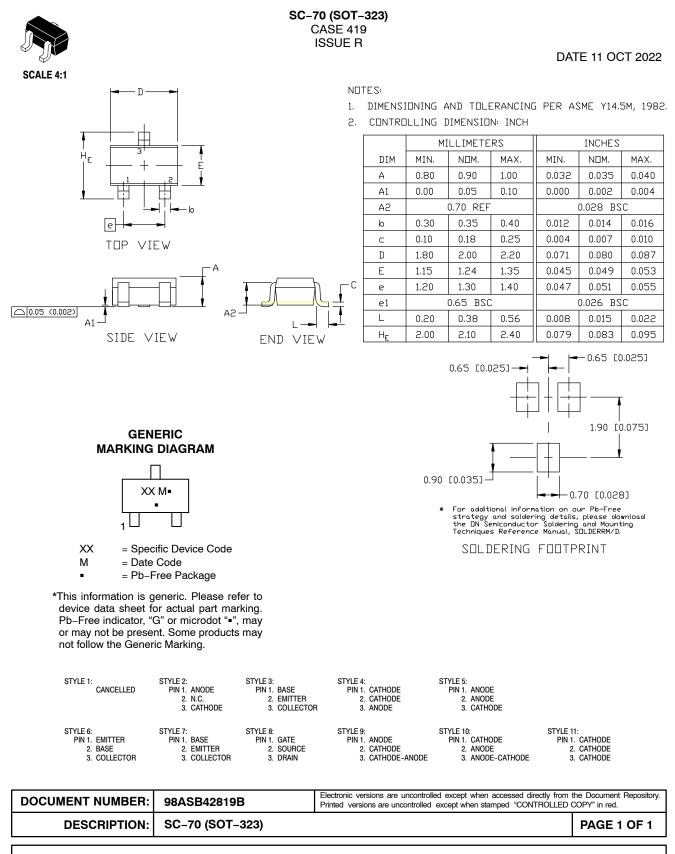
50


20

0.1

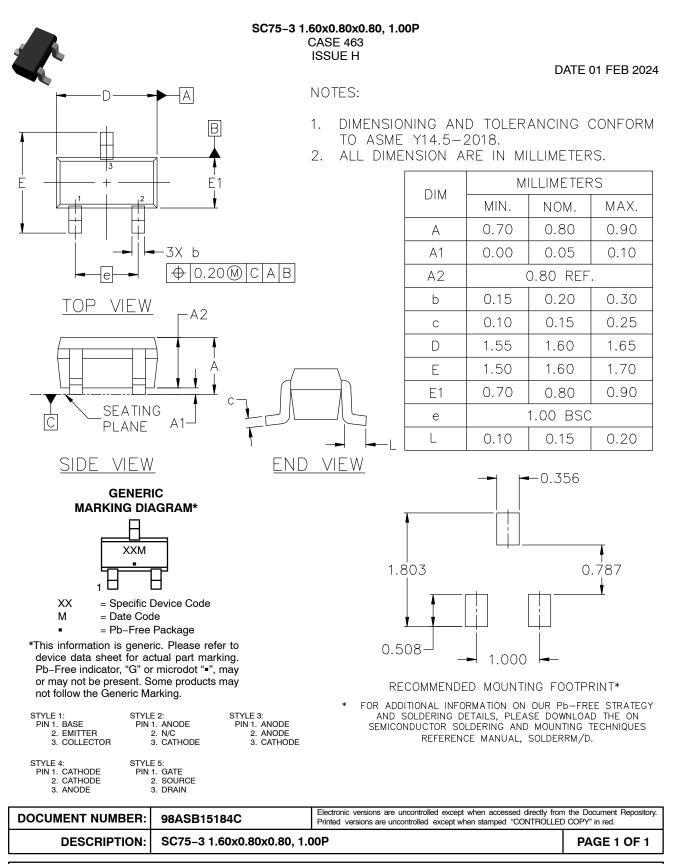
0

10


#### MUN2132, MMUN2132L, MUN5132, DTA143EE, DTA143EM3, NSBA143EF3

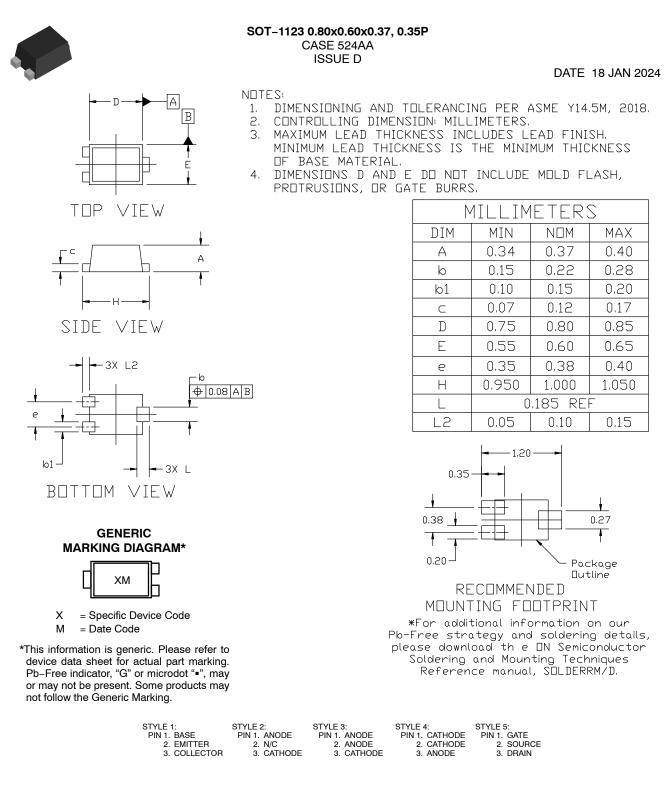


**TYPICAL CHARACTERISTICS – NSBA143EF3** 


Figure 11. Input Voltage vs. Output Current

# onsemi




onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.





onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

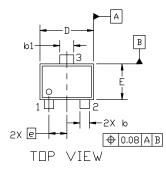


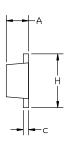


| DOCUMENT NUMBER: | 98AON23134D Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| DESCRIPTION:     | SOT-1123 0.80x0.60x0.37, 0.35P                                                                                                                                                                  |  | PAGE 1 OF 1 |
|                  |                                                                                                                                                                                                 |  |             |

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

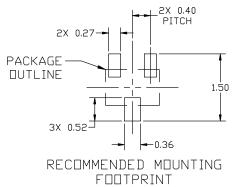




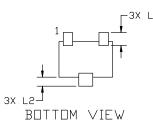


#### SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E

DATE 24 JAN 2024

NDTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. 1.
- 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM З. LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, 4. PROTRUSIONS OR GATE BURRS.






SIDE VIEW

|   |     | MILLIMETERS |      |      |  |  |
|---|-----|-------------|------|------|--|--|
|   | DIM | MIN.        | NDM. | MAX. |  |  |
| 1 | А   | 0.45        | 0.50 | 0.55 |  |  |
|   | b   | 0.15        | 0.21 | 0.27 |  |  |
|   | b1  | 0.25        | 0.31 | 0.37 |  |  |
|   | С   | 0.07        | 0.12 | 0.17 |  |  |
|   | D   | 1.15        | 1.20 | 1.25 |  |  |
|   | E   | 0.75        | 0.80 | 0.85 |  |  |
|   | e   | 0.40 BSC    |      |      |  |  |
|   | Н   | 1.15        | 1.20 | 1.25 |  |  |
|   | L   | 0.29 REF    |      |      |  |  |
|   | L2  | 0.15        | 0.20 | 0.25 |  |  |



\*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.



GENERIC **MARKING DIAGRAM\*** 



XX = Specific Device Code Μ = Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| PIN 1. BASE PIN<br>2. EMITTER              |  | 2. ANODE 2 | 4:<br>. CATHODE<br>. CATHODE<br>. ANODE | STYLE 5:<br>PIN 1. GATE<br>2. SOURCE<br>3. DRAIN |                                                                   |  |
|--------------------------------------------|--|------------|-----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|--|
| DOCUMENT NUMBER: 98AON12989D               |  |            |                                         |                                                  | ept when accessed directly from t<br>t when stamped "CONTROLLED C |  |
| DESCRIPTION: SOT-723 1.20x0.80x0.50, 0.40P |  |            |                                         | PAGE 1 OF 1                                      |                                                                   |  |

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent\_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

MUN2132T1 MUN2132T3 MUN2132T3G MUN5132T1 MUN5132T1G MMUN2132LT1 MMUN2132LT1G DTA143EE DTA143EET1 DTA143EET1G DTA143EM3T5G MUN2132T1G NSBA143EF3T5G NSVMMUN2132LT1G NSVMUN5132T1G NSVDTA143EM3T5G NSVMUN2132T1G