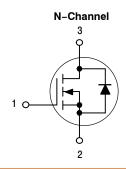


MOSFET – Power, N-Channel, SOT-23 200 mA, 50 V

BSS138L, BVSS138L

Typical applications are DC-DC converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

Features


- Low Threshold Voltage (V_{GS(th)}: 0.85 V-1.5 V) Makes it Ideal for Low Voltage Applications
- Miniature SOT-23 Surface Mount Package Saves Board Space
- HBM Class 0A, MM Class M1A, CDM Class IV (Note 3)
- BVSS Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Value	Unit
V_{DSS}	50	Vdc
V_{GS}	± 20	Vdc
I _D I _{DM}	200 800	mA
P_{D}	225	mW
T _J , T _{stg}	– 55 to 150	°C
$R_{\theta JA}$	556	°C/W
T_L	260	°C
	$\begin{array}{c} V_{DSS} \\ V_{GS} \\ \end{array}$ $\begin{array}{c} I_{D} \\ I_{DM} \\ \end{array}$ $\begin{array}{c} P_{D} \\ \end{array}$ $T_{J}, T_{stg} \\ \end{array}$ $R_{\theta JA}$	$\begin{array}{c cccc} V_{DSS} & 50 \\ \hline V_{GS} & \pm 20 \\ \hline & I_{D} & 200 \\ I_{DM} & 800 \\ \hline P_{D} & 225 \\ \hline T_{J}, T_{stg} & -55 \text{ to } 150 \\ \hline & R_{\theta JA} & 556 \\ \hline \end{array}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

200 mA, 50 V $R_{DS(on)} = 3.5 Ω$

STYLE 21

J1 M• •

MARKING

DIAGRAM

J1 = Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

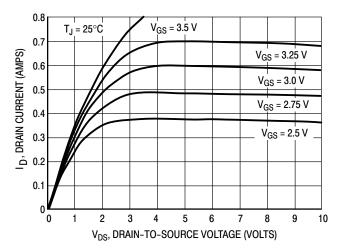
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
BSS138LT1G, BVSS138LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BSS138LT7G	SOT-23 (Pb-Free)	3,500 / Tape & Reel
BSS138LT3G, BVSS138LT3G	SOT-23 (Pb-Free)	10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

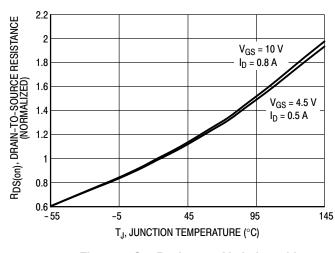
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 250 µAdc)			50	-	-	Vdc
Zero Gate Voltage Drain Current $ \begin{aligned} &(V_{DS}=25 \text{ Vdc}, V_{GS}=0 \text{ Vdc}, 25^{\circ}\text{C}) \\ &(V_{DS}=50 \text{ Vdc}, V_{GS}=0 \text{ Vdc}, 25^{\circ}\text{C}) \\ &(V_{DS}=50 \text{ Vdc}, V_{GS}=0 \text{ Vdc}, 150^{\circ}\text{C}) \end{aligned} $		I _{DSS}	- - -	- - -	0.1 0.5 5.0	μAdc
Gate-Source Leakage Current (V _{GS} = ± 20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	_	-	±0.1	μAdc
ON CHARACTERISTICS (Note 1						
Gate-Source Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1.0 \text{ mAdc})$	V _{GS(th)}	0.85	-	1.5	Vdc	
Static Drain-to-Source On-Resistance (V_{GS} = 2.75 Vdc, I_D < 200 mAdc, T_A = -40°C to +85°C) (V_{GS} = 5.0 Vdc, I_D = 200 mAdc)		r _{DS(on)}	_ _	5.6 -	10 3.5	Ω
Forward Transconductance (V _{DS} = 25 Vdc, I _D = 200 mAdc, f = 1.0 kHz)		9 _{fs}	100	-	-	mmhos
DYNAMIC CHARACTERISTICS						
Input Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0, f = 1 MHz)	C _{iss}	_	40	50	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0, f = 1 MHz)	C _{oss}	_	12	25	1
Transfer Capacitance	(V _{DG} = 25 Vdc, V _{GS} = 0, f = 1 MHz)	C _{rss}	_	3.5	5.0	1
SWITCHING CHARACTERISTIC	S (Note 2)	•	•	-	•	•
Turn-On Delay Time	() (0)/4-1 (0,0)4-)	t _{d(on)}	_	-	20	ns
Turn-Off Delay Time	(V _{DD} = 30 Vdc, I _D = 0.2 Adc,)	t _{d(off)}	_	_	20	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

^{3.} ESD between the gate and source serves only, no gate overvoltage rating is implied.


TYPICAL ELECTRICAL CHARACTERISTICS

0.9 25°C $V_{DS} = 10 V$ 0.8 -55°C ID, DRAIN CURRENT (AMPS) 0.7 150°C 0.6 0.5 0.4 0.3 0.2 0.1 0.5 3 3.5 4.5 VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

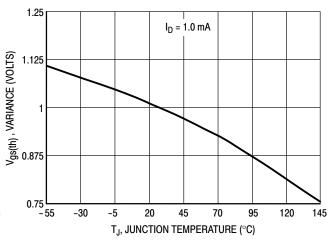
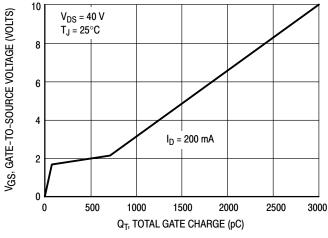



Figure 3. On–Resistance Variation with Temperature

Figure 4. Threshold Voltage Variation with Temperature

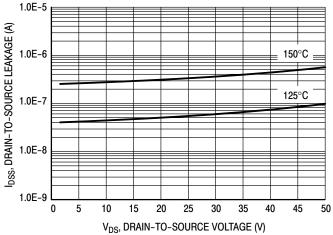
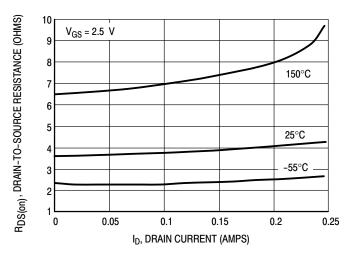
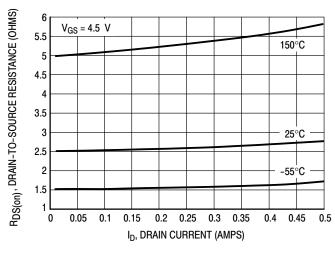



Figure 5. Gate Charge

Figure 6. IDSS


TYPICAL ELECTRICAL CHARACTERISTICS

SOUND SOUTH A STATE OF THE STAT

Figure 7. On-Resistance versus Drain Current

Figure 8. On-Resistance versus Drain Current

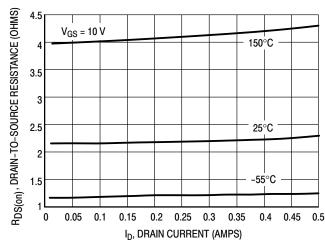
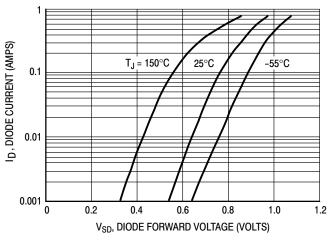



Figure 9. On-Resistance versus Drain Current

Figure 10. On-Resistance versus Drain Current

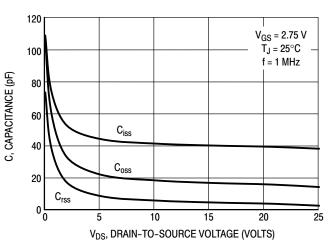


Figure 11. Body Diode Forward Voltage

Figure 12. Capacitance

TYPICAL ELECTRICAL CHARACTERISTICS

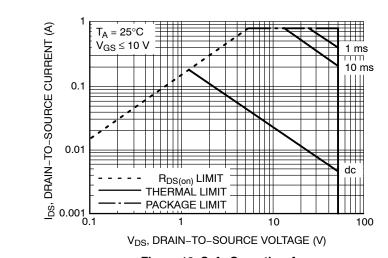


Figure 13. Safe Operating Area

MILLIMETERS

MIN

0.89

0.01

0.37

0.08

2.80

1.20

1.78

0.30

0.35

2.10

O°

NOM

1.00

0.06

0.44

0.14

2.90

1.30

1.90

0.43

0.54

2.40

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318 ISSUE AU**

DATE 14 AUG 2024

MAX

1.11

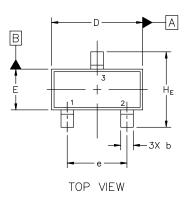
0.10

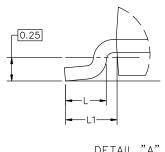
0.50

0.20

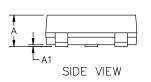
3.04

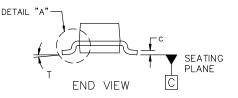
1.40

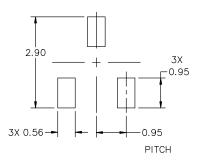

2.04


0.55

0.69


2.64


10°



DETAIL "A" Scale 3:1

NOTES:

DIM

Α

Α1

b

С

D

Ε

е L

L1

HE

Τ

- DIMENSIONING AND TOLERANCING 1. PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS:
- MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE
- BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

RECOMMENDED MOUNTING FOOTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED or "CONTROLLED"		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		PAGE 1 OF 2

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

SOT-23 (TO-236) 2.90x1.30x1.00 1.90P CASE 318 ISSUE AU

DATE 14 AUG 2024

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR		NODE D CONNECTION ATHODE	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: STYLE 12: PIN 1. ANODE PIN 1. CA 2. CATHODE 2. CA 3. CATHODE-ANODE 3. AN	ATHODE PIN 1. SOURCE ATHODE 2. DRAIN	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE			STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: STYLE 24: PIN 1. ANODE PIN 1. GAT 2. ANODE 2. DR/ 3. CATHODE 3. SOU	TE PIN 1. ANODE AIN 2. CATHODE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE			

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236) 2.90x1.30x1.00 1.90P		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

BSS138LT1G BSS138LT3G BVSS138LT1G BSS138LT7G