

Document Number: MMRF2005N Rev. 0, 8/2015

MMRF2005N

MMRF2005GN

RF LDMOS WIDEBAND

√RoHS

RF LDMOS Wideband Integrated Power Amplifiers

The MMRF2005N wideband integrated circuit is designed with on-chip matching that makes it usable from 728 to 960 MHz. This multi-stage structure is rated for 24 to 32 V operation and is ideal for applications including radio communications, data links and UHF radar.

Driver Application — 900 MHz

 Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ1} = 106 mA, I_{DQ2} = 285 mA, P_{out} = 3.2 W Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency ⁽¹⁾	G _{ps} (dB)	PAE (%)	ACPR (dBc)
920 MHz	36.6	16.1	-48.0
940 MHz	36.8	16.7	-48.7
960 MHz	36.6	17.3	-48.6

Capable of Handling 10:1 VSWR, @ 32 Vdc, 940 MHz, 48 W CW Output Power (3 dB Input Overdrive from Rated Pout)

Driver Application — 700 MHz

Typical Single-Carrier W-CDMA Performance: V_{DD} = 28 Vdc, I_{DQ1} = 106 mA, I_{DQ2} = 285 mA, Pout = 3.2 W Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
728 MHz	36.4	16.1	-47.7
748 MHz	36.4	16.1	-47.8
768 MHz	36.4	16.0	-47.9

Features

- Characterized with series equivalent large-signal impedance parameters • and common source S-parameters
- On-chip matching (50 ohm input, DC blocked, > 5 ohm output)
- Integrated guiescent current temperature compensation with enable/disable function (2)
- Integrated ESD protection

1. 900 MHz Driver Frequency Band table data collected in the 900 MHz application circuit. See Fig. 9.

2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1977 or AN1987.

728-960 MHz, 3.2 W AVG., 28 V **INTEGRATED POWER AMPLIFIERS** TO-270WB-16 PLASTIC

MMRF2005N TO-270WBG-16

PLASTIC

MMRF2005GN

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	–65 to +150	°C
Case Operating Temperature Range	T _C	–40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
Input Power	P _{in}	20	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W
Case Temperature 80°C, 3.2 W CW, 940 MHz			
Stage 1, 28 Vdc, I _{DQ1} = 106 mA		5.5	
Stage 2, 28 Vdc, I _{DQ2} = 285 mA		1.6	
Case Temperature 80°C, 30 W CW, 940 MHz			
Stage 1, 28 Vdc, I _{DQ1} = 40 mA		5.8	
Stage 2, 28 Vdc, I _{DQ2} = 340 mA		1.2	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1B, passes 500 V
Machine Model (per EIA/JESD22-A115)	A, passes 100 V
Charge Device Model (per JESD22-C101)	II, passes 200 V

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics (T_A = $25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 — Off Characteristics					
Zero Gate Voltage Drain Leakage Current ($V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 1 — On Characteristics					

Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 14 μAdc)	V _{GS(th)}	1.2	2	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1} = 106 mA)	V _{GS(Q)}		2.8		Vdc
Fixture Gate Quiescent Voltage ⁽⁴⁾ (V _{DD} = 28 Vdc, I _{DQ1} = 106 mA, Measured in Functional Test)	V _{GG(Q)}	6.9	9.4	11.9	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.freescale.com/rf/calculators.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.

4. V_{GG} = 3.3 × V_{GS(Q)}. Parameter measured on Freescale test fixture, due to resistor divider network on the board. Refer to test circuit schematic.

(continued)

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 2 — Off Characteristics					
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 65 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}		_	1	μAdc
Stage 2 — On Characteristics					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 74 μAdc)	V _{GS(th)}	1.2	2	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2} = 285 mA)	V _{GS(Q)}	_	2.6	_	Vdc
Fixture Gate Quiescent Voltage ⁽¹⁾ (V_{DD} = 28 Vdc, I _{DQ2} = 285 mA, Measured in Functional Test)	V _{GG(Q)}	4.2	5.9	7.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 740 mA)	V _{DS(on)}	0.1	0.3	0.8	Vdc
Eurotional Taata (2.3) (In Eracadala Taat Eixtura, EQ ahm ayatam) \/	09.\/do.l	06 m 1	005 m A D	2 2 1/ 4	

Functional Tests ^(2,3) (In Freescale Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ1} = 106 \text{ mA}$, $I_{DQ2} = 285 \text{ mA}$, $P_{out} = 3.2 \text{ W Avg.}$, f = 940 MHz, Single-Carrier W-CDMA, 3.84 MHz Channel Bandwidth Carrier, IQ Magnitude Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	33	35.9	38	dB
Power Added Efficiency	PAE	14	16.5	—	%
Adjacent Channel Power Ratio	ACPR	—	-49.5	-46	dBc
Input Return Loss	IRL	—	-18.7	-9	dB

Typical Performance — 900 MHz (In Freescale 900 MHz Application Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 106 mA, I_{DQ2} = 285 mA, 920–960 MHz Bandwidth

V_{DD} = 28 Vdc, I_{DQ1} = 40 mA, I_{DQ2} = 340 mA P _{out} @ 1 dB Compression Point, CW	P1dB	—	31	—	W
IMD Symmetry @ 25 W PEP, P _{out} where IMD Third Order Intermodulation ≌ 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB)	IMD _{sym}	_	45	_	MHz
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		80	—	MHz
Quiescent Current Accuracy over Temperature ⁽⁴⁾ with 3 k Ω Gate Feed Resistors (–30 to 85°C)	Δl _{QT}		0.02	—	%
Gain Flatness in 40 MHz Bandwidth @ P _{out} = 3.2 W Avg.	G _F	—	0.2	—	dB
Gain Variation over Temperature (-30°C to +85°C)	ΔG	_	0.036	—	dB/°C
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB	_	0.01		dBm/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
MMRF2005NR1	D1 Suffix 500 Lists 44 mm Tana Width 10 inch Deal	TO-270WB-16
MMRF2005GNR1	RT Sumx = 500 Omits, 44 mm Tape Width, 13-inch Reel	TO-270WBG-16

1. $V_{GG} = 2.25 \times V_{GS(Q)}$. Parameter measured on Freescale test fixture, due to resistor divider network on the board. Refer to test circuit schematic.

2. Part internally matched both on input and output.

3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

4. Refer to <u>AN1977</u>, *Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family*, and to <u>AN1987</u>, *Quiescent Current Control for the RF Integrated Circuit Device Family*. Go to <u>http://www.freescale.com/rf</u> and search for AN1977 or AN1987.

Figure 3. MMRF2005N Test Circuit Component Layout — 900 MHz

Part	Description	Part Number	Manufacturer
C1, C4, C7	47 pF Chip Capacitors	ATC600F470JT250XT	ATC
C2, C5, C8	10 nF, 50 V Chip Capacitors	C0603C103J5RAC-TU	Kemet
C3, C6	1 μF, 50 V Chip Capacitors	GRM21BR71H105KA12L	Murata
C9, C15	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C10	16 pF Chip Capacitor	ATC100B160JT500XT	ATC
C11	6.2 pF Chip Capacitor	ATC100B6R2BT500XT	ATC
C12	7.5 pF Chip Capacitor	ATC100B7R5CT500XT	ATC
C13, C14	47 pF Chip Capacitors	ATC100B470JT500XT	ATC
C16, C17	100 µF, 50 V Electrolytic Capacitors	MCGPR35V337M10X16-RH	Multicomp
C18	0.5 pF Chip Capacitor	ATC100B0R5BT500XT	ATC
R1, R2, R3, R4, R5, R6	1000 Ω, 1/4 W Chip Resistors	CRCW12061K00FKEA	Vishay
R7	0 Ω, 3A Chip Resistor	CRCW12060000Z0EA	Vishay
PCB	$0.020'', \epsilon_r = 3.5$	RF-35	Taconic

Table 7. MMRF2005N Te	st Circuit Comp	onent Designation	s and Values — 900 MHz

TYPICAL CHARACTERISTICS — 900 MHz

Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS — 900 MHz

Figure 7. Broadband Frequency Response

f MHz	Z _{in} Ω	Z _{load} Ω
820	37.95 + j2.31	4.70 + j0.98
840	39.95 + j2.72	4.29 + j1.23
860	42.70 + j1.02	3.93 + j1.67
880	44.40 – j1.38	3.63 + j2.15
900	46.25 – j4.92	3.41 + j2.61
920	45.70 – j8.41	3.14 + j3.05
940	45.46 – j11.47	2.94 + j3.48
960	45.07 – j15.19	2.85 + j3.90
980	43.49 – j18.03	2.69 + j4.32

Table 8. Series Equivalent Input and Load Impedance — 900 MHz

Z_{in} = Device input impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

LOAD PULL CHARACTERISTICS - 900 MHz

f	P1	dB	P3	dB
(MHz)	Watts	dBm	Watts	dBm
920	43	46.3	51	47.1
940	42	46.3	50	47
960	42	46.3	50	47

Table 9. Load Pull Performance V_{DD} = 28 Vdc, I_{DQ1} = 106 mA, I_{DQ2} = 285 mA, Pulsed CW, 10 $\mu sec(on)$, 10% Duty Cycle

NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V

· · ·						
f (MHz)		Z _{source} Ω	$\frac{Z_{load}}{\Omega}$			
920	P1dB	55.82 + j15.71	4.54 + j1.15			
940	P1dB	52.56 + j20.20	4.38 + j1.21			
960	P1dB	49.18 + j25.00	5.04 + j1.15			

Test Impedances per Compression Level

900 MHz APPLICATION CIRCUIT

Table 10. 900 MHz Performance (In Freescale Application Circuit, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 106 mA, I_{DQ2} = 285 mA, P_{out} = 3.2 W Avg., Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probabilityon CCDF

Frequency (MHz)	G _{ps} (dB)	PAE (%)	ACPR (dBc)
920	36.6	16.1	-48.0
940	36.8	16.7	-48.7
960	36.6	17.3	-48.6

Figure 8. Single-Carrier W-CDMA Power Gain, Power Added Efficiency and ACPR versus Output Power

Figure 9. MMRF2005N Test Circuit Component Layout - 700 MHz

Part	Description	Part Number	Manufacturer
C1, C4, C7	47 pF Chip Capacitors	ATC600F470JT250XT	ATC
C2, C5, C8	10 nF, 50 V Chip Capacitors	C0603C103J5RAC	Kemet
C3, C6	1 μF, 50 V Chip Capacitors	GRM21BR71H105KA12L	Murata
C9, C15	10 μF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C10	13 pF Chip Capacitor	ATC100B130JT500XT	ATC
C11	7.5 pF Chip Capacitor	ATC100B7R5CT500XT	ATC
C12	6.8 pF Chip Capacitor	ATC100B6R8CT500XT	ATC
C13, C14	47 pF Chip Capacitors	ATC100B470JT500XT	ATC
C16, C17	100 μ F, 50 V Electrolytic Capacitors	MCGPR35V337M10X16-RH	Multicomp
C18	1.8 pF Chip Capacitor	ATC100B1R8BT500XT	ATC
R1, R2, R3, R4, R5, R6	1000 Ω, 1/4 W Chip Resistors	CRCW12061K00FKEA	Vishay
R7	0 Ω, 3A Chip Resistor	CRCW12060000Z0EA	Vishay
PCB	$0.020'', \epsilon_r = 3.5$	RF-35	Taconic

TYPICAL CHARACTERISTICS — 700 MHz

f MHz	Z _{in} Ω	Z _{load} Ω
710	25.21 – j1.21	8.57 + j2.52
720	33.76 + j5.36	8.52 + j2.46
730	38.78 + j1.40	8.44 + j2.34
740	40.14 – j0.76	8.36 + j2.16
750	35.46 – j1.15	8.30 + j2.00
760	34.65 – j0.53	8.32 + j1.90
770	34.75 – j0.43	8.31 + j1.86
780	36.20 + j0.81	8.27 + j1.98
790	36.18 + j1.33	8.23 + j2.12

Table 12. Series Equivalent Input and Load Impedance — 700 MHz

Z_{in} = Device input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MEC		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BODY 16 LEAD		DOCUMENT NO: 98ASA10754D REV: A		REV: A
		CASE NUMBER	: 1886–01	31 AUG 2007
		STANDARD: NO	N-JEDEC	

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANI		L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE:	DOCUMENT NO): 98ASA10754D	REV: A	
16 LEAD	CASE NUMBER	8: 1886–01	31 AUG 2007	
	STANDARD: NO	DN-JEDEC		

MMRF2005N MMRF2005GN

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. DATUM -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

	IN	СН	MI	LIMETER			INCH	М	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	.100	.104	2.54	2.64	F	.c	25 BSC	(0.64 BSC	
A1	.039	.043	0.99	1.09	b	.011	.017	0.28	3 0.43	
A2	.040	.042	1.02	1.07	b1	.037	.043	0.94	1.09	
D	.712	.720	18.08	18.29	b2	.037	.043	0.94	l 1.09	
D1	.688	.692	17.48	17.58	b3	.225	.231	5.72	2 5.87	
D2	.011	.019	0.28	0.48	c1	.007	.011	.18	.28	
D3	.600		15.24		е	.054 BSC			1.37 BSC	
Е	.551	.559	14	14.2	e1	.040 BSC			1.02 BSC	
E1	.353	.357	8.97	9.07	e2	.2	24 BSC	5	5.69 BSC	
E2	.132	.140	3.35	3.56	e3	.1	50 BSC		3.81 BSC	
E3	.124	.132	3.15	3.35	aaa		.004		.10	
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© FREESCALE SEMICONDUCTOR, INC. MECHANICA			MECHANICA	L OUT	LINE	PRINT VERS	SION NC	T TO SCALE		
				DOCU	MENT NO): 98ASA10754I	D	REV: A		
16 LEAD			CASE	CASE NUMBER: 1886-01 31 AUG 2		31 AUG 2007				
I TO LEAD				STAN	DARD: NO	N-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE	
TITLE: TO-270 WIDE BODY		DOCUMENT NO: 98ASA10755D		REV: A
16 LEAD,	CASE NUMBER	31 AUG 2007		
GULL WING	STANDARD: NON-JEDEC			

DETAIL "Y"

© FREESC AL	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		L OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE: TO-270 WIDE BODY		DOCUMENT NO: 98ASA10755D		REV: A		
16 LEAD, GULL WING			CASE NUMBER: 1887-01		31 AUG 2007	
			STANDARD: NON-JEDEC			

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. DATUM -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS EXPOSED AREA OF THE HEAT SLUG. HATCHED AREA SHOWN IS ON THE SAME PLANE.

	INCH		MILLIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1	.0	.010 BSC 0.1		D.25 BSC	
A2	.099	.110	2.51	2.79	b	.011	.017	0.28	0.43	
D	.712	.720	18.08	18.29	b1	.037	.043	0.94	1.09	
D1	.688	.692	17.48	17.58	b2	.037	.043	0.94	1.09	
D2	.011	.019	0.28	0.48	b3	.225	.231	5.72	5.87	
D3	.600		15.24		c1	.007	.011	0.18	0.28	
Е	.429	.437	10.9	11.1	е	.05	.054 BSC		1.37 BSC	
E1	.353	.357	8.97	9.07	e1	.040 BSC		1.02 BSC		
E2	.132	.140	3.35	3.56	e2	.224 BSC		5.69 BSC		
E3	.124	.132	3.15	3.35	e3	.150 BSC 3.81		81 BSC		
E4	.270		6.86		t	2'	8.	2.	8.	
E5	.346	.350	8.79	8.89	aaa	.004 0.10		0.10		
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA		L OUTLINE PRINT VER			SION NOT TO SCALE					
TITLE:	TITLE: TO-270 WIDE BODY			DOCUMENT NO: 98ASA10755D			REV: A			
16 LEAD,			CASE	CASE NUMBER: 1887-01			31 AUG 2007			
GULL WING				STANDARD: NON-JEDEC						

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- · AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- · AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

Electromigration MTTF Calculator

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description			
0	Aug. 2015	Initial Release of Data Sheet			

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: MMRF2005NR1 MMRF2005GNR1