FRDM-HB2000FEVM evaluation board Rev. 1.0 — 5 July 2016

User guide

FRDM-HB2000FEVM

2 Important notice

NXP provides the enclosed product(s) under the following conditions: This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This evaluation board may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This evaluation board is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact NXP sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts.

NXP does not convey any license under its patent rights nor the rights of others. NXP products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the NXP product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use NXP products for any such unintended or unauthorized application, the Buyer shall indemnify and hold NXP and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges NXP was negligent regarding the design or manufacture of the part. NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2016 NXP B.V.

3 Getting started

3.1 Kit contents/packing list

The FRDM-HB2000FEVM contents include:

- · Assembled and tested evaluation board/module in anti-static bag
- FRDM-KL25Z
- · Quick start guide

3.2 Jump start

NXP's analog product development boards provide an easy-to-use platform for evaluating NXP products. The boards support a range of analog, mixed-signal and power solutions. They incorporate monolithic ICs and system-in-package devices that use proven high-volume SMARTMOS technology. NXP products offer longer battery life, a smaller form factor, reduced component counts, lower cost and improved performance in powering state of the art systems.

- 1. Go to www.nxp.com/FRDM-HB2000FEVM.
- 2. Review your Tools Summary Page.
- 3. Locate and click:

Jump Start Your Design

4. Download the documents, software and other information.

Once the files are downloaded, review the user guide in the bundle. The user guide includes setup instructions, BOM and schematics. Jump start bundles are available on each tool summary page with the most relevant and current information. The information includes everything needed for design.

3.3 Required equipment

This kit requires the following items:

- 3/16" blade screwdriver for connecting the cables
- DC Power supply: 5.0 V to 40 V with up to 20 A current handling capability, depending on motor requirements
- USB Standard A (male) to mini-B (male) cable
- Typical loads (brushed DC motor, power resistors or inductive load with up to 5.0 A and 28 V operation)
- Function generator (optional)
- FRDM-KL25Z Freedom Development Platform for SPI communication (included in KIT)
- SPIGen software (for using FRDM-KL25Z based SPI Dongle)

3.4 System requirements

The kit requires the following to function properly with the software:

USB enabled computer with Windows XP or newer

KTFRDMHB2000FEVMUG

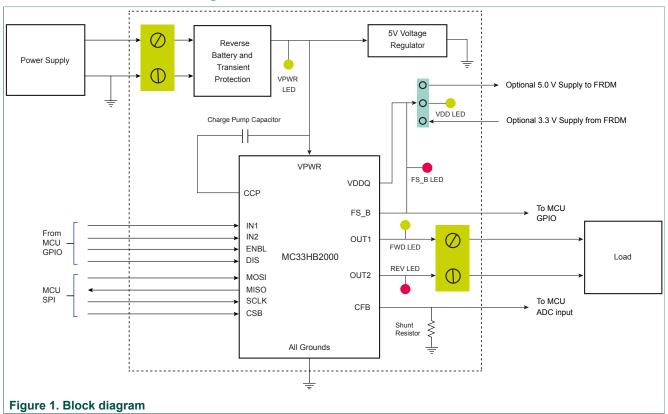
All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved

4 Getting to know the hardware

4.1 Board overview

The FRDM-HB2000FEVM evaluation kit exercises all the functions of the MC33HB2000 H-Bridge device. The parallel input can be easily controlled by lab equipment or any MCU with GPIOs.

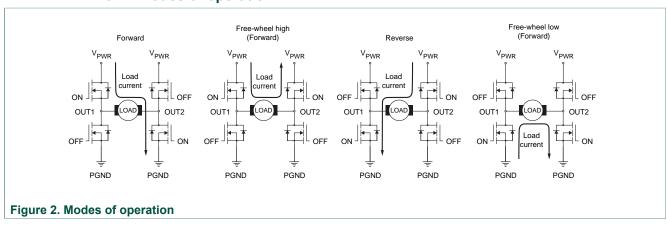

The board can be used in conjunction with a FRDM-KL25Z board connected to a PC's USB port. Configure, control and monitor the status of MC33HB2000 by using the board's SPI communication capabilities.

4.2 Board features

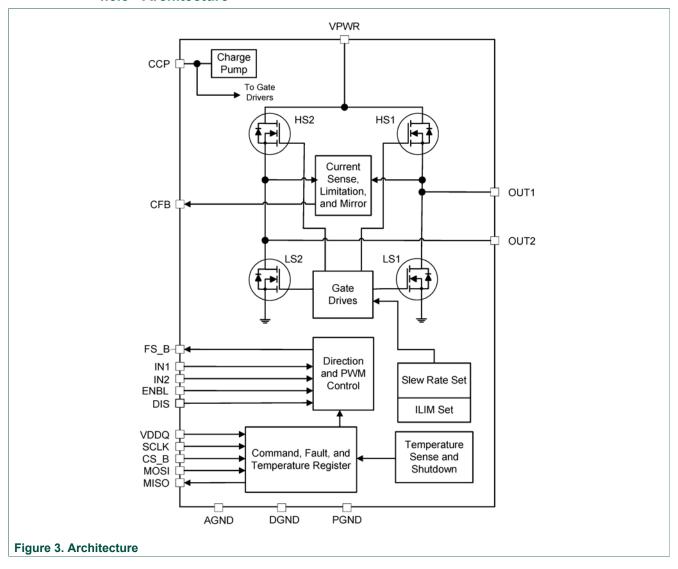
The FRDM-HB2000FEVM board evaluates the NXP part MC33HB2000, including all functions. The board features the following:

- · Built-in reverse battery protection
- · Test points that allow signal probing
- · Built-in voltage regulator to supply logic level circuitry
- · LEDs to indicate the supply status and the direction of the motor
- Low Equivalent Series Resistance (ESR) capacitor to reduce ripple in the power supply
- Transient voltage suppressor to handle system level transients

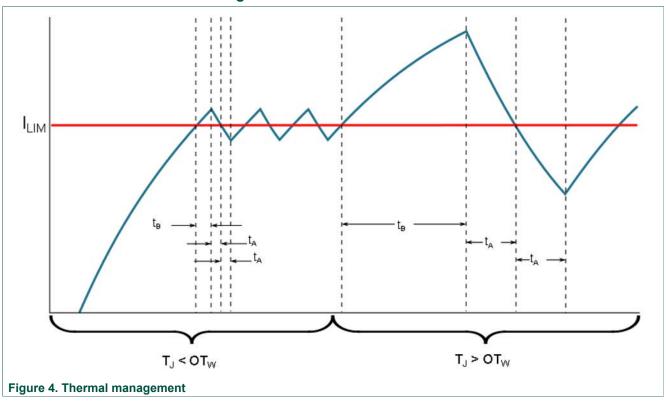
4.3 Block diagram


4.3.1 Device features

This evaluation board features the following NXP product:


Table 1. Device features

Device	Description	Features
MC33HB2000	The 33HB2000 is a monolithic H-Bridge Power IC, enhanced with SPI configurability and diagnostic capabilities.	Advanced diagnostic reporting via a serial peripheral interface (SPI): charge pump undervoltage on VPWR, short to ground and short to VPWR for each output, open load, temperature warning and overtemperature shutdown
		 Thermal management: excellent thermal resistance of < 1.0 °C/W between junction and case (exposed pad)
		 Eight selectable slew rates via the SPI: 0.25 V/μs to more than 16 V/μs for EMI and thermal performance optimization
		 Four selectable current limits via the SPI: 5.4/7.0/8.8/10.7 A, covering a wide range of applications
		• Can be operated without the SPI with a default slew rate of 2.0 V/µs and a 7.0 A current limit threshold
		Highly accurate real-time current feedback through a current mirror output signal with less than 5.0 % error
		Drives inductive loads in a full H-Bridge or Half-bridge configuration
		Overvoltage protection places the load in high-side recirculation (braking) mode with notification in H- Bridge mode
		Wide operating range: 5.0 V to 28 V operation
		• Low R _{DS(on)} integrated MOSFETs: Maximum of 235 mΩ (T _J = 150 °C) for each MOSFET
		Internal protection for overtemperature, undervoltage and short-circuit by signaling the error condition and disabling the outputs
		• I/0 pins can withstand up to 36 V


4.3.2 Modes of operation

4.3.3 Architecture

4.3.4 Thermal management

4.4 Board description

Figure 5 describes the main elements on the FRDM-HB2000FEVM.

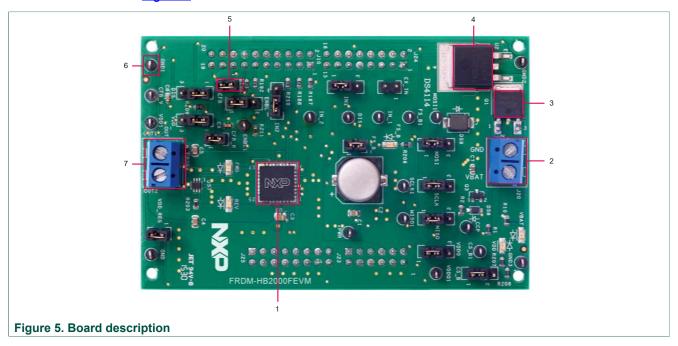
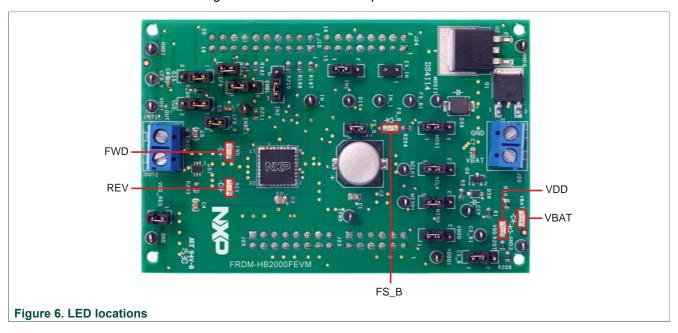



Table 2. Board description

Number	Name	Description
1	MC33HB2000	Monolithic H-Bridge Power IC in a robust thermally enhanced 32 lead PQFN package
2	Power and ground inputs	Power supply terminal to connect the battery/power supply with the board
3	Reverse battery protection	MOSFET for protecting MC33HB2000 in reverse battery condition
4	5.0 V regulator	5.0 V regulator for VDD and supply
5	Jumpers	Jumpers for configuring the board for different modes of operation
6	Test points	Test points to probe different signals
7	Output terminal	Output connector to connect a load to the MC33HB2000 output

4.5 LED display

The following LEDs serve as visual output devices for the evaluation board:

Table 3. LED locations

LED ID	Description
VBAT	Green LED, indicates when main/battery supply is connected
VDD	Green LED, indicates when +5.0 V supply is connected
FS_B	Red LED, illuminates when the H-Bridge detects a fault
FWD	Green LED, indicates current flowing in forward direction
REV	Red LED, indicates current flowing in reverse direction

4.6 Jumper definitions

<u>Figure 7</u> illustrates the evaluation board jumper locations. <u>Table 4</u> explains the function of each position. Bold fonts in the jumper position column indicate the default settings for use with the FRDM-KL25Z.

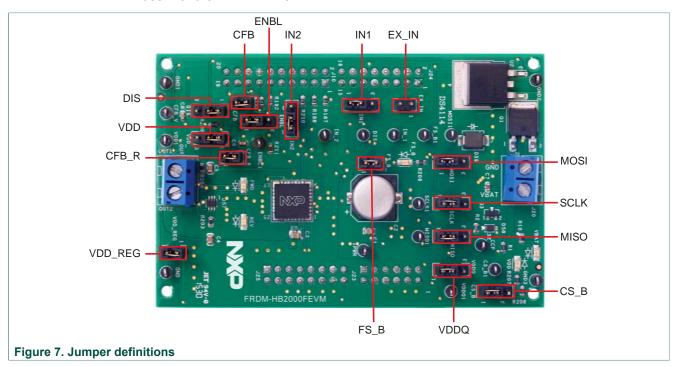


Table 4. Jumper locations

Name	Signal	Jumper position	Connection			
J1	INIA	1-2	IN1 control through MCU parallel output on J10 Pin 1 (DATA0)			
	IN1	2-3	IN1 control through MCU parallel output on J10 Pin 1 (DATA0)			
10	DIC	1-2	DIS control through MCU parallel output on J10 Pin 13 (CTRL1)			
J2	DIS	2-3	DIS connected to GND to keep the outputs enabled			
J3 IN2	INIO	1-2	IN2 control through MCU parallel output on J10 Pin 3 (DATA1)			
	IINZ	2-3	IN2 control through external input on J15 Pin 2			
	CC D	1-2	CS_B control through MCU SPI output J10 Pin 6 (SPI_CS_B)			
J4	CS_B	2-3	CS_B pulled up to VDD for operation without SPI			
J5	ENBL	1-2	ENBL control through MCU parallel output J10 Pin 11 (CTRL0)			
Jo	EINDL	2-3	ENBL pulled up to VDD to keep the outputs enabled			
10	COLK	1-2	SPI clock SCLK from MCU J10 Pin 12 (SPI_SCLK)			
J6	SCLK	2-3	SCLK connected to GND for operation without SPI			
17	MOSI	1-2	MOSI control through MCU SPI output J10 Pin 8 (SPI_MOSI)			
J7	MOSI	2-3	MOSI connected to GND for operation without SPI			
J8	MISO	1-2	MISO control through MCU SPI output J10 Pin 10 (SPI_MISO)			

KTFRDMHB2000FEVMUG

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved

Name	Signal	Jumper position	Connection		
		2-3	MISO not connected for operation without SPI		
J11	CFB	1-2	CFB connected to 200 Ω resistor		
J14	VDDQ	1-2	VDD connected to VDDQ		
314		2-3	VDDQ not connected		
J17	VDD	1-2	V _{DD} supply from regulator U2		
317		2-3	V _{DD} supply from FRDM board		
J18	CFB_R	1-2	CFB connected to MCU ADC input J10 Pin 17 (CFB_READ)		
J19	FS_B	1-2	FS_B connected to the pull-up resistor		
J26	VDD_REG	1-2	V _{DD} to FRDM board		
J15	EX_IN	Open	IN1 and IN2 external inputs		

The FRDM-HB2000FEVM, in conjunction with a FRDM-KL25Z board (shipped with the kit), can evaluate the design by means of a GUI, any MCU with GPIO or with simple lab equipment. A FRDM-KL25Z-compatible GUI and MCU program are available online at the following link: http://www.nxp.com/FRDM-HB2000FEVM.

The FRDM-HB2000FEVM is compatible with any Arduino[™] platform board. However, if a board other than the FRDM-KL25Z is used, MCU code must be written to work with the board.

4.7 Input signal definitions

The following input signals control the outputs or functions inside the circuit.

Table 5. Input signal definitions

Input name	Description
DIS	Disable signal to tri-state the outputs
ENBL	Disable signal to tri-state the output and put the part in Sleep mode
IN1	Logic input to control OUT1
IN2	Logic input to control OUT2
MOSI	Master out slave input for the SPI
CS_B	Chip select bar input for the SPI
SCLK	Clock for the SPI

4.8 Output signal definitions

The FRDM-HB2000FEVM uses the following output signals to drive a load such as a brushed DC motor. The board provides an analog output for real time load current monitoring. This signal allows closed-loop control of the load.

Table 6. Output signal definitions

Output name	Description				
OUT1	Output 1 of H-Bridge				
OUT2	Output 2 of H-Bridge				
FS_B	Open drain Active Low status flag output to indicate fault				
CFB	Current mirror output for real time load current monitoring				
MISO	Master input slave output for SPI				

4.9 Test point definitions

The following test points provide access to various signals to and from the board.

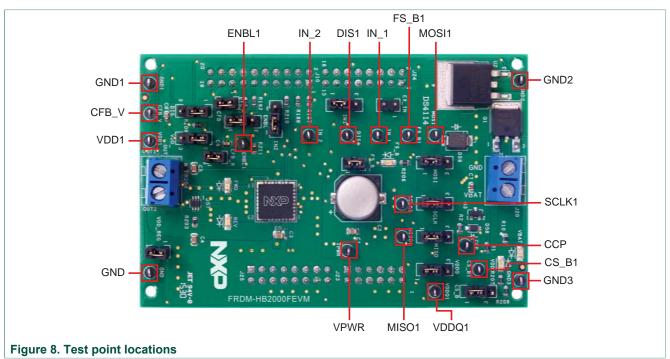
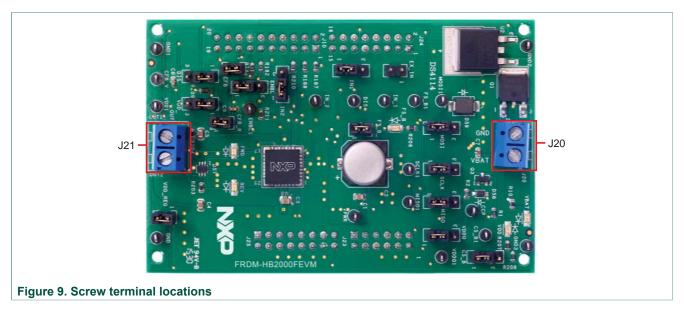


Table 7. Test point definitions

Test point name	Signal name	Description
CFB_V	CFB_READ	CFB pin voltage going to ADC
CCP	CCP	Charge pump voltage
ENBL1	ENBL	Enable/disable signal to activate/tri- state the outputs and put the device to Sleep mode
DIS1	DIS	Enable/disable signal to activate/tri- state the outputs
IN_1	IN1	Direction control in H-Bridge mode and OUT1 control in Half-Bridge mode
IN_2	IN2	PWM control in H-Bridge mode and OUT2 control in Half-Bridge mode

KTFRDMHB2000FEVMUG


All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved

Test point name	Signal name	Description
VPWR	VPWR	System voltage
VDDQ1	VDDQ	VDDQ digital output supply voltage
FSB1	FSB	Fault status monitoring pin
VDD1	VDD	V _{DD} supply for the part
CS_B1	CS_B	Chip select bar
SCLK1	SCLK	Clock for SPI
MOSI1	MOSI	Master output slave input signal
MISO1	MISO	Master input slave output signal
GND	GND	Ground signal
GND1	GND	Ground signal
GND2	GND	Ground signal
GND3	GND	Ground signal

4.10 Screw terminal connections

The board has the following screw terminal connections to connect the power supply and the load.

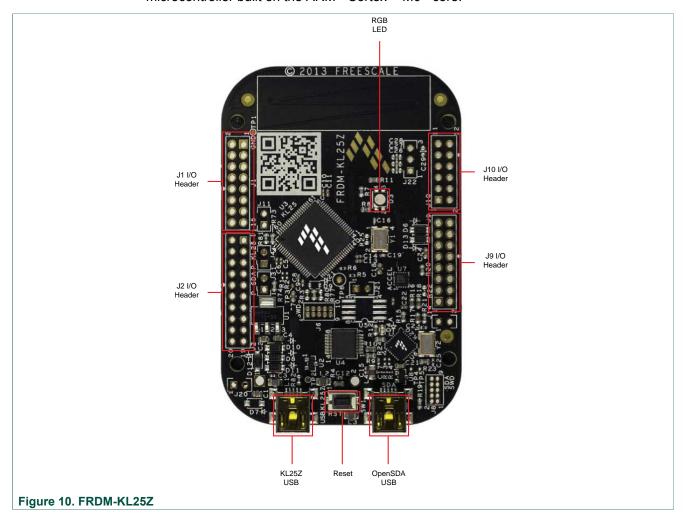


Table 8. Screw terminal connections

Screw terminal name	Description	
J20	Power supply connector for the MC33HB2000	
J21	Output connector to connect load	

5 FRDM-KL25Z Freedom SPI dongle

The NXP Freedom development platform is a set of software and hardware tools supporting evaluation and development. It is ideal for rapid prototyping of microcontroller-based applications. The NXP Freedom KL25Z hardware, FRDM-KL25Z, is a simple, yet sophisticated design featuring a Kinetis L series microcontroller, the industry's first microcontroller built on the ARM® CortexTM-M0+ core.

5.1 Connecting the FRDM-KL25Z to the board

The FRDM-KL25Z evaluation board was chosen specifically to work with the FRDM-HB2000FEVM kit because of its low cost and features. The FRDM-KL25Z board makes use of the USB, built in LEDs and I/O ports available with NXP's Kinetis KL2x family of microcontrollers.

The FRDM-KL25Z connects to a PC through a USB port, which permits the user to control a DC brushed motor and to drive the evaluation board inputs in order to operate the motor via the GPIOs and SPI pins. The FRDM-KL25Z also monitors the SPI registers, thereby facilitating the use of safety and advanced diagnostic functions.

The FRDM-HB2000FEVM connects to the FRDM-KL25Z using the four dual row Arduino™ R3 connectors on the bottom of the board (see <u>Table 9</u>, <u>Figure 11</u> and <u>Figure 12</u>).

Figure 11. Connecting the FRDM-HB2000FEVM to the FRDM-KL25Z

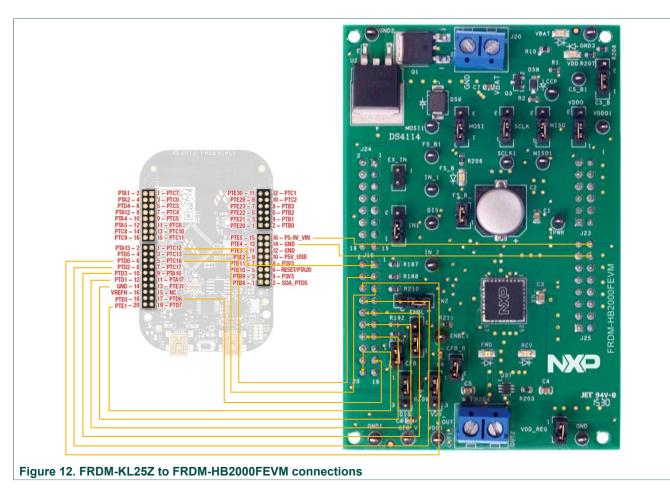


Table 9. FRDM-HB2000FEVM to FRDM-KL25Z connections

FRDM-HB2000FEVM		FRDM-KL25Z		Pin hardware name		Description	
Header	Pin	Header	Pin	FRDM-HB2000FEVM	FRDM-KL25Z	Description	
J24	1	J1	1	N/C	PTC7	No Connection	
J24	2	J1	2	N/C	PTA1	No Connection	
J24	3	J1	3	N/C	PTC0	No Connection	
J24	4	J1	4	N/C	PTA2	No Connection	
J24	5	J1	5	N/C	PTC3	No Connection	
J24	6	J1	6	N/C	PTD4	No Connection	
J24	7	J1	7	N/C	PTC4	No Connection	
J24	8	J1	8	N/C	PTA12	No Connection	
J24	9	J1	9	N/C	PTC5	No Connection	
J24	10	J1	10	N/C	PTA4	No Connection	
J24	11	J1	11	N/C	PTC6	No Connection	
J24	12	J1	12	N/C	PTA5	No Connection	
J24	13	J1	13	N/C	PTC10	Not Connected	
J24	14	J1	14	N/C	PTC8	No Connection	
J24	15	J1	15	N/C	PTC11	Not Connected	
J24	16	J1	16	N/C	PTC9	No Connection	
J10	1	J2	1	DATA0/IN1	PTC12	IN1 signal for the Bridge	

KTFRDMHB2000FEVMUG

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved

FRDM-HB2000FEVM evaluation board

FRDM-HB2000FEVM		FRDM-KL25Z		Pin hardwar	Pin hardware name	
Header	Pin	Header	Pin	FRDM-HB2000FEVM	FRDM-KL25Z	Description
J10	2	J2	2	N/C	PTA13	No Connection
J10	3	J2	3	DATA1/IN2	PTC13	IN2 signal for the H Bridge
J10	4	J2	4	N/C	PTD5	No Connection
J10	5	J2	5	FS_B	PTC16	Fault status pin to report fault
J10	6	J2	6	CS_B	PTD0	Chip select bar pin
J10	7	J2	7	N/C	PTC17	No Connection
J10	8	J2	8	MOSI	PTD2	Master output seria input
J10	9	J2	9	N/C	PTA16	No Connection
J10	10	J2	10	MISO	PTD3	Master input serial output
J10	11	J2	11	N/C	PTA17	No Connection
J10	12	J2	12	SCLK	PTD1	Clock for SPI
J10	13	J2	13	N/C	PTE31	No Connection
J10	14	J2	14	GND	GND	No Connection
J10	15	J2	15	N/C	N/C	No Connection
J10	16	J2	16	N/C	VREFH	No Connection
J10	17	J2	17	CFB_READ	PTD6	ADC input for monitoring the CFE pin
J10	18	J2	18	N/C	PTE0	Disable signal to tr state the output an put the part in Slee mode (Active Low)
J10	19	J2	19	N/C	PTD7	No Connection
J10	20	J2	20	FRDM_VDD	PTE1	No Connection
J23	1	J10	1	N/C	PTE20	No Connection
J23	2	J10	2	N/C	PTB0	No Connection
J23	3	J10	3	N/C	PTE21	No Connection
J23	4	J10	4	N/C	PTB1	No Connection
J23	5	J10	5	N/C	PTE22	No Connection
J23	6	J10	6	N/C	PTB2	No Connection
J23	7	J10	7	N/C	PTE23	No Connection
J23	8	J10	8	N/C	PTB3	No Connection
J23	9	J10	9	N/C	PTE29	No Connection
J23	10	J10	10	N/C	PTC2	No Connection
J23	11	J10	11	N/C	PTE30	No Connection
J23	12	J10	12	N/C	PTC1	No Connection
J25	1	J9	1	N/C	PTB8	No Connection
J25	2	J9	2	N/C	SDA_PTD5	No Connection
J25	3	J9	3	N/C	PTB9	No Connection
J25	4	J9	4	N/C	P3V3	No Connection
J25	5	J9	5	N/C	PTB10	No Connection
J25	6	J9	6	N/C	RESET/PTA20	No Connection
J25	7	J9	7	N/C	PTB11	No Connection
J25	8	J9	8	N/C	P3V3	No Connection

FRDM-HB2000FEVM evaluation board

FRDM-HE	32000FEVM	FRDM-I	KL25Z	Pin hardwar	e name	Description	
Header	Pin	Header	Pin	FRDM-HB2000FEVM	FRDM-KL25Z	Description	
J25	9	J9	9	N/C	PTE2	No Connection	
J25	10	J9	10	N/C	P5V_USB	No Connection	
J25	11	J9	11	N/C	PTE3	No Connection	
J25	12	J9	12	GND	GND	Ground	
J25	13	J9	13	N/C	PTE4	No Connection	
J25	14	J9	14	GND	GND	No Connection	
J25	15	J9	15	N/C	PTE5	No Connection	
J25	16	J9	16	VDD_REG	P5-9V_VIN	5.0 V logic input to FRDM-KL25Z board from FRDM HB2001FEVM	

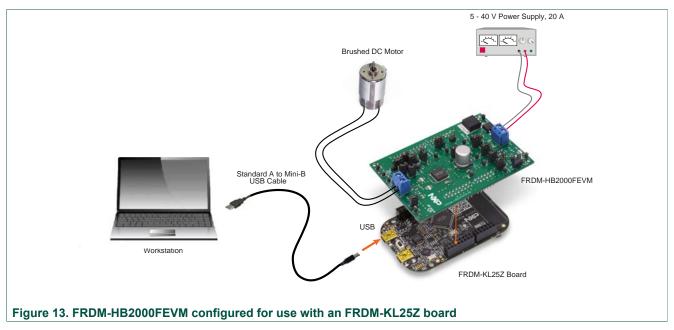
6 Installing the software and setting up the hardware

6.1 Configuring the hardware

The FRDM-HB2000FEVM consists of an H-Bridge, a parallel and SPI interface, power conditioning circuitry and an FRDM-KL25Z board. The board can be configured for use in conjunction with a FRDM-KL25Z board or a function generator.

<u>^</u>

Caution

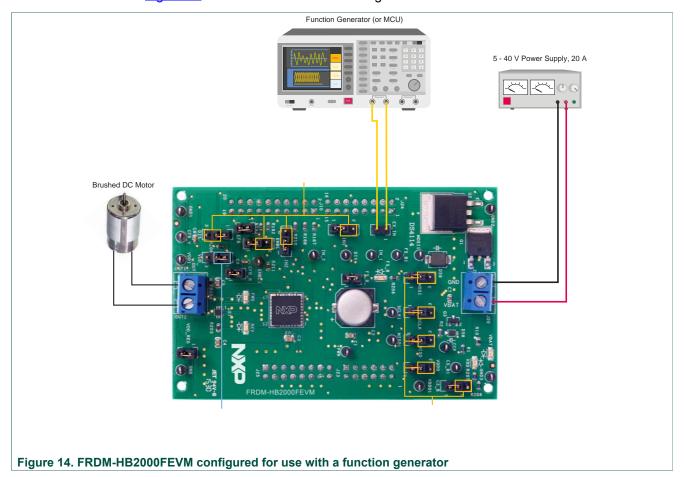

When using the FRDM-HB2000FEVM, make sure that the maximum motor supply voltage (VPWR) stays within the 5.0 V to 40 V range. Operating outside this range may cause damage to the board.

6.1.1 Step-by-step instructions for setting up the hardware for use with a FRDM-KI 257

To configure the FRDM-HB2000FEVM for use with the FRDM-KL25Z do the following:

- Connect the FRDM-HB2000FEVM to the FRDM-KL25Z using the Arduino[™] connectors on each board.
- 2. Connect the USB cable (not supplied with the kit) between the PC and the KL25Z USB port on the FRDM-KL25Z board.
- 3. With the power switched off, attach the DC power supply to the VBAT and GND screw connector terminal (J20) on the evaluation board.
- 4. Connect the load to the screw terminal (J21).

Figure 13 illustrates the hardware configuration using a FRDM-KL25Z.



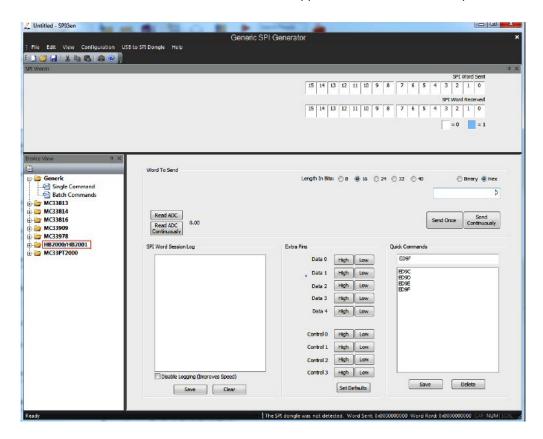
6.1.2 Step-by-step instructions for setting up the hardware for use with a function generator

This section describes how to configure the FRDM-HB2000FEVM for use with a function generator. The same connections apply if the board is connected to a microcontroller instead of a function generator. See the board description Section 4.4 Board description, the schematic Section 7 "Schematic" and the MC33HB2000 data sheet, to configure the board for use in a specific environment.

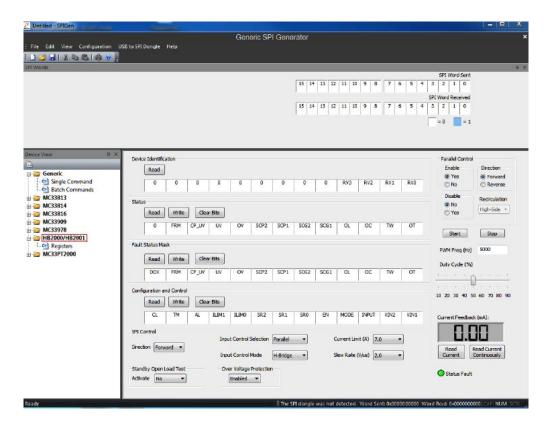
- 1. Connect the function generator to the EX_IN jumper, with one channel attached to each pin.
- 2. Change the board jumper connections, as shown in Figure 14.
- 3. With the power switched off, attach the DC power supply to the VBAT and GND screw connector terminal (J20) on the evaluation board.
- 4. Connect the load to the screw terminal (J21).

Figure 14 illustrates the hardware configuration.

6.2 Installing and using SPIGen

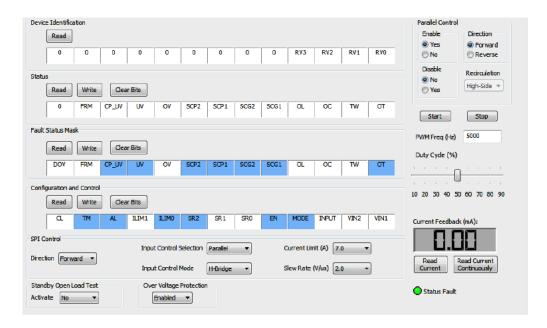

The latest version of SPIGen supports the MC33HB2000 and is designed to run on any Windows 8, Windows 7, Vista, or XP-based operating system. To install the software, do the following:

KTFRDMHB2000FEVMUG


All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved

- 1. Go to www.nxp.com/SPIGen and click Download.
- 2. When the SPIGEN: SPI Generator (SPIGen) Software page appears, go to the **Device Drivers** section and click **Download** associated with the description of the selected environment. A wizard guides the user through the process.
- 3. If instructed for the SPIGen wizard to create a shortcut, a SPIGen icon appears on the desktop. By default, the SPIGen executable file is installed at **C:Program Files \SPIGen**.
 - Installing the device drivers overwrites any previous SPIGen installation and replaces it with a current version containing the MC33HB2000 drivers. However, configuration files (.spi) from the previous version remain intact.
- 4. Launch SPIGen. The HB2000/HB2001 device appears in the Device View panel.



5. To access the HB2000/HB2001 tab in the SPIGen window, expand the HB2000/HB2001 folder in the Device View. Then click **Registers** icon.

If the pre-programmed code on FRDM-KL25Z is accidentally erased, download "UsbSpiDongleKL25Z_SPIDrive_v512.srec" from the following link: www.nxp.com/usb-Spi-Dongle-firmware-KL25Z-HB2000-1.

6. Reading all the SPI Registers displays the following default status.

6.2.1 SPI control

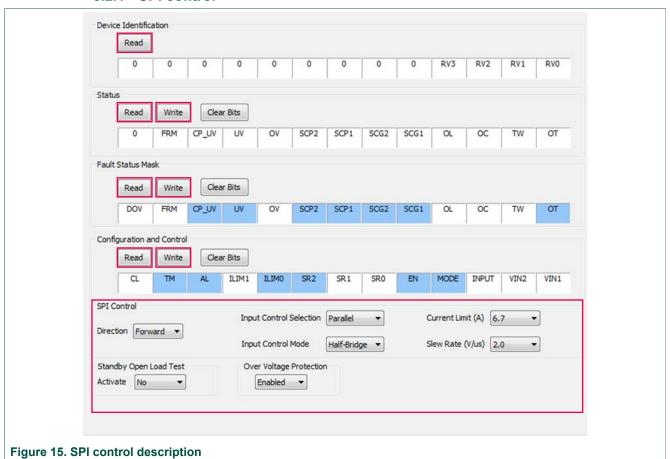
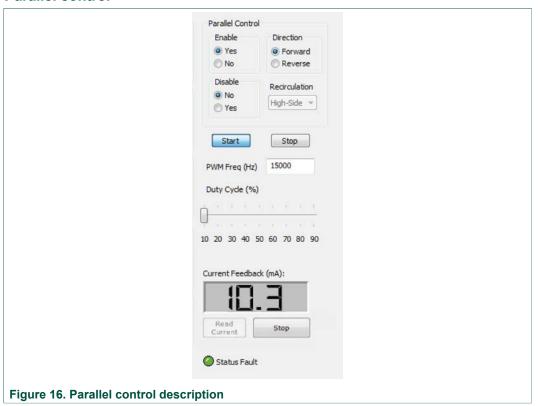



Table 10. SPI control description

Name	Description
Read	Click the read button on top of each register to read the content of each register.
Write	Click individual bits of any register and then press the corresponding write button to write into the register.
SPI Control	This section is designed for ease of use. Each dropdown menu sets or resets appropriate bits in the registers for a selected configuration. However, after configuration selection, press the write button of the corresponding register to be able to configure the part.

6.2.2 Parallel control

Direction:

- Forward: Current flowing through OUT1 to OUT2
- Reverse: Current flowing through OUT2 to OUT1

Recirculation:

- High-side: Freewheel-High (both high-side FETs turned on) during PWMing
- **Low-side**: Freewheel-Low (both low-side FETs turned on) during PWMing (only valid for Half-Bridge mode)

ENBL:

- Yes: ENBL is logic HIGH, the H-Bridge is operational
- No: ENBL is logic LOW, the H-Bridge outputs are tri-stated and placed in Sleep mode

DIS:

- DIS is logic HIGH, both OUT1 and OUT2 are tri-stated
- DIS is logic LOW, both OUT1 and OUT2 are enabled

PWM Freq:

• Enter PWM frequency up to 20000 Hz

Duty Cycle:

 \bullet Select PWM duty cycle from 10 to 90 %

Start

• After selection of parallel control configuration, press Start to activate the outputs

KTFRDMHB2000FEVMUG

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved

Stop:

• Press **Stop** to deactivate the outputs

Current Feedback:

• Shows current through the high-side FET using the current recopy feature

Status Fault:

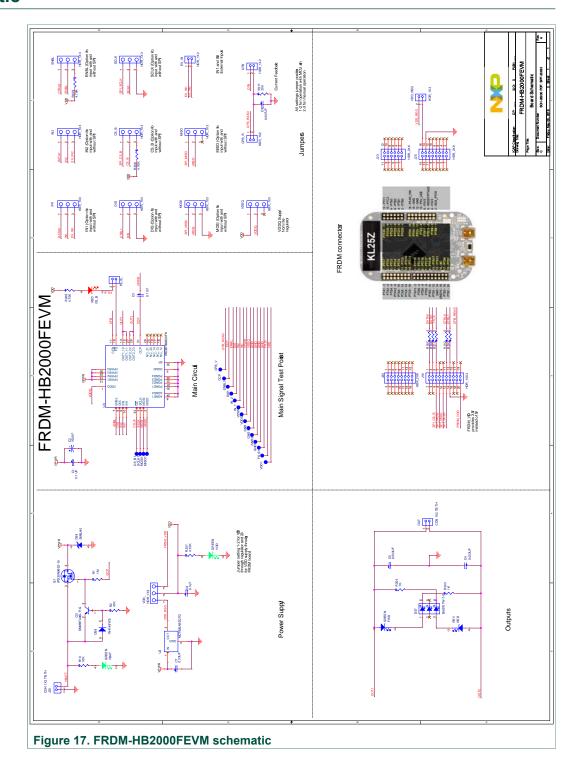

· Shows any fault condition in Sleep mode

Table 11. Logic behind direction control with High-side versus Low-side recirculation

Half-Bridge Mode	
	Forward - High-side Recirculation
1	IN1 = 1
	IN2 = PWM signal with selected duty cycle and frequency
	Reverse - High-side Recirculation
2	IN1 = PWM signal with selected duty cycle and frequency IN2 = 1
	Forward - Low-side Recirculation
3	IN1 = PWM signal with selected duty cycle and frequency IN2 = 0
4	Reverse - Low-side Recirculation
	IN1 = 0 IN2 = PWM signal with selected duty cycle and frequency

H-Bridge Mode	
	Forward - High-side Recirculation
1	IN1 = 1 IN2 = PWM signal with selected duty cycle and frequency
	Reverse - High-side Recirculation
2	IN1 = 0 IN2 = PWM signal with selected duty cycle and frequency

7 Schematic

8 Board layout

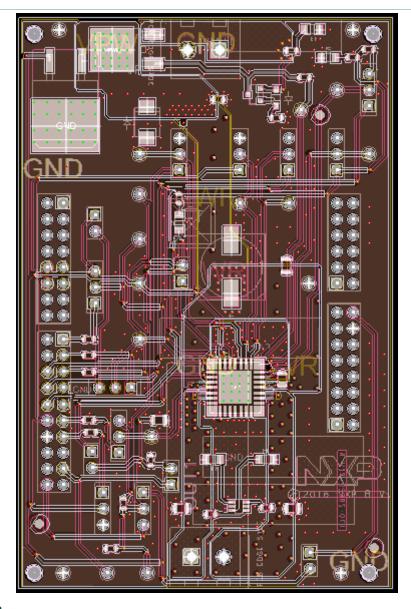


Figure 18. Silkscreen

9 Bill of materials

Table 12. Bill of materials

Item	Qty	Schematic label	Value	Description	Part number	Assy op
Active co	mponen	ts ^[1]				
1	1	U1		IC DRV H-BRIDGE MOTOR 3.0 A 5.0 to 28 V SOIC32 – NXP	MC33HB2000FK	[2]
2	1	U2		IC VREG 5.0 V 1.0 A 5.0 to 18 V D2PAK – ON Semiconductor	MC7805ABD2TG	[2]
Diodes ^[1]						
3	1	D2	24 V	DIODE TVS UNIDIR 600 W 24 V AEC-Q101 SMB	SMBJ24AHE3/52	
4	1	D57	70 V	DIODE SCH TRIPLE 70 mA 70 V / 200 MW SOT363	BAS70TW-7-F	
5	1	D58	75 V	DIODE SW 150 mA 75 V SOD-323	1N4148WS-7-F	
6	2	D59, D64	150 mA	LED RED SGL 25 mA 0805	598-8110-107F	
7	3	D60, D61, D63	25 mA	LED RED SGL 25 mA 0805	598-8110-107F	
Capacito	rs ^[1]		'			,
8	2	C1, C13	0.1 μF	CAP CER 0.1 µF 50 V 10 % X7R 0805	C0805C104K5RAC	
9	1	C2	100 μF	CAP ALEL 100 µF 50 V 20 % AEC-Q200 RADIAL SMT	MAL214699104E3	
10	2	C4, C5	0.033 μF	CAP CER 0.033 µF 50 V 10 % X7R 0805	08055C333KAT2A	
11	1	C7	0.33 μF	CAP CER 0.33 µF 50 V 10 % X7R 0603	C1608X7R1H334K080AC	
12	1	C8	0.1 µF	CAP CER 0.1 µF 16 V 10 % X7R AEC-Q200 0603	GCM188R71C104KA37D	
13	1	C9	0.047 μF	CAP CER 0.047 µF 25 V 10 % X7R 0603	C0603X7R250-473KNE	
Resistors	[1]					
14	1	R1	1.0 ΜΩ	RES 1 MΩ 1/4 W 1 % AEC-Q200 0603	CRCW06031M00FKEAHP	
15	1	R2	47 kΩ	RES MF 47 kΩ 1/10 W 1.0 % AEC-Q200 0603	CRCW060347K0FKEA	
16	1	R10	10 kΩ	RES MF 10 kΩ 1/10 W 5 % AEC-Q200 0603	ERJ-3GEYJ103V	
17	4	R18, R188, R192, R193	0 Ω	RES MF 0 Ω 1/10 W – 0603	CRCW06030000Z0EA	
18	1	R211	200 Ω	RES MF 200 Ω 1/10 W 1 % 0603	RK73H1JTTD2000F	
19	2	R203, R204	1.0 kΩ	RES MF 1.0 KΩ 1/10 W 1 % 0603	AR03FTNX1001	
20	4	R206, R207, R208, R209	4.70 kΩ	RES MF 4.70 KΩ 1/10 W 1 % 0603	RK73H1JTTD4701F	
Switches	, connec	tors, jumpers a	nd test po	pints ^[1]		,

Item	Qty	Schematic label	Value	Description	Part number	Assy opt
21	16	IN1, GND1,IN2, GND2, GND3, VPWR, VDDQ, VDD, SCLK, MOSI, MISO, GND, FS_B, ENBL, DIS, CS_B		TEST POINT BLACK 40 MIL DRILL 180 MIL TH 109L	5001	
22	11	J1, J2, J3, J4, J5, J6, J7, J8, J14, J17		HDR 1X3 TH 100 MIL SP 374H AU	826629-3	
23	1	J10		HDR 2X10 TH 100 MIL CTR 330H AU 100L	TSW-110-07-S-D	
24	4	J11, J15, J18, J19, J26		HDR 1X2 TH 100 MIL SP 378H AU 130L	826629-2	
25	2	J20, J21		CON 1X2 TB TH 5.08 MM 543H SN 138L	20020316-H021B01LF	
26	1	J23		HDR 2X6 TH 100 MIL CTR 330H AU	TSW-106-07-S-D	
27	2	J24, J25		HDR 2X8 TH 100 MIL CTR 330H AU	TSW-108-07-G-D	
28	1	Q1		TRAN NMOS PWR 30 A 55 V AEC-Q101 TO252	IPD30N06S2-15	
29	1	Q3		TRAN NPN DRIVER 500 mA 80 V AEC-Q101 SOT23	SMMBTA06LT1G	

NXP does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer's responsibility to validate their application. Critical components. For critical components, it is vital to use the manufacturer listed.

10 Accessory item bill of materials

Table 13. Accessory item bill of materials

Item	Qty	Part Number	Description
1	1		NXP Freedom Development Platform for Kinetis KL14/15/24/25 MCUs

NXP does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables. While NXP offers component recommendations in this configuration, it is the customer's responsibility to validate their application.

11 References

Following are URLs where you can obtain information on related NXP products and application solutions:

NXP.com support pages	Description	URL
FRDM-HB2000FEVM	Tool summary page	http://www.nxp.com/FRDM- HB2000FEVM
MC33HB2000	Product summary page	http://www.nxp.com/MC33HB2000
FRDM-KL25Z	Tool summary page	http://www.nxp.com/FRDM-KL25Z
SPIGen	SPI generator software	http://www.nxp.com/SPIGEN

12 Revision history

Revision	Date	Description of changes
1.0	7/2016	Initial release

13 Contact information

Visit http://www.nxp.com/support for a list of phone numbers within your region.

Visit http://www.nxp.com/warranty to submit a request for tool warranty.

14 Legal information

14.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

14.2 Disclaimers

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/ or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/salestermsandconditions.

14.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — is a trademark of NXP B.V.

the NXP logo — is a trademark of NXP B.V.

Freescale — is a trademark of NXP B.V.

the Freescale logo — is a trademark of NXP B.V.

SMARTMOS — is a trademark of NXP B.V.

FRDM-HB2000FEVM evaluation board

Tables

	Device features6			
Tab. 2.	Board description9		connections	17
Tab. 3.	LED locations10	Tab. 10.	SPI control description	24
Tab. 4.	Jumper locations11	Tab. 11.	Logic behind direction control with High-side	
Tab. 5.	Input signal definitions12		versus Low-side recirculation	26
Tab. 6.	Output signal definitions13	Tab. 12.	Bill of materials	29
Tab. 7.	Test point definitions	Tab. 13.	Accessory item bill of materials	30
Tah 8	Screw terminal connections 14		•	

FRDM-HB2000FEVM evaluation board

Figures

Fig. 1.	Block diagram	5	Fig. 12.	FRDM-KL25Z to FRDM-HB2000FEVM	
Fig. 2.	Modes of operation	6		connections	17
Fig. 3.	Architecture	7	Fig. 13.	FRDM-HB2000FEVM configured for use	
Fig. 4.	Thermal management	8		with an FRDM-KL25Z board	20
Fig. 5.	Board description	9	Fig. 14.	FRDM-HB2000FEVM configured for use	
Fig. 6.	LED locations	10		with a function generator	21
Fig. 7.	Jumper definitions	11	Fig. 15.	SPI control description	24
Fig. 8.	Test point locations	13	Fig. 16.	Parallel control description	25
Fig. 9.	Screw terminal locations	14	Fig. 17.	FRDM-HB2000FEVM schematic	27
Fig. 10.	FRDM-KL25Z	15	Fig. 18.	Silkscreen	28
Fig. 11.	Connecting the FRDM-HB2000FEVM to the				
	FRDM-KL25Z	16			

FRDM-HB2000FEVM evaluation board

Contents

1	FRDM-HB2000FEVM	
2	Important notice	
3	Getting started	3
3.1	Kit contents/packing list	
3.2	Jump start	3
3.3	Required equipment	3
3.4	System requirements	3
4	Getting to know the hardware	4
4.1	Board overview	4
4.2	Board features	4
4.3	Block diagram	5
4.3.1	Device features	5
4.3.2	Modes of operation	
4.3.3	Architecture	
4.3.4	Thermal management	
4.4	Board description	
4.5	LED display	
4.6	Jumper definitions	11
4.7	Input signal definitions	
4.8	Output signal definitions	
4.9	Test point definitions	13
4.10	Screw terminal connections	
5	FRDM-KL25Z Freedom SPI dongle	
5.1	Connecting the FRDM-KL25Z to the board	
6	Installing the software and setting up the	
	hardware	. 20
6.1	Configuring the hardware	
6.1.1	Step-by-step instructions for setting up the	
	hardware for use with a FRDM-KL25Z	. 20
6.1.2	Step-by-step instructions for setting up the	
	hardware for use with a function generator	21
6.2	Installing and using SPIGen	
6.2.1	SPI control	
6.2.2	Parallel control	
7	Schematic	
8	Board layout	
9	Bill of materials	
10	Accessory item bill of materials	
11	References	
12	Revision history	
13	Contact information	
14	Legal information	

© NXP B.V. 2016. All rights reserved

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Released on 5 July 2016

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

FRDM-HB2000FEVM