N-channel TrenchMOS logic level FET

Rev. 06 — 30 January 2009

Product data sheet

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Suitable for high frequency applications due to fast switching characteristics
- Suitable for logic level gate drive sources

DC-to-DC convertors

1.3 Applications

Computer motherboards

1.4 Quick reference data

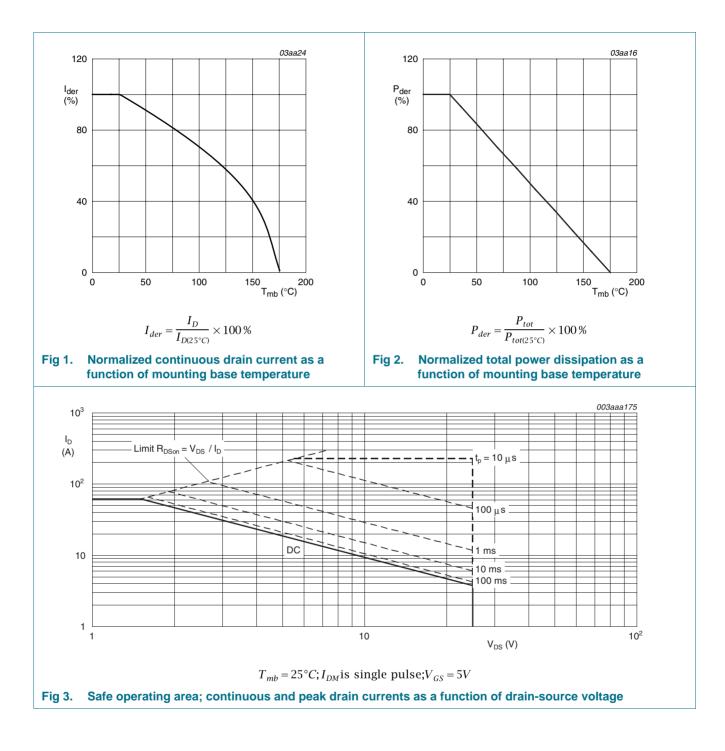
Table 1. **Quick reference** Symbol Parameter Conditions Min Unit Typ Max T_i ≥ 25 °C; T_i ≤ 175 °C 25 V V_{DS} drain-source voltage -- I_{D} drain current $V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}$ -75 А -T_{mb} = 25 °C; see Figure 2 W P_{tot} total power --93 dissipation **Dynamic characteristics** gate-drain charge $V_{GS} = 5 \text{ V}; I_D = 50 \text{ A};$ 4.2 5.6 nC Q_{GD} -V_{DS} = 15 V; T_i = 25 °C; see Figure 11 Static characteristics drain-source $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ 7.65 9 mΩ R_{DSon} - $T_i = 25 \text{ °C}; \text{ see Figure 9};$ on-state resistance see Figure 10

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	
3	S	source	۲ O S	
mb	D	mounting base; connected to drain		mbb076 S
			SOT78 (TO-220AB;SC-46)	

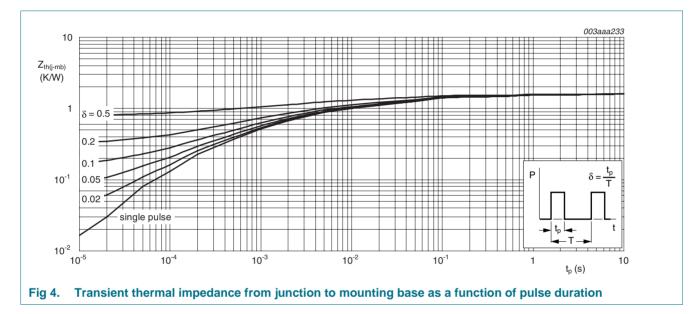
3. Ordering information

Table 3. Ordering information

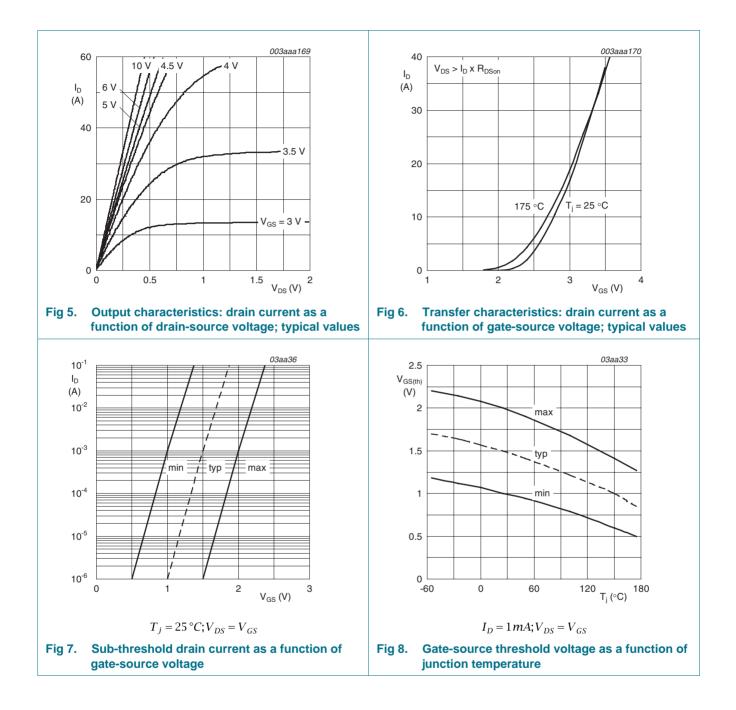

Type number	Package		
	Name	Description	Version
PHP78NQ03LT	TO-220AB; SC-46	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78

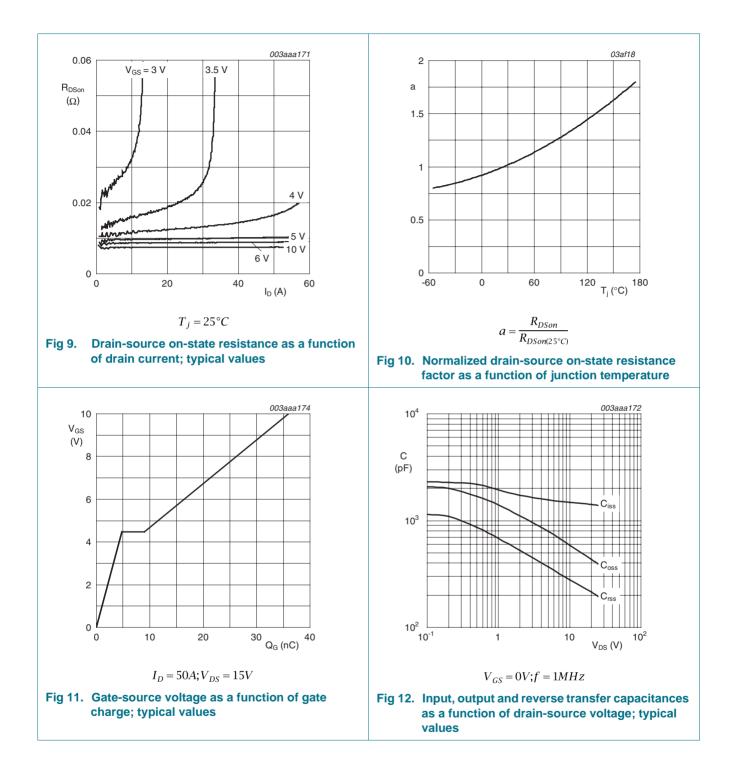
4. Limiting values

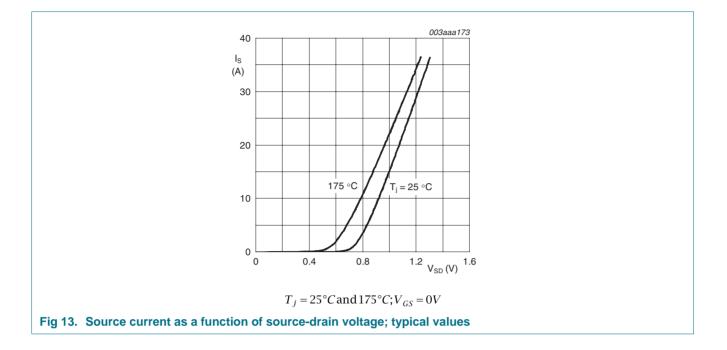
Table 4.Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

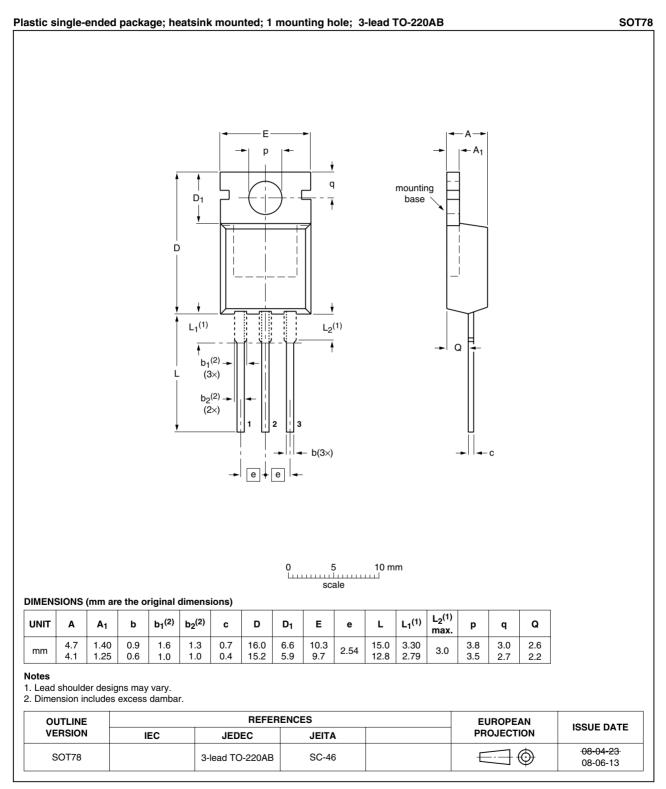
0	B				
Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	25	V
V _{DGR}	drain-gate voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$	-	25	V
V_{GS}	gate-source voltage		-20	20	V
I _D	drain current	V _{GS} = 5 V; T _{mb} = 100 °C; see <u>Figure 1</u>	-	43	А
		V _{GS} = 10 V; T _{mb} = 25 °C	-	75	А
		V _{GS} = 10 V; T _{mb} = 100 °C	-	53	А
		$V_{GS} = 5 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{\text{Figure 3}};$	-	61	А
I _{DM}	peak drain current	t _p ≤ 10 μs; pulsed; T _{mb} = 25 °C; see <u>Figure 3</u>	-	228	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	93	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-dr	ain diode				
I _S	source current	T _{mb} = 25 °C	-	75	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	228	А
Avalanche	ruggedness				
$E_{DS(AL)S}$	non-repetitive drain-source avalanche energy	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; T_{j(init)} = 25 ^{\circ}\text{C}; \text{I}_\text{D} = 43 \text{A}; \text{V}_{sup} \leq 25 \text{V}; \\ \text{unclamped}; \text{t}_\text{p} = 0.25 \text{ms}; \text{R}_{GS} = 50 \Omega \end{array}$	-	185	mJ


5. Thermal characteristics


Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	vertical in still air	-	60	-	K/W
R _{th(j-mb)}	thermal resistance from junction to mounting base	see Figure 4	-	-	1.6	K/W



6. Characteristics


	Table 6.	Characteristics					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Static cha	aracteristics					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{(BR)DSS}		I_D = 250 µA; V_{GS} = 0 V; T_j = -55 °C	22	-	-	V
$\begin{tabular}{ c c c c } $$ voltage $$ $$ $$ voltage $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$		breakdown voltage	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ\text{C}$	25	-	-	V
	V _{GS(th)}	-		-	-	2.2	V
$ \frac{\text{Figure 8}}{\text{Poss}} \text{ drain leakage current} \frac{\text{V}_{DS} = 25 \text{ V; } \text{V}_{GS} = 0 \text{ V; } \text{T}_{j} = 25 ^{\circ}\text{C} - 10 \mu\text{A} \\ \hline \text{V}_{DS} = 25 \text{ V; } \text{V}_{OS} = 0 \text{ V; } \text{T}_{j} = 150 ^{\circ}\text{C} - 500 \mu\text{A} \\ \hline \text{V}_{OS} = 25 \text{ V; } \text{V}_{OS} = 0 \text{ V; } \text{T}_{j} = 25 ^{\circ}\text{C} - 10 100 n\text{A} \\ \hline \text{V}_{OS} = 15 \text{ V; } \text{V}_{DS} = 0 \text{ V; } \text{T}_{j} = 25 ^{\circ}\text{C} - 10 100 n\text{A} \\ \hline \text{V}_{OS} = 15 \text{ V; } \text{V}_{DS} = 0 \text{ V; } \text{T}_{j} = 25 ^{\circ}\text{C} - 7.65 9 \text{m} \Omega \\ \hline \text{essistance} \text{resistance} \text{V}_{OS} = 5 \text{ V; } \text{I}_{D} = 25 ^{\circ}\text{C} 7.65 9 \text{m} \Omega \\ \hline \text{v}_{OS} = 5 \text{ V; } \text{I}_{D} = 25 \text{V; } \text{T}_{j} = 25 ^{\circ}\text{C} 11.5 13.5 \text{m} \Omega \\ \hline \text{v}_{OS} = 5 \text{V; } \text{D}_{S} = 0 \text{V; } \text{D}_{S} = 0 $				0.5	-	-	V
$\begin{tabular}{ c c c c } \hline V_{DS} = 25 \ V; \ V_{GS} = 0 \ V; \ T_{j} = 150 \ ^{\circ}C & - & 500 \ \mu A \\ \hline V_{GS} = 15 \ V; \ V_{DS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C & - & 10 \ 100 \ nA \\ \hline V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C & - & 10 \ 100 \ nA \\ \hline V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C & - & 10 \ 100 \ nA \\ \hline V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C & - & 7.65 \ 9 \ m\Omega \\ \hline V_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 175 \ ^{\circ}C & - & 20.7 \ 24.3 \ m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 175 \ ^{\circ}C & - & 11.5 \ 13.5 \ m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}C & - & 11.5 \ 13.5 \ m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}C & - & 11.5 \ 13.5 \ m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}C & - & 11.5 \ 13.5 \ m\Omega \\ \hline v_{GS} = 50 \ A; \ V_{DS} = 15 \ V; \ V_{GS} = 5 \ V; \ - & 4.8 \ - & nC \\ \hline Q_{GS} \ gate \ data \ charge \ T_{j} = 25 \ ^{\circ}C \ see \ Figure 11 \ - & 4.2 \ 5.6 \ nC \\ \hline C_{BS} \ input \ capacitance \ V_{DS} = 25 \ V; \ V_{GS} = 0 \ V; \ f = 1 \ MHz; \ T_{j} = 25 \ ^{\circ}C \ see \ Figure 12 \ - & 156 \ - \ PF \\ \hline C_{rss} \ reverse \ transfer \ capacitance \ V_{DS} = 15 \ V; \ V_{GS} = 0 \ V; \ f = 1 \ MHz; \ T_{j} = 25 \ ^{\circ}C \ see \ Figure 12 \ - & 156 \ - \ PF \\ \hline C_{rss} \ reverse \ transfer \ capacitance \ V_{DS} = 15 \ V; \ V_{GS} = 0 \ V; \ f = 1 \ MHz; \ T_{j} = 25 \ ^{\circ}C \ see \ Figure 12 \ - & 156 \ - \ PF \\ \hline C_{rss} \ reverse \ transfer \ capacitance \ V_{DS} = 15 \ V; \ V_{GS} = 10 \ V; \ - \ 20 \ 33 \ ns \ reverse \ transfer \ capacitance \ V_{DS} = 15 \ V; \ V_{GS} = 10 \ V; \ - \ 20 \ 33 \ ns \ reverse \ transfer \ capacitance \ V_{DS} = 15 \ V; \ V_{GS} = 10 \ V; \ - \ 20 \ 33 \ ns \ reverse \ transfer \ capacitance \ V_{DS} = 15 \ V; \ V_{GS} = 10 \ V; \ - \ 20 \ 33 \ ns \ reverse \ transfer \ capacitance \ V_{DS} = 15 \ V; \ V_{SS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C \ see \ Figure 13 \ V \ See \ Figure 13 \ See \ Figu$				1	1.5	2	V
	I _{DSS}	drain leakage current	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	10	μA
$ \begin{array}{ c c c c c c } \hline V_{GS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C & - & 10 & 100 & nA \\ \hline V_{GS} = 10 \ V; \ U_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 7.65 & 9 & m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 175 \ ^{\circ}C; & - & 20.7 & 24.3 & m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 11.5 & 13.5 & m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 11.5 & 13.5 & m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 11.5 & 13.5 & m\Omega \\ \hline v_{GS} = 5 \ V; \ U_{D} = 25 \ A; \ V_{DS} = 15 \ V; \ V_{GS} = 5 \ V; & - & 13 & - & nC \\ \hline c_{GS} & gate-source \ charge & U_{D} = 50 \ A; \ V_{DS} = 15 \ V; \ V_{GS} = 5 \ V; & - & 4.8 & - & nC \\ \hline Q_{GS} & gate-drain \ charge & T_{j} = 25 \ ^{\circ}C; \ see \ Figure \ 11 & - & 4.2 & 5.6 & nC \\ \hline C_{GS} & input \ capacitance & V_{DS} = 25 \ V; \ V_{GS} = 0 \ V; \ f = 1 \ MHZ; \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure \ 12 & - & 1074 \ - & pF \\ \hline C_{rss} & reverse \ transfer \\ capacitance & T_{j} = 25 \ ^{\circ}C; \ see \ Figure \ 12 & - & 156 \ - & pF \\ \hline c_{rss} & reverse \ transfer \\ capacitance & V_{DS} = 15 \ V; \ V_{GS} = 10 \ V; \\ t_{r} & rise \ time & T_{j} = 25 \ ^{\circ}C; \ see \ Figure \ 12 & - & 30 \ 48 \ ns \\ t_{r} & fist \ time & T_{i} = 25 \ ^{\circ}C; \ See \ Figure \ 12 & - & 30 \ 48 \ ns \\ t_{r} & fall \ time & - & 40 \ 60 \ ns \\ \hline Source-drain \ voltage & I_{S} = 25 \ A; \ V_{GS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C; \ see \ Figure \ 13 \ - & 40 \ 60 \ ns \\ \hline Source-drain \ voltage & I_{S} = 25 \ A; \ V_{GS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C; \ see \ Figure \ 13 \ - & 40 \ 60 \ ns \\ \hline Source-drain \ voltage & I_{S} = 20 \ A; \ d_{S} del \ - & 100 \ A/\mu_{F}; \ V_{GS} = 0 \ V; \ - & 40 \ - \ ns \\ \hline \end{array}$			$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$	-	-	500	μA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{GSS}	gate leakage current	V_{GS} = 15 V; V_{DS} = 0 V; T_j = 25 °C	-	10	100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V_{GS} = -15 V; V_{DS} = 0 V; T_j = 25 °C	-	10	100	nA
$ see \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	R _{DSon}			-	7.65	9	mΩ
see Figure 9; see Figure 10 Dynamic characteristics $Q_{G(tot)}$ total gate charge $I_D = 50 A; V_{DS} = 15 V; V_{GS} = 5 V;$ see Figure 11 - 13 - nC Q_{GS} gate-source charge $I_D = 50 A; V_{DS} = 15 V; V_{GS} = 5 V;$ see Figure 11 - 4.8 - nC Q_{GD} gate-drain charge $T_j = 25 °C;$ see Figure 11 - 4.2 5.6 nC C_{iss} input capacitance $V_{DS} = 25 V; V_{GS} = 0 V; f = 1 MHz;$ $T_j = 25 °C;$ see Figure 12 - 1074 - pF C_{oss} output capacitance $V_{DS} = 25 V; V_{GS} = 0 V; f = 1 MHz;$ $T_j = 25 °C;$ see Figure 12 - 389 - pF C_{rss} reverse transfer capacitance - 156 - pF $t_{d(on)}$ turn-on delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 10 V;$ t_r - 20 33 ns $t_d(off)$ turn-off delay time $V_{DS} = 15 V; R_L = 0.6 \Omega; V_{GS} = 10 V;$ t_r - 92 130 ns $t_d(off)$ turn-off delay time - 30 48 ns $t_d(off)$,	-	20.7	24.3	mΩ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	11.5	13.5	mΩ
see Figure 11 QGS gate-source charge ID = 50 A; VDS = 15 V; VGS = 5 V; - 4.8 - nC QGD gate-drain charge Tj = 25 °C; see Figure 11 - 4.2 5.6 nC Ciss input capacitance VDS = 25 V; VGS = 0 V; f = 1 MHZ; - 1074 - pF Coss output capacitance VDS = 25 V; VGS = 0 V; f = 1 MHZ; - 1074 - pF Coss output capacitance VDS = 25 °C; see Figure 12 - 389 - pF Coss output capacitance VDS = 15 V; RL = 0.6 Q; VGS = 10 V; - 20 33 ns td(on) turn-on delay time VDS = 15 V; RL = 0.6 Q; VGS = 10 V; - 20 33 ns td(off) turn-off delay time VDS = 15 Q; RL = 0.6 Q; TJ = 25 °C - 92 130 ns Source-drain diode VDS = 15 V; RL = 0.6 Q; TJ = 25 °C - 92 130 ns VSD source-drain voltage IS = 25 A; VGS = 0 V; TJ = 25 °C; - 0.95 1.2 V trr reverse recovery time </td <td>Dynamic</td> <td>characteristics</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dynamic	characteristics					
QGD gate-drain charge $T_j = 25 \text{ °C}; \text{ see Figure 11}$ - 4.2 5.6 nC Ciss input capacitance $V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ - 1074 - pF Coss output capacitance $T_j = 25 \text{ °C}; \text{ see Figure 12}$ - 389 - pF Coss output capacitance $T_j = 25 \text{ °C}; \text{ see Figure 12}$ - 389 - pF Crss reverse transfer capacitance $V_{DS} = 15 \text{ V}; \text{ R}_L = 0.6 \Omega; \text{ V}_{GS} = 10 \text{ V};$ - 20 33 ns td(on) turn-on delay time $V_{DS} = 15 \text{ V}; \text{ R}_L = 0.6 \Omega; \text{ V}_{GS} = 10 \text{ V};$ - 20 33 ns td(off) turn-off delay time $V_{DS} = 5.6 \Omega; \text{ T}_j = 25 \text{ °C}$ - 92 130 ns tfr fall time - 40 60 ns Source-drain diode Is = 25 A; V_{GS} = 0 V; T_j = 25 \text{ °C}; see Figure 13 - 0.95 1.2 V trr reverse recovery time Is = 20 A; dIs/dt = -100 A/\mus; V_{GS} = 0 V; - - 40 - ns	Q _{G(tot)}	total gate charge		-	13	-	nC
Cissinput capacitance $V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ T = 25 °C; see Figure 12-1074-pFCossoutput capacitanceT = 25 °C; see Figure 12-389-pFCrssreverse transfer capacitance-156-pFCrssreverse transfer capacitanceVDS = 15 V; RL = 0.6 \Omega; V_{GS} = 10 V; T = 25 °C-2033nstd(on)turn-on delay timeVDS = 15 V; RL = 0.6 \Omega; V_{GS} = 10 V; RG(ext) = 5.6 \Omega; T = 25 °C-92130nstrrise timeRG(ext) = 5.6 \Omega; T = 25 °C-92130nstd(off)turn-off delay time-4060nsSource-drain diodeVsDsource-drain voltageIs = 25 A; V_{GS} = 0 V; T = 25 °C; see Figure 13-0.951.2Vtrrreverse recovery timeIs = 20 A; dIs/dt = -100 A/µs; V_{GS} = 0 V; set = 25 VC-40-ns	Q _{GS}	gate-source charge		-	4.8	-	nC
$ \begin{array}{c ccccc} C_{oss} & \mbox{output capacitance} & T_j = 25 \ ^{\circ}C; \mbox{ see } \underline{Figure 12} & - & 389 & - & pF \\ \hline C_{rss} & reverse transfer \\ capacitance & & & & & & & & & & & & & & & & & & &$	Q _{GD}	gate-drain charge	T _j = 25 °C; see <u>Figure 11</u>	-	4.2	5.6	nC
$\begin{array}{c c c c c c c c } \hline C_{rss} & reverse transfer \\ capacitance \\ t_{d(on)} & turn-on delay time \\ t_r & rise time \\ t_{d(off)} & turn-off delay time \\ t_r & fall time \\ \hline Source-drain diode \\ \hline V_{SD} & source-drain voltage \\ t_{rr} & reverse recovery time \\ t_{s} = 20 \text{ A; } dl_{s}/dt = -100 \text{ A/}\mu\text{s; } V_{GS} = 0 \text{ V;} \\ \hline - & 156 & - & pF \\ \hline - & 20 & 33 & ns \\ - & 20 & 33 & ns \\ - & 92 & 130 & ns \\ - & 30 & 48 & ns \\ - & 40 & 60 & ns \\ \hline - & 40 & 60 & ns \\ \hline - & 0.95 & 1.2 & V \\ \hline - & reverse recovery time \\ t_{s} = 20 \text{ A; } dl_{s}/dt = -100 \text{ A/}\mu\text{s; } V_{GS} = 0 \text{ V;} \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 40 & - & ns \\ \hline - & 156 & - & pF \\ \hline - & 156 & - & pF \\ \hline - & 156 & - & pF \\ \hline - & 20 & 33 & ns \\ \hline - & 20 & 33 & ns \\ \hline - & 20 & 33 & ns \\ \hline - & 20 & 33 & ns \\ \hline - & 30 & 48 & ns \\ \hline - & 40 & 60 & ns \\ \hline - & 40 & - & ns \\ \hline - $	C _{iss}	input capacitance		-	1074	-	pF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{12}$	-	389	-	pF
$\begin{array}{c c} r_{rr} & rise time \\ t_{d(off)} & turn-off delay time \\ t_{f} & fall time \\ \end{array} \qquad \begin{array}{c c} R_{G(ext)} = 5.6 \ \Omega; \ T_{j} = 25 \ ^{\circ}C \\ \hline & 92 & 130 & ns \\ \hline & 30 & 48 & ns \\ \hline & - & 30 & 48 & ns \\ \hline & - & 40 & 60 & ns \\ \end{array} \\ \begin{array}{c c} Source-drain diode \\ \hline \\ V_{SD} & source-drain voltage \\ V_{SD} & source-drain voltage \\ t_{rr} & reverse recovery time \\ I_{S} = 20 \ A; \ dI_{S}/dt = -100 \ A/\mu s; \ V_{GS} = 0 \ V; \\ \hline & - & 40 & - & ns \\ \end{array}$	C _{rss}			-	156	-	pF
trisocurreisocurreisocurreisocurreisocurre $t_{d(off)}$ turn-off delay time-3048ns t_{f} fall time-4060nsSource-drain diode V_{SD} source-drain voltage $I_S = 25 A; V_{GS} = 0 V; T_j = 25 °C;$ see Figure 13-0.951.2V t_{rr} reverse recovery time $I_S = 20 A; dI_S/dt = -100 A/\mu s; V_{GS} = 0 V;$ -40-ns	t _{d(on)}	turn-on delay time		-	20	33	ns
trfall time-4060nsSource-drain diode V_{SD} source-drain voltage $I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see Figure 13-0.951.2V t_{rr} reverse recovery time $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V};$ -40-ns	t _r	rise time	$R_{G(ext)} = 5.6 \ \Omega; \ T_j = 25 \ ^{\circ}C$	-	92	130	ns
trfall time-4060nsSource-drain diode V_{SD} source-drain voltage $I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see Figure 13-0.951.2V t_{rr} reverse recovery time $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V};$ -40-ns	t _{d(off)}	turn-off delay time		-	30	48	ns
$V_{SD} \qquad source-drain voltage \qquad I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; \text{T}_{\text{j}} = 25 \text{ °C}; \qquad - \qquad 0.95 \qquad 1.2 \text{V}$ $see \frac{\text{Figure 13}}{\text{I}_{\text{rr}}} \qquad reverse \text{ recovery time} \qquad I_S = 20 \text{ A}; \text{d}_{\text{S}}/\text{d}_{\text{T}} = -100 \text{A}/\mu\text{s}; \text{V}_{\text{GS}} = 0 \text{ V}; \qquad - \qquad 40 - \text{ns}$	t _f	fall time		-	40	60	ns
see Figure 13 t_{rr} reverse recovery time $I_S = 20 \text{ A}; \text{ dI}_S/\text{dt} = -100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V};$ - 40 - ns	Source-d	rain diode					
	V _{SD}	source-drain voltage	,	-	0.95	1.2	V
	t _{rr}	reverse recovery time	$I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = -100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 0 \text{ V};$	-	40	-	ns
	Qr	recovered charge	V _{DS} = 25 V; T _j = 25 °C	-	32	-	nC

7. Package outline

Fig 14. Package outline SOT78 (TO-220AB)

8. Revision history

Table 7.	Revision history				
Documen	t ID	Release date	Data sheet status	Change notice	Supersedes
PHP78NQ	03LT_6	20090130	Product data sheet	-	PHP78NQ03LT_5
Modifications:			of this data sheet has be of NXP Semiconductors.	0	comply with the new identity
		 Legal texts 	have been adapted to the	ne new company n	name where appropriate.
PHP78NG (9397 750	- <u>-</u>	20050609	Product data sheet	-	PHP_PHU78NQ03LT_4
PHP_PHU78NQ03LT_4 (9397 750 13431)		20040726	Product data sheet	-	PHP_PHB_PHD78NQ03LT_3
PHP_PHB (9397 750	3_PHD78NQ03LT_3 09667)	20020626	Product data sheet	-	PHP_PHB_PHD78NQ03LT_2
PHP_PHB (9397 750	8_PHD78NQ03LT_2 09418)	20020322	Product data sheet	-	PHP_PHB_PHD78NQ03LT_1
PHP_PHB_PHD78NQ03LT_1 (9397 750 08916)		20011114	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

10. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status12
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks12
10	Contact information12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 30 January 2009 Document identifier: PHP78NQ03LT_6

All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: PHP78NQ03LT