

Freescale Semiconductor

Data Sheet: Technical Data

Document Number: S9S08RN60

Rev. 1, 01/2014

S9S08RN60

S9S08RN60 Series Data Sheet

Supports: S9S08RN60, S9S08RN48 and S9S08RN32

Features

- 8-Bit S08 central processor unit (CPU)
 - Up to 20 MHz bus at 2.7 V to 5.5 V across temperature range of -40 °C to 125 °C
 - Supporting up to 40 interrupt/reset sources
 - Supporting up to four-level nested interrupt
 - On-chip memory
 - Up to 60 KB flash read/program/erase over full operating voltage and temperature
 - Up to 256 byte EEPROM with ECC; 2-byte erase sector; EEPROM program and erase while executing code from flash
 - Up to 4096 byte random-access memory (RAM)
 - Flash and RAM access protection

• Power-saving modes

- One low-power stop mode; reduced power wait mode
- Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode

Clocks

- Oscillator (XOSC) loop-controlled Pierce oscillator; crystal or ceramic resonator
- Internal clock source (ICS) containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allowing 1% deviation across temperature range of 0 °C to 70 °C and -40 °C to 85 °C, 1.5% deviation across temperature range of -40 °C to 105 °C, and 2% deviation across temperature range of -40 °C to 125 °C; up to 20 MHz

· System protection

- Watchdog with independent clock source
- Low-voltage detection with reset or interrupt; selectable trip points
- Illegal opcode detection with reset
- Illegal address detection with reset

• Development support

- Single-wire background debug interface
- Breakpoint capability to allow three breakpoints setting during in-circuit debugging
- On-chip in-circuit emulator (ICE) debug module containing two comparators and nine trigger modes

Peripherals

- ACMP one analog comparator with both positive and negative inputs; separately selectable interrupt on rising and falling comparator output; filtering
- ADC 16-channel, 12-bit resolution; 2.5 μs conversion time; data buffers with optional watermark; automatic compare function; internal bandgap reference channel; operation in stop mode; optional hardware trigger
- CRC programmable cyclic redundancy check module
- FTM three flex timer modulators modules including one 6-channel and two 2-channel ones;
 16-bit counter; each channel can be configured for input capture, output compare, edge- or centeraligned PWM mode
- IIC One inter-integrated circuit module; up to 400 kbps; multi-master operation; programmable slave address; supporting broadcast mode and 10-bit addressing
- MTIM Two modulo timers with 8-bit prescaler and overflow interrupt
- RTC 16-bit real timer counter (RTC)
- SCI three serial communication interface (SCI/ UART) modules optional 13-bit break; full duplex non-return to zero (NRZ); LIN extension support
- SPI one 8-bit and one 16-bit serial peripheral interface (SPI) modules; full-duplex or single-wire bidirectional; master or slave mode
- TSI supporting up to 16 external electrodes; configurable software or hardware scan trigger; fully support freescale touch sensing software library; capability to wake MCU from stop3 mode

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

- Input/Output
 - Up to 55 GPIOs including one output-only pin
 - Two 8-bit keyboard interrupt modules (KBI)
 - Two true open-drain output pins
 - Eight, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
 - 64-pin LQFP
 - 48-pin LQFP
 - 32-pin LQFP

Table of Contents

1	Ord	ering pa	ırts4				
	1.1	Determ	nining valid orderable parts4				
2	Part	identific	cation4				
	2.1	Descrip	otion4				
	2.2	Format	4				
	2.3	Fields.	4				
	2.4	Examp	le5				
3	Para	ameter (Classification5				
4	Rati	ngs	5				
	4.1	4.1 Thermal handling ratings					
	4.2	Moisture handling ratings					
	4.3	B ESD handling ratings					
	4.4	Voltage	e and current operating ratings6				
5	Gen	eral	7				
	5.1	Nonsw	itching electrical specifications7				
		5.1.1	DC characteristics7				
		5.1.2	Supply current characteristics14				
		5.1.3	EMC performance15				
	5.2	Switchi	ing specifications16				
		5.2.1	Control timing16				

		5.2.2	Debug trace timing specifications	17
		5.2.3	FTM module timing	17
	5.3	Therma	al specifications	18
		5.3.1	Thermal characteristics	18
6	Peri	pheral c	perating requirements and behaviors	19
	6.1	Externa	al oscillator (XOSC) and ICS characteristics	20
	6.2	NVM s	pecifications	21
	6.3	Analog		23
		6.3.1	ADC characteristics	23
		6.3.2	Analog comparator (ACMP) electricals	25
	6.4	Commi	unication interfaces	26
		6.4.1	SPI switching specifications	26
	6.5	Human	n-machine interfaces (HMI)	29
		6.5.1	TSI electrical specifications	29
7	Dim	ensions		29
	7.1	Obtaini	ing package dimensions	29
8	Pinc	out		30
	8.1	Signal	multiplexing and pin assignments	30
	8.2	Device	pin assignment	33

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: RN60, RN48 and RN32.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

S 9 S08 RN AA F1 B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
s	Qualification status	S = fully qualified, general market flow
9	Memory	9 = flash based
S08	Core	• S08 = 8-bit CPU
RN	Device family	• RN
AA	Approximate flash size in KB	 60 = 60 KB 48 = 48 KB 32 = 32 KB
F1	Fab and mask set identifier	• W1
В	Temperature range (°C)	• M = -40 to 125

Field	Description	Values
CC	Package designator	 LH = 64-pin LQFP LF = 48-pin LQFP LC = 32-pin LQFP

2.4 Example

This is an example part number:

S9S08RN60W1MLH

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

naungs

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 125°C	-100	+100	mA	

Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

4.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in below table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	5.8	V
I _{DD}	Maximum current into V _{DD}	_	120	mA

^{2.} Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

Symbol	Description	Min.	Max.	Unit
V_{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V_{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 is only clamped to V_{SS} .

5 General

5.1 Nonswitching electrical specifications

5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol C **Descriptions** Min Typical¹ Max Unit Operating voltage 2.7 5.5 V V_{OH} С Output high All I/O pins, standard-5 V, $I_{load} =$ $V_{DD} - 0.8$ ٧ drive strength voltage -5 mA V С 3 V, $I_{load} =$ $V_{DD} - 0.8$ -2.5 mA 5 V, $I_{load} =$ С High current drive $V_{DD} - 0.8$ ٧ pins, high-drive -20 mA strength^{2, 2} 3 V, I_{load} = С $V_{DD} - 0.8$ ٧ -10 mA 5 V I_{OHT} D Output high Max total I_{OH} for all -100 mΑ current ports 3 V -50 V_{OL} С Output low All I/O pins, standard-5 V, $I_{load} = 5$ 8.0 ٧ voltage drive strength mΑ ٧ С 3 V, $I_{load} =$ 8.0 2.5 mA ٧ С High current drive 5 V, I_{load} 8.0 pins, high-drive =20 mA strength² 3 V, $I_{load} =$ ٧ С 8.0 10 mA

Table 2. DC characteristics

monswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol	С		Descriptions	·	Min	Typical ¹	Max	Unit
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	1
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$	_	_	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	_	1
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	V
	С	voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	1
V_{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$		_	mV
II _{In} I	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μΑ
ll _{OZ} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μА
I _{OZTOT}	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0		60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input cap	acitance, all pins	_	_	_	7	pF
V _{RAM}	С	RAM re	tention voltage	_	2.0	_	_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5 support ultra high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR Specification

Symbol	С	Description	Min	Тур	Max	Unit
V _{POR}	D	POR re-arm voltage ^{1, 2}	1.5	1.75	2.0	V

Table 3. LVD and POR Specification (continued)

Symbol	С	Descr	ription	Min	Тур	Max	Unit
V _{LVDH}	С	threshold - high	Falling low-voltage detect threshold - high range (LVDV = 1) ³		4.3	4.4	V
V _{LVW1H}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	С	warning threshold - high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}	С	High range	Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}	С		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	С		low-voltage ng hysteresis	_	100	_	mV
V _{LVDL}	С	threshold - low	Falling low-voltage detect threshold - low range (LVDV = 0)		2.61	2.66	V
V _{LVDW1L}	С	Falling low- voltage	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVDW2L}	С	warning threshold - low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVDW3L}	С	low range	Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVDW4L}	С		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}	С	Low range low hyste	-voltage detect eresis	_	40	_	mV
V _{HYSWL}	С	Low range warning h	low-voltage nysteresis	_	80	_	mV
V _{BG}	Р	Buffered band	dgap output 4	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. POR ramp time must be longer than 20us/V to get a stable startup.
- 3. Rising thresholds are falling threshold + hysteresis.
- 4. Voltage factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

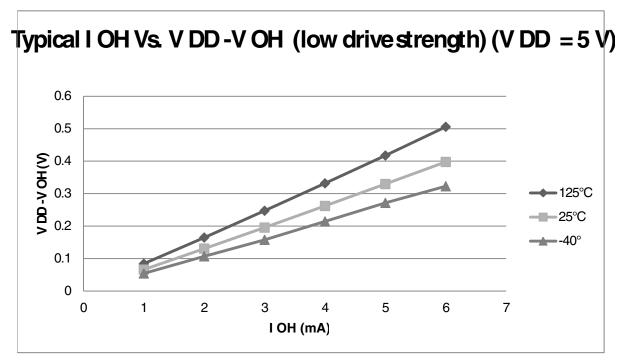


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

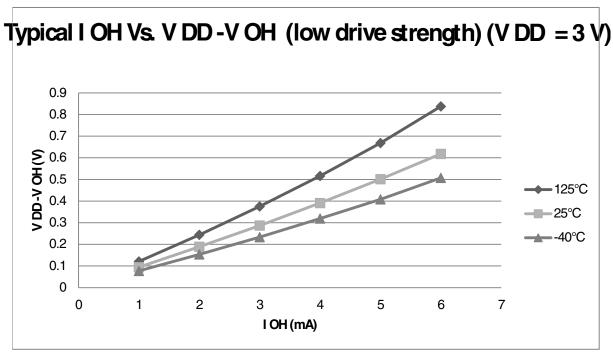


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

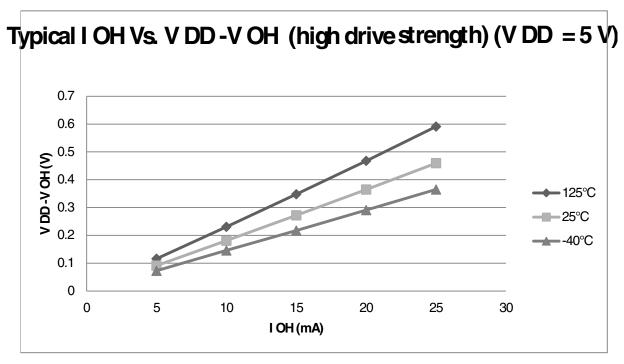


Figure 3. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) (V_{DD} = 5 V)

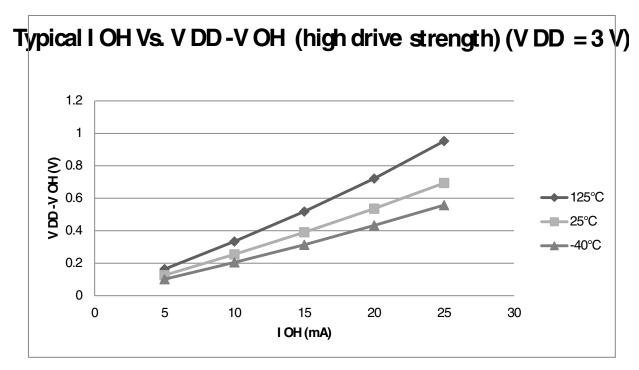


Figure 4. Typical I_{OH} Vs. V_{DD} - V_{OH} (high drive strength) (V_{DD} = 3 V)

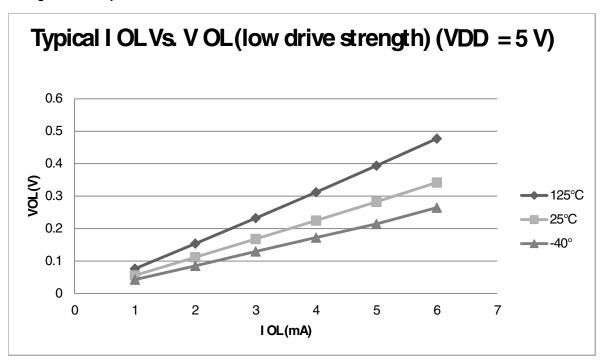


Figure 5. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

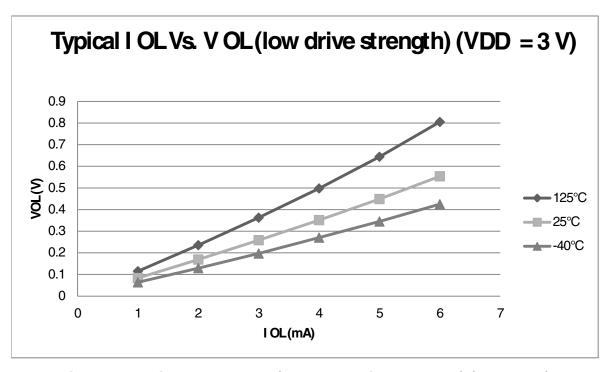


Figure 6. Typical I_{OL} Vs. V_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

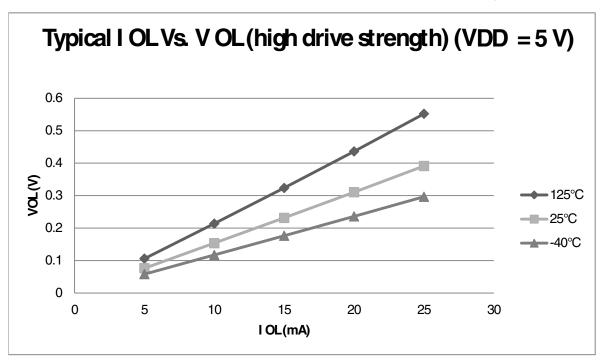


Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

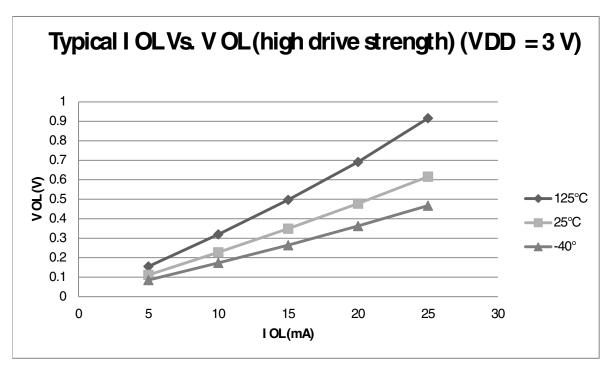


Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI _{DD}	20 MHz	5	12.6	_	mA	-40 to 125 °C
	С	mode, all modules on; run from flash		10 MHz		7.2	_		
		Hom hash		1 MHz		2.4	_		
	С			20 MHz	3	9.6	_		
	С			10 MHz		6.1	_		
				1 MHz		2.1	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	10.5	_	mA	-40 to 125 °C
	С	mode, all modules off & gated; run from flash		10 MHz		6.2	_		
		gated, full from flash		1 MHz		2.3	_		
	С			20 MHz	3	7.4	_		
	С			10 MHz		5.0	_		
				1 MHz		2.0	_		
3	Р	Run supply current FBE	RI_{DD}	20 MHz	5	12.1	14.8	mA	-40 to 125 °C
	С	mode, all modules on; run from RAM		10 MHz		6.5	_		
		IIOIII I IAWI		1 MHz		1.8	_		
	Р			20 MHz	3	9.1	11.8		
	С			10 MHz		5.5	_		
				1 MHz		1.5	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	9.8	12.3	mA	-40 to 125 °C
	С	mode, all modules off & gated; run from RAM		10 MHz		5.4	_		
		gated, full from that		1 MHz		1.6	_		
	Р			20 MHz	3	6.9	9.2		
	С			10 MHz		4.4	_		
				1 MHz		1.4	_		
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	7.8	_	mA	-40 to 125 °C
	С	mode, all modules on		10 MHz		4.5	_		
				1 MHz		1.3	_		
	С			20 MHz	3	5.1	_		
				10 MHz		3.5	_		
				1 MHz		1.2	_		
6	С	Stop3 mode supply	S3I _{DD}	_	5	3.8	_	μΑ	-40 to 125 °C
	С	current no clocks active (except 1 kHz LPO clock) ^{2, 3}		_	3	3	_		-40 to 125 °C

Table 4.	Supply current	characteristics ((continued)
----------	----------------	-------------------	-------------

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
7	С	ADC adder to stop3	_	_	5	44	_	μΑ	-40 to 125 °C
	С	ADLPC = 1			3	40	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop34	_	_	5	111	_	μΑ	-40 to 125 °C
	С	PS = 010B			3	110	_		
		NSCN =0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	130		μΑ	-40 to 125 °C
	С				3	125			

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 3. ACMP adder cause <1 μ A I_{DD} increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors

5.2 Switching specifications

5.2.1 Control timing

Table 5. Control timing

Num	С	Rating		Symbol	Min	Typical ¹	Max	Unit
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})		f _{Bus}	DC	_	20	MHz
2	Р	Internal low power oscillator	f _{LPO}	0.67	1.0	1.25	KHz	
3	D	External reset pulse width ^{2,}	2	t _{extrst}	1.5 ×	_	_	ns
					t _{Self_reset}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u	t _{MSSU}	500	_	_	ns	
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	_	_	ns	
7	D	Keyboard interrupt pulse width			100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	Normal drive strength (HDRVE_PTXx = 0) (load = 50 pF) ^{4, 4}		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -	_	t _{Rise}	_	5.4	_	ns
	С	Extreme high drive strength (HDRVE_PTXx = 1) (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

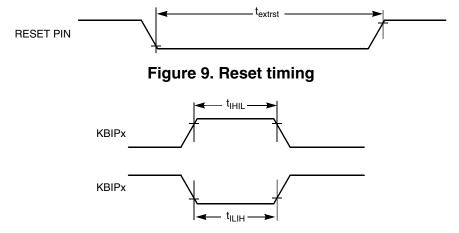


Figure 10. KBIPx timing

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

5.2.2 Debug trace timing specifications

Table 6. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
t _{cyc}	Clock period	Frequency	MHz	
t _{wl}	Low pulse width	2	_	ns
t _{wh}	High pulse width	2	_	ns
t _r	Clock and data rise time	_	_ 3	
t _f	Clock and data fall time	_	3	ns
t _s	Data setup	3	_	ns
t _h	Data hold	2	_	ns

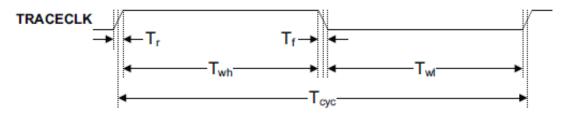


Figure 11. TRACE_CLKOUT specifications

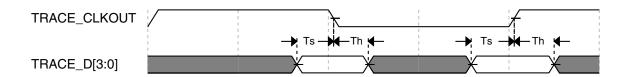


Figure 12. Trace data specifications

5.2.3 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 7. FTM input timing

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz

Table 7. FTM input timing (continued)

No.	С	Function	Symbol	Min	Max	Unit
2	D	External clock period	t _{TCLK}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

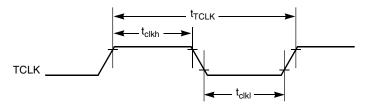


Figure 13. Timer external clock

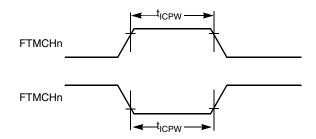


Figure 14. Timer input capture pulse

5.3 Thermal specifications

5.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 8	Thermal	characteristics

Rating	Symbol	Value	Unit					
Operating temperature range (packaged)	T _A	T _L to T _H -40 to 125	°C					
Junction temperature range	T_J	-40 to 135	°C					
Thermal resistance single-layer board								
64-pin LQFP	θ_{JA}	71	°C/W					
48-pin LQFP	θ_{JA}	81	°C/W					
32-pin LQFP	θ_{JA}	86	°C/W					
	Thermal resistance	e four-layer board						
64-pin LQFP	θ_{JA}	53	°C/W					
48-pin LQFP	θ_{JA}	57	°C/W					
32-pin LQFP	θ_{JA}	57	°C/W					

The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}\text{C}) + \theta_{JA} \times (P_D)^2$$

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and P_D and the obtained by solving the above equations iteratively for any value of P_D .

6 Peripheral operating requirements and behaviors

6.1 External oscillator (XOSC) and ICS characteristics

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	С	С	haracteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator	Low range (RANGE = 0)	f _{lo}	32	_	40	kHz
	С	crystal or resonator	High range (RANGE = 1) FEE or FBE mode ^{2, 2}	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), high gain (HGO = 1), FBELP mode	f _{hi}	4	_	20	MHz
	С		High range (RANGE = 1), low power (HGO = 0), FBELP mode	f _{hi}	4	_	20	MHz
2	D	Lo	oad capacitors	C1, C2		See Note ³		
3	D	Feedback resistor	Low Frequency, Low-Power Mode ^{4, 4}	R _F	_	_	_	ΜΩ
		Low Frequency, High-Gain Mode		_	10	_	ΜΩ	
			High Frequency, Low- Power Mode		_	1	_	ΜΩ
			High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	D	Series resistor - Low Frequency	Low-Power Mode ⁴	R _S	_	_	_	kΩ
			High-Gain Mode		_	200	_	kΩ
5	D	Series resistor - High Frequency	Low-Power Mode ⁴	R_S	_	_	_	kΩ
	D	Series resistor -	4 MHz		_	0	_	kΩ
	D	High Frequency,	8 MHz		_	0	_	kΩ
	D	High-Gain Mode	16 MHz		_	0	_	kΩ
6	С	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	С	time Low range = 39.0625 kHz	Low range, high power		_	800	_	ms
	С	crystal; High	High range, low power	t _{CSTH}	_	3		ms
	С	range = 20 MHz crystal ^{5, 5} , ⁶	High range, high power			1.5	_	ms
7	Т	Internal re	eference start-up time	t _{IRST}	_	20	50	μs
8	D	Square wave	FEE or FBE mode ²	f _{extal}	0.03125	_	5	MHz
	D	input clock frequency	FBELP mode		0	_	20	MHz
9	Р	Average internal reference frequency - trimmed		f _{int_t}	_	39.0625	_	kHz
10	Р	DCO output fi	equency range - trimmed	f _{dco_t}	16	_	20	MHz

Table 9. XOSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num	С	C	Characteristic	Symbol	Min	Typical ¹	Max	Unit
11	Р	Total deviation of DCO output from trimmed	Over full voltage range and temperature range of -40 to 125 °C	Δf_{dco_t}	_	_	±2.0	
	С	frequency ⁵	Over full voltage range and temperature range of -40 to 105 °C				±1.5	%f _{dco}
	С		Over fixed voltage and temperature range of 0 to 70 °C				±1.0	
12	С	FLL acquisition time ⁵ , ⁷		t _{Acquire}	_	_	2	ms
13	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁸		C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- 3. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 5. This parameter is characterized and not tested on each device.
- 6. Proper PC board layout procedures must be followed to achieve specifications.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32 bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

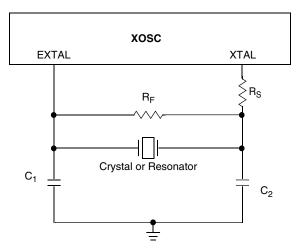


Figure 15. Typical crystal or resonator circuit

reripheral operating requirements and behaviors

6.2 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

Table 10. Flash characteristics

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Supply voltage for program/erase -40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
D	Supply voltage for read operation	V_{Read}	2.7	_	5.5	V
D	NVM Bus frequency	f _{NVMBUS}	1	_	25	MHz
D	NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
D	Erase Verify All Blocks	t _{VFYALL}	_	_	17338	t _{cyc}
D	Erase Verify Flash Block	t _{RD1BLK}	_	_	16913	t _{cyc}
D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to T_H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 125 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

^{1.} Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$

^{2.} Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}

^{3.} Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging

^{4.} $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode	1	_	_	10	1	
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} DC potential difference.

reripheral operating requirements and behaviors

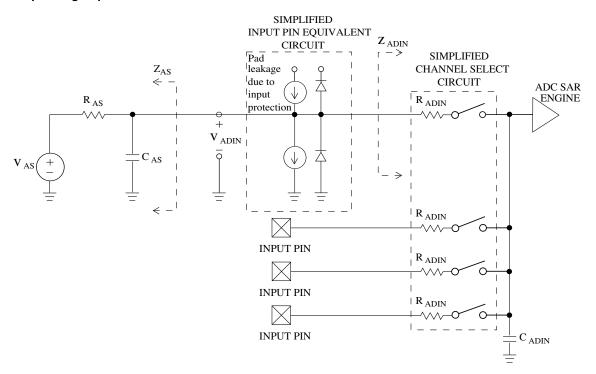


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μA
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μA
ADLPC = 1							
ADLSMP = 0							
ADCO = 1							
Supply current		Т	I _{DDA}	_	327	_	μΑ
ADLPC = 0							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDAD}	_	582	990	μA
ADLPC = 0							
ADLSMP = 0							
ADCO = 1							
Supply current	Stop, reset, module off	Т	I _{DDA}	_	0.011	1	μΑ

Table 12. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (including sample	Short sample (ADLSMP = 0)	Т	t _{ADC}	_	20	_	ADCK cycles
time)	Long sample (ADLSMP = 1)			_	40	_	
Sample time	Short sample (ADLSMP = 0)	Т	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)			_	23.5	_	
Total unadjusted	12-bit mode	Т	E _{TUE}	_	±5.0	_	LSB ^{3, 3}
Error ^{2, 2}	10-bit mode	Р		_	±1.5	±2.0	
	8-bit mode	Р		_	±0.7	±1.0	
Differential Non-	12-bit mode	Т	DNL	_	±1.0	_	LSB ³
Linearity	10-bit mode ^{4, 4}	Р		_	±0.25	±0.5	
	8-bit mode ⁴	Р		_	±0.15	±0.25	
Integral Non-Linearity	12-bit mode	Т	INL	_	±1.0	_	LSB ³
	10-bit mode	Т		_	±0.3	±0.5	
	8-bit mode	Т		_	±0.15	±0.25	
Zero-scale error ^{5, 5}	12-bit mode	С	E _{ZS}	_	±2.0	_	LSB ³
	10-bit mode	Р		_	±0.25	±1.0	
	8-bit mode	Р		_	±0.65	±1.0	
Full-scale error ⁶	12-bit mode	Т	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode	Т		_	±0.5	±1.0	
	8-bit mode	Т		_	±0.5	±1.0	
Quantization error	≤12 bit modes	D	EQ	_	_	±0.5	LSB ³
Input leakage error ⁷	all modes	D	E _{IL}		I _{In} * R _{AS}		mV
Temp sensor slope	-40°C– 25°C	D	m	_	3.266	_	mV/°C
	25°C- 125°C			_	3.638	_	
Temp sensor voltage	25°C	D	V _{TEMP25}	_	1.396	_	V

^{1.} Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization.

^{3.} $1 LSB = (V_{REFH} - V_{REFL})/2^N$

^{4.} Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes

^{5.} $V_{ADIN} = V_{SSA}$

^{6.} $V_{ADIN} = V_{DDA}$

^{7.} I_{In} = leakage current (refer to DC characteristics)

6.3.2 Analog comparator (ACMP) electricals

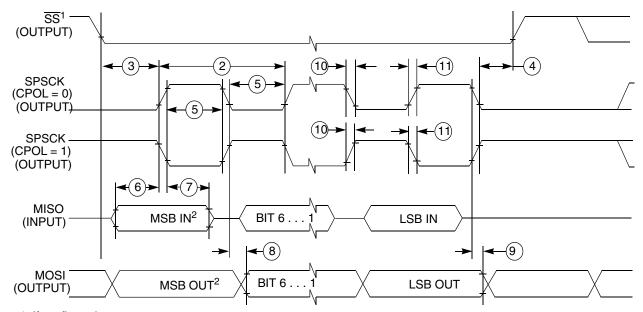
Table 13. Comparator electrical specifications

С	Characteristic	Symbol	Min	Typical	Max	Unit
D	Supply voltage	V_{DDA}	2.7	_	5.5	V
Т	Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DDA}	V
Р	Analog input offset voltage	V _{AIO}	_	_	40	mV
С	Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
С	Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Т	Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
С	Propagation Delay	t _D	_	0.4	1	μs

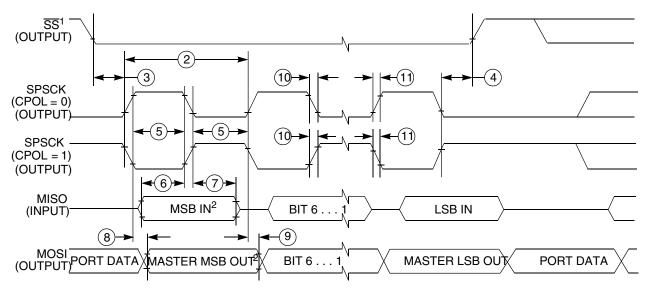
6.4 Communication interfaces

6.4.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes slew rate control is disabled and high drive strength is enabled for SPI output pins.


Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_


Table 14.	SPI master	mode timing	(continued)
I UDIC IT.	OI I IIIGGIGI	mode uning	(OOIILIII aca)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

reripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

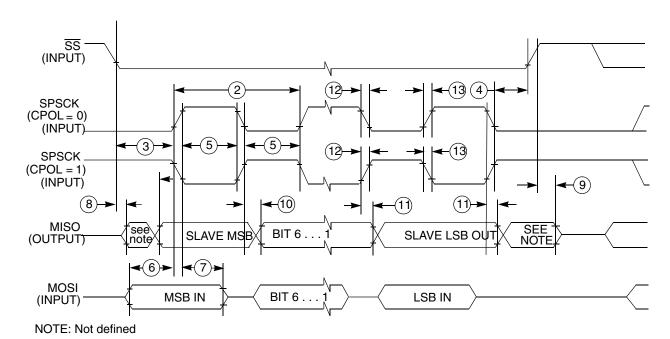


Figure 19. SPI slave mode timing (CPHA = 0)

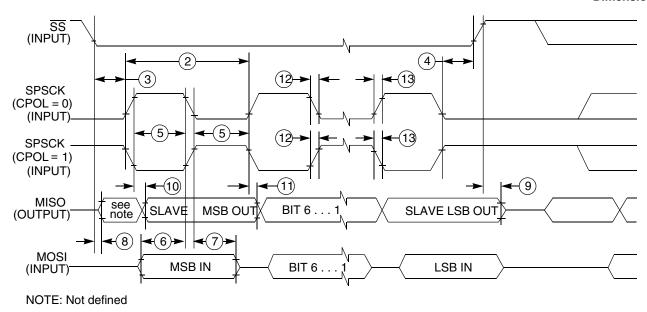


Figure 20. SPI slave mode timing (CPHA=1)

6.5 Human-machine interfaces (HMI)

6.5.1 TSI electrical specifications

Table 16. TSI electrical specifications

Symbol	Description	Min.	Туре	Max	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	_	128	μA
TSI_EN	Power consumption in enable mode	_	100	_	μA
TSI_DIS	Power consumption in disable mode	_	1.2	_	μA
TSI_TEN	TSI analog enable time	_	66	_	μs
TSI_CREF	TSI reference capacitor	_	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	-10	_	10	%

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

S9S08RN60 Series Data Sheet Data Sheet, Rev. 1, 01/2014.

rmout

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin LQFP	98ASH70029A
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W

8 Pinout

8.1 Signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

Table 17. Pin availability by package pin-count

	Pin Number			Lowest I	Priority <> H	ighest	
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	1	PTD1 ^{1, 1}	KBI1P1	FTM2CH3	MOSI1	_
2	2	2	PTD0 ¹	KBI1P0	FTM2CH2	SPSCK1	_
3	_	_	PTH7	_	_	_	_
4	_	_	PTH6	_	_	_	_
5	3	_	PTE7	_	TCLK2	_	_
6	4	_	PTH2	_	BUSOUT	_	_
7	5	3	_	_	_	_	V _{DD}
8	6	4	_	_	_	V_{DDA}	V _{REFH}
9	7	5	_	_	_	V _{SSA}	V _{REFL}
10	8	6	_	_	_	_	V _{SS}
11	9	7	PTB7	_	SCL	_	EXTAL
12	10	8	PTB6	_	SDA	_	XTAL
13	11	_	_	_	_	_	V _{SS}
14	_	_	PTH1 ¹	_	FTM2CH1	_	_
15	_	_	PTH0 ¹	_	FTM2CH0	_	_
16	12	_	PTE6	_	_	_	_
17	13	_	PTE5	_	_	_	_
18	14	9	PTB5 ¹	FTM2CH5	SS0	_	_
19	15	10	PTB4 ¹	FTM2CH4	MISO0	_	_

Table 17. Pin availability by package pin-count (continued)

Pin Number			Lowest Priority <> Highest					
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4	
20	16	11	PTC3	FTM2CH3	_	ADP11	_	
21	17	12	PTC2	FTM2CH2	_	ADP10	_	
22	18	_	PTD7	KBI1P7	TXD2	_	<u> </u>	
23	19	_	PTD6	KBI1P6	RXD2	_	_	
24	20	_	PTD5	KBI1P5	_	_	_	
25	21	13	PTC1	_	FTM2CH1	ADP9	TSI7	
26	22	14	PTC0	_	FTM2CH0	ADP8	TSI6	
27	_	_	PTF7	_	_	ADP15	_	
28	_	_	PTF6	_	_	ADP14	_	
29	_	_	PTF5	_	_	ADP13	_	
30	_	_	PTF4	_	_	ADP12	_	
31	23	15	PTB3	KBI0P7	MOSI0	ADP7	TSI5	
32	24	16	PTB2	KBI0P6	SPSCK0	ADP6	TSI4	
33	25	17	PTB1	KBI0P5	TXD0	ADP5	TSI3	
34	26	18	PTB0	KBI0P4	RXD0	ADP4	TSI2	
35	_	_	PTF3	_	_	_	TSI15	
36	_	_	PTF2	_	_	_	TSI14	
37	27	19	PTA7	FTM2FAULT2	_	ADP3	TSI1	
38	28	20	PTA6	FTM2FAULT1	_	ADP2	TSI0	
39	29	_	PTE4	_	_	_	_	
40	30	_	_	_	_	_	V _{SS}	
41	31	_	_	_	_	_	V _{DD}	
42	_	_	PTF1	_	_	_	TSI13	
43	_	_	PTF0	_	_	_	TSI12	
44	32	_	PTD4	KBI1P4	_	_	_	
45	33	21	PTD3	KBI1P3	SS1	_	TSI11	
46	34	22	PTD2	KBI1P2	MISO1	_	TSI10	
47	35	23	PTA3 ^{2, 2}	KBI0P3	TXD0	SCL	_	
48	36	24	PTA2 ²	KBI0P2	RXD0	SDA	_	
49	37	25	PTA1	KBI0P1	FTM0CH1	ACMP1	ADP1	
50	38	26	PTA0	KBI0P0	FTM0CH0	ACMP0	ADP0	
51	39	27	PTC7	_	TxD1	_	TSI9	
52	40	28	PTC6		RxD1	_	TSI8	
53	41	_	PTE3	_	SS0	_	_	
54	42	_	PTE2	_	MISO0	_	_	
55	_	_	PTG3	_	_	_	_	
56	_	_	PTG2	_	_	_	_	
57	_	_	PTG1		_	_	_	

rmoul

Table 17. Pin availability by package pin-count (continued)

Pin Number			Lowest Priority <> Highest				
64-LQFP	48-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
58	_	_	PTG0	_	_	_	_
59	43	_	PTE1 ¹	_	MOSI0	_	_
60	44	_	PTE0 ¹	_	SPSCK0	TCLK1	_
61	45	29	PTC5	_	FTM1CH1	_	_
62	46	30	PTC4	_	FTM1CH0	RTCO	_
63	47	31	_	_	_	_	RESET
64	48	32	_	_	_	BKGD	MS

- 1. This is a high current drive pin when operated as output.
- 2. This is a true open-drain pin when operated as output.

Note

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software must clear any associated flags before interrupts are enabled. The table above illustrates the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

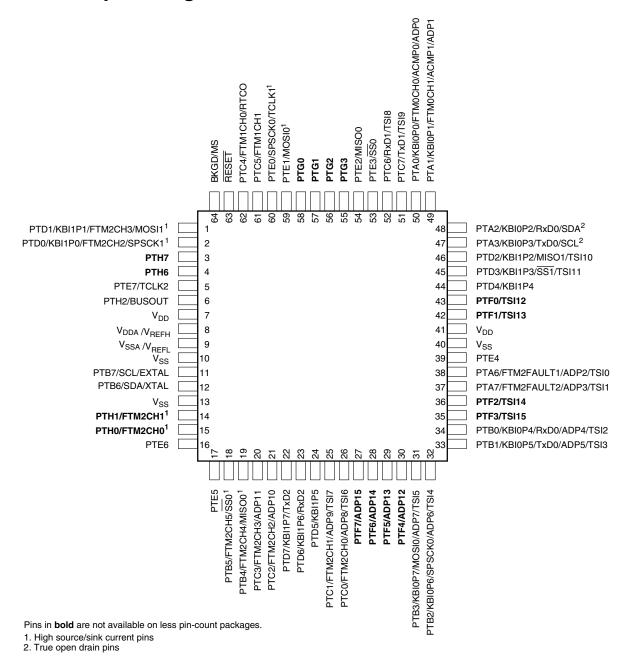


Figure 21. S9S08RN60 64-pin LQFP package

rmout

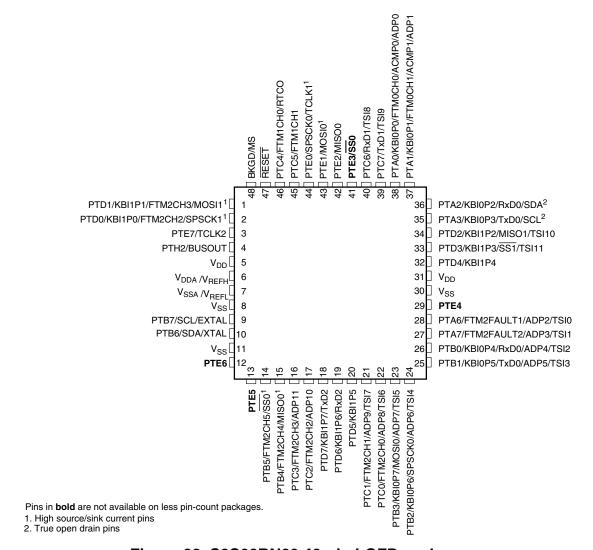


Figure 22. S9S08RN60 48-pin LQFP package

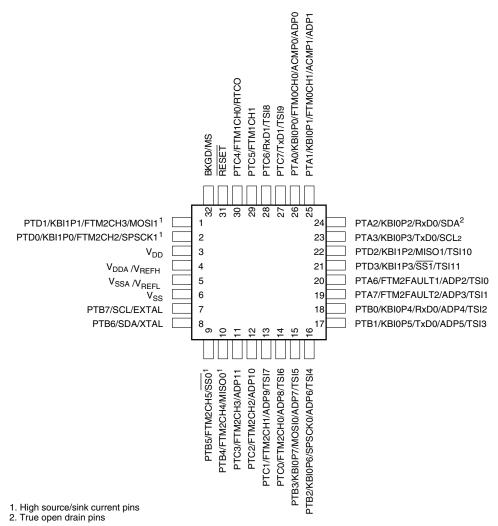


Figure 23. S9S08RN60 32-pin LQFP package

9 Revision history

The following table provides a revision history for this document.

Table 18. Revision history

Rev. No.	Date	Substantial Changes
1	01/2014	Initial Release

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

FreescaleTM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

Document Number: S9S08RN60

Rev. 1, 01/2014

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

 S9S08RNA32W1MLC
 S9S08RNA32W1MLCR
 S9S08RN48W1CLF
 S9S08RN32W1CLF
 S9S08RN60W1MLH

 S9S08RN60W1MLF
 S9S08RNA48W1MLC
 S9S08RNA32W1MLH
 S9S08RNA60W1MLH
 S9S08RNA60W1VLH

 S9S08RNA32W1VLCR
 S9S08RNA8W2CTJ
 S9S08RNA8W2CTJR
 S9S08RNA8W2MLC
 S9S08RN32W1CLC

 S9S08RNA60W1VLHR
 S9S08RNA60W1VLHR
 S9S08RNA8W2VTG
 S9S08RNA8W2VTJ
 S9S08RNA32W1VLC

 S9S08RN48W1MLH
 S9S08RNA8W1VLF
 S9S08RNA8W2MTJ
 S9S08RNA8W2MTG
 S9S08RNA60W1MLF

 S9S08RNA48W1MLH
 S9S08RNA32W1MLF
 S9S08RNA32W1MLF
 S9S08RNA8W2MTG
 S9S08RNA60W1MLHR

 S9S08RNA60W1VLF
 S9S08RNA8W2VTGR
 S9S08RNA8W2VLC
 S9S08RNA48W1MLF
 S9S08RNA60W1MLF

 S9S08RNA60W1VLH
 S9S08RNA8W1VLFR
 S9S08RNA8W1MLCR
 S9S08RNA92W1VLF
 S9S08RNA92W1VLF

 S9S08RNA32W1VLF
 S9S08RNA32W1VLFR
 S9S08RNA92W1VLFR
 S9S08RNA92W1VLCR
 S9S08RNA92W1VLCR