
 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

1 

Industrial IoT User Guide 

Release v0.3 

 
  



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

2 

Table of Contents 

1. INTRODUCTION ............................................................................................................................. 5 

1.1 LEDE INTRODUCTION ................................................................................................................ 5 

1.2 SET UP HOST ENVIRONMENT ...................................................................................................... 5 

1.3 REBUILD LEDE PROJECT ........................................................................................................... 5 

1.4 LS1021A-IOT PLATFORM .......................................................................................................... 6 

1.4.1 Switch Settings ................................................................................................................... 6 

1.4.2 Build SDcard Image ............................................................................................................ 7 

1.4.3 Deployment ......................................................................................................................... 7 

1.5 LS1012ARDB PLATFORM ......................................................................................................... 8 

1.5.1 Switch Settings ................................................................................................................... 8 

1.5.2 Build Image ......................................................................................................................... 9 

1.5.3 Deployment ....................................................................................................................... 10 

1.6 LS1043ARDB PLATFORM ....................................................................................................... 10 

1.6.1 Switch Settings ................................................................................................................. 10 

1.6.2 Build Image ....................................................................................................................... 10 

1.6.3 Deployment ....................................................................................................................... 11 

1.7 LS1046ARDB PLATFORM ....................................................................................................... 11 

1.7.1 Switch Settings ................................................................................................................. 11 

1.7.2 Build Image ....................................................................................................................... 11 

1.7.3 Deployment ....................................................................................................................... 12 

1.8 FRDM-KW41Z ....................................................................................................................... 12 

1.8.1 Introduction ....................................................................................................................... 12 

1.8.2 Firmware Download .......................................................................................................... 13 

2. BLE DEMO ................................................................................................................................... 14 

2.1 INTRODUCTION ........................................................................................................................ 14 

2.2 HARDWARE PREPARATION........................................................................................................ 15 

2.2.1 LS1021A-IoT Platform ....................................................................................................... 15 

2.2.2 LS1012ARDB Platform ...................................................................................................... 16 

2.3 LEDE CONFIGURATION ............................................................................................................ 16 

2.4 TEST BLE CONNECTIVITY ......................................................................................................... 17 

2.4.1 LS1021A-IoT Platform ....................................................................................................... 17 

2.4.2 LS1012ARDB Platform ...................................................................................................... 18 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

3 

3. THREAD DEMO ............................................................................................................................ 18 

3.1 INTRODUCTION ........................................................................................................................ 18 

3.2 HARDWARE PREPARATION........................................................................................................ 18 

3.2.1 LS1021A-IoT Platform ....................................................................................................... 18 

3.2.2 LS1012ARDB Platform ...................................................................................................... 19 

3.3 LEDE CONFIGURATION ............................................................................................................ 19 

3.4 TEST THREAD CONNECTIVITY .................................................................................................... 19 

3.4.1 LS1021A-IoT Platform ....................................................................................................... 19 

3.4.2 LS1012ARDB Platform ...................................................................................................... 20 

4. NFC DEMO ................................................................................................................................... 21 

4.1 INTRODUCTION ........................................................................................................................ 21 

4.2 HARDWARE PREPARATION........................................................................................................ 22 

4.2.1 LS1021A-IoT Platform ....................................................................................................... 22 

4.2.2 LS1012ARDB Platform ...................................................................................................... 22 

4.3 LEDE CONFIGURATION ............................................................................................................ 23 

4.3.1 LS1021A-IoT Platform ....................................................................................................... 23 

4.3.2 LS1012ARDB Platform ...................................................................................................... 23 

4.4 TEST NFC FEATURE ................................................................................................................ 24 

4.4.1 LS1021A-IoT Platform ....................................................................................................... 24 

4.4.2 LS1012ARDB Platform ...................................................................................................... 24 

4.4.3 Logs .................................................................................................................................. 24 

5. WIFI DEMO ................................................................................................................................... 25 

5.1 INTRODUCTION ........................................................................................................................ 26 

5.2 HARDWARE PREPARATION........................................................................................................ 26 

5.3 LEDE CONFIGURATION ............................................................................................................ 26 

5.4 TEST WIFI DEMO..................................................................................................................... 28 

6. DOCKER DEMO ........................................................................................................................... 28 

6.1 INTRODUCTION ........................................................................................................................ 29 

6.2 HARDWARE PREPARATION........................................................................................................ 29 

6.3 DOCKER TEST CASE ................................................................................................................. 29 

7. ZIGBEE SCENARIO ..................................................................................................................... 31 

8. OTA IMPLEMENTATION .............................................................................................................. 31 

8.1 INTRODUCTION ........................................................................................................................ 31 

8.2 LEDE CONFIGURATION ............................................................................................................ 32 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

4 

8.3 OTA TEST CASE ...................................................................................................................... 32 

9. 4G-LTE MODEM ........................................................................................................................... 33 

9.1 INTRODUCTION ........................................................................................................................ 33 

9.2 HARDWARE PREPARATION........................................................................................................ 33 

9.3 LEDE CONFIGURATION ............................................................................................................ 33 

9.4 TEST 4G USB MODEM LINK TO THE INTERNET............................................................................. 34 

10. KNOWN ISSUES ...................................................................................................................... 34 

 

  



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

5 

1. Introduction 

The industrial IOT project based on opensource project LEDE, source branch base is tag 
v17.01.2. It includes four platforms: LS1021A-IOT, LS1012A-RDB, LS1043A-RDB and 
LS1046A-RDB. All these platforms can be built from LEDE. IOT features each platform can 
support are listed as below. 

 LS1021A-IOT: BLE, Thread, Wi-Fi and NFC. 

 LS1012A-RDB: BLE, Thread, Wi-Fi, NFC and ZigBee. 

 LS1043A-RDB: Docker, Wi-Fi 

 LS1046A-RDB: Docker, Wi-Fi 

The document guides how to prepare hardware setup and how to build images from LEDE 
project. It also demonstrates how to verify the available features. 

1.1 LEDE Introduction 

LEDE is a highly extensible GNU/Linux distribution for embedded devices (typically wireless 
routers). LEDE is based on the OpenWrt project. Unlike many other distributions for routers, 
LEDE is built from the ground up to be a full-featured, easily modifiable operating system for 
embedded devices. In practice, this means that you can have all the features you need with 
none of the bloat, powered by a modern Linux kernel. 

For more information, please refer to the site: https://lede-project.org/. 

1.2 Set up Host Environment 

The following is the detailed package list on the Ubuntu host or Debian host: 

$ sudo apt-get install build-essential libncurses5-dev gawk git subversion libssl-dev gettext 
unzip zlib1g-dev file python 

 

Then get LEDE code source from tarball: 

$ tar –jxvf IoT-gateway-LEDE-source-v0.3.tar.bz2 

$ cd IoT-gateway-LEDE-source-v0.3/ 

$ unzip lede-source-master.zip 

$ cd lede-source 

$ ./scripts/feeds update -a 

$ ./scripts/feeds install -a 

When first run “make menuconfig” on host PC, it may prints errors that missing some packages. 
Install them as it prompt. 

1.3 Rebuild LEDE Project 

If you want to rebuild the LEDE project, you should clean the project as follows: 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

6 

 $make clean 

 $rm –rf tmp .config dl/*  

 

1.4 LS1021A-IoT Platform 

1.4.1 Switch Settings 

The following table lists and describes the switch configuration for LS1021AIOT Board. 

Feature Settings (OFF=1,ON=0) Option Comments 

S2.1 OFF RCW & Boot Source 0 : QSPI (not supported on 
revA board) 

1 : SDHC (default) 

S2.2 OFF SYSCLK Select 0 : DIFF_SYSCLK 

1 : SYSCLK (default) 

S2.3 OFF Reserved 0 : Reserved 

1 : Reserved (default) 

S2.4 OFF Reserved 0 : Reserved 

1 : Reserved (default) 

S2.5 OFF SGMII2_SATA MUX 0 : SerDes Lane 2 - SATA 

1 : SerDes Lane 2 – 
SGMII2 (default) 

S2.[6 :7] ON:ON SYSCLK Frequency Select 00 : 100MHz (default) 

01 : 99MHz 

10 : 96MHz 

11: Reserved 

S2.8 OFF SDA_SWD_EN Control 0 : K22 CMSIS-DAP 

1 : JTAG HEADER (default) 

Table 1-1 Switch Settings of LS1021aIOT 

 

The following table lists the jumper settings: 

Jumpers Default settings on LS1021A-IOT Description 

J11 OFF VDD_LP Source Select 

OFF – Battery 

ON - +1V0_VDDC 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

7 

J18 OFF Reserved 

J19 OFF Reserved 

J20 OFF Reserved 

Table 1-2 Jumper Settings of LS1021aIOT 

 

1.4.2 Build SDcard Image 

Selecting the following options to compile SD image that could be programmed into SD card: 

$ cd lede-source 
$ make menuconfig 
Set configures as following: 

Target System (NXP Layerscape)  ---> 
 (X) NXP Layerscape 
Subtarget (layerscape armv7 boards)  ---> 
 (X) layerscape armv7 boards 
Target Profile (ls1021aiot)  ---> 
 (X) ls1021aiot 
Target Images  ---> 
 [*] ext4  ---> 

[ ] squashfs  ---- 
[ ] GZip images 
(20) Boot (SD Card) filesystem partition size  

(This FAT_fs partition is stored for kernel and DTB) 
(256) Root filesystem partition size (in MB) 
 (This ext4_fs partition is stored for rootfs) 

  [*] Advanced configuration options (for developers)  ---> 

   [*]   Toolchain Options  ---> 

    C Library implementation (Use glibc)  ---> 

 $make –j1 V=s 

 

 After building, SD card image for LS1021A-IoT is generated at: 

 bin/targets/layerscape/armv7/lede-layerscape-armv7-ls1021aiot-ext4-firmware.bin 

 

1.4.3  Deployment 

The SD card image for LS1021A-IoT can be programmed into a SD card directly. 

$dd if=bin/targets/layerscape/armv7/ lede-layerscape-armv7-ls1021aiot-ext4-
firmware.bin of=/dev/mmcblk0 

Then plug the SD card into LS1021A-IoT board and start the board. 

 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

8 

1.5 LS1012ARDB Platform 

1.5.1 Switch Settings 

Feature Settings (ON=1,OFF=0) Option Comments 

S1.1 ON SW_RCW_SRC1 
0 - Hard coded source 3 
(Reserved) 

1 - QSPI is the RCW 
source (default) 

S1[2-3] ON:ON SW_ENG_USE/SW_ENG_USE2 
XOSC Transconductance 
Multiplier 
0 0 - 0.21x 

0 1 - 0.55x 
1 0 - 0.66x 
1 1 - 1.00x (default) 

S1.6 ON BATT_OTG_BST_EN_B 
OTG 5 V VBUS enable 
0 - Enable the VBUS boost 
regulator of 

LTC4155 
1 - Disable VBUS Boost 
regulator of 

LTC4155 (default)1 : 
Reserved (default) 

S1.7 OFF CFG_UART_MUX_EN_B 
0- LS1012A UART1 is 

connected to K22 
UART0 for CMSIS DAP 
debug. (default) 

1 - LS1012A UART1 0 is 
translated to 
RS232 levels and is 

available on 1x3 header 
(J24). 

S1.8 OFF CFG_SERDES_MUX_SEL 
SERDES Lane A MUX 

selection 
0 - SGMII 1G to PHY 
(default) 

1 - PCIe TX clock to mini 
PCIe connector 

S2[1-2] ON:ON CFG_MUX_SDHC2_S0/CFG_MUX_SDHC2_S1 
SDHC 2 interface 

demultiplexer select 
lines 
00 - SDIO WiFi (default) 

01 - GPIO (to Arduino) 
10 - eMMC Memory 
11 - SPI 

S2.6 OFF CFG_RGMII_MUX_EN_B 
RGMII interface 
demultiplexer select 
0 -> RGMII enabled 

(default) 
1 -> SAI2 enabled (through 
Arduino) 

S2.7 OFF CFG_MUX_QSPI_S0/ CFG_MUX_QSPI_S1 
QSPI chip-select 
demultiplexer select 

CFG_MUX_QSPI_S[1:0] 
00 - CS routed to SPI 
memory bank 1 

(default) 
01 - CS routed to SPI 
memory bank 2 

10 - CS routed to Emulator 
11 - Invalid (Never use this 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

9 

option as it causes bus 
contention) 

Table 1-3 Switch Settings of LS1012aRDB 

 

 

 

1.5.2 Build Image 

Selecting the following options to compile SD card image and QSPI image that could be 
programmed into QSPI flash: 

 

$ cd lede-source 

$ make menuconfig 
Set configures as following: 
Target System (NXP Layerscape)  ---> 
 (X) NXP Layerscape 
Subtarget (layerscape 64b boards)  ---> 
 (X) layerscape 64b boards 
Target Profile (ls1012ardb-64b)  ---> 
 (X) ls1012ardb-64b 
Target Images  ---> 
 [*] ext4  ---> 

[ ] squashfs  ---- 
[ ] GZip images 
(20) Boot (SD Card) filesystem partition size  

(This FAT_fs partition is stored for kernel and DTB) 
(256) Root filesystem partition size (in MB) 
 (This ext4_fs partition is stored for rootfs) 

 [*] Advanced configuration options (for developers)  ---> 

  [*]   Toolchain Options  ---> 

   C Library implementation (Use glibc)  ---> 

Firmware  ---> 
<*> rcw-layerscape-ls1012ardb 

Global build settings  ---> 
     Binary stripping method (none)  ---> 

 
$ make –j1 V=s 

 

After building, two images for LS1012ARDB are generated: 

bin/targets/layerscape/64b-glibc/lede-layerscape-64b-ls1012ardb-ext4-firmware.bin. This is a SD 
card image include kernel and filesystem that need to write to SD card. 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

10 

bin/targets/layerscape/64b-glibc/ls1012ardb-64b-rcw-uboot.bin. This is a qspi flash image 
include RCW and u-boot that need to write to qspi flash. 

 

1.5.3  Deployment 

LS1012ARDB uses QSPI nor flash boot. It has two qspi nor flash bank. Do the follows to update 
RCW and u-boot after starting u-boot of bank0: 

=> i2c mw 0x24 0x7 0xfc; i2c mw 0x24 0x3 0xf5 
=>sf probe 0:0 
=>tftp 84000000 tftpboot/ ls1012ardb-64b-rcw-uboot.bin 
=>sf erase 0 +0x300000 
=>sf write 84000000 0 $filesize 
=>reset 

lede-layerscape-64b-ls1012ardb-ext4-firmware.bin can be programmed into a SD card directly. 

$dd if= bin/targets/layerscape/64b-glibc/lede-layerscape-64b-ls1012ardb-ext4-
firmware.bin  of=/dev/mmcblk0 

Then plug the SD card into LS1012aRDB board and start the board. 

 

 

1.6 LS1043ARDB Platform 

1.6.1 Switch Settings 

The following table lists and describes the switch configuration for LS1043ARDB Board to boot 
from NOR. 

 

Feature Settings 

 (OFF=0,ON=1) 

Option Comments 

SW5[1] + SW4[1-8] 0_0010_0101 RCW_SRC[0:8] 

select 

0_0010_0101: 16-bit NOR 

Table 1-4 Switch Settings of LS1043aRDB 

1.6.2 Build Image 

$ cd lede-source 

$ make menuconfig 
Set configures as following: 
Target System (NXP Layerscape)  ---> 
 (X) NXP Layerscape 
Subtarget (layerscape 64b boards)  ---> 
 (X) layerscape 64b boards 
Target Profile (ls1043ardb-64b)  ---> 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

11 

 (X) ls1043ardb-64b 
Target Images  ---> 
 [*] ext4  ---> 

[ ] squashfs  ---- 
[ ] GZip images 
(20) Boot (SD Card) filesystem partition size  

(This FAT_fs partition is stored for kernel and DTB) 
(256) Root filesystem partition size (in MB) 
 (This ext4_fs partition is stored for rootfs) 

 [*] Advanced configuration options (for developers)  ---> 

  [*]   Toolchain Options  ---> 

   C Library implementation (Use glibc)  ---> 

 
$ make –j1 V=s 

 

After building, a SD card image for LS1043ARDB is generated: 

bin/targets/layerscape/64b-glibc/ 

1.6.3 Deployment 

The SD card image for LS1043aRDB can be programmed into a SD card directly. 

$dd if= bin/targets/layerscape/64b-glibc/lede-layerscape-64b-ls1043ardb-ext4-
firmware.bin of=/dev/mmcblk0 

Then plug the SD card into LS1043aRDB board and start the board. 

 

1.7 LS1046ARDB Platform 

1.7.1 Switch Settings 

The following table lists and describes the switch configuration for LS1046ARDB Board to boot 
from QSPI. 

 

Feature Settings 

 (OFF=0,ON=1) 

Option Comments 

SW5[1-8] +SW4[1] 00100000_0 RCW_SRC[0:8] 

select 

0010_0010_0: QSPI (Default) 

Table 1-5 Switch Settings of LS1046aRDB 

1.7.2 Build Image 

$ cd lede-source 

$ make menuconfig 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

12 

Set configures as following: 
Target System (NXP Layerscape)  ---> 
 (X) NXP Layerscape 
Subtarget (layerscape 64b boards)  ---> 
 (X) layerscape 64b boards 
Target Profile (ls1046ardb-64b)  ---> 
 (X) ls1046ardb-64b 
Target Images  ---> 
 [*] ext4  ---> 

[ ] squashfs  ---- 
[ ] GZip images 
(20) Boot (SD Card) filesystem partition size  

(This FAT_fs partition is stored for kernel and DTB) 
(256) Root filesystem partition size (in MB) 
 (This ext4_fs partition is stored for rootfs) 

 [*] Advanced configuration options (for developers)  ---> 

  [*]   Toolchain Options  ---> 

   C Library implementation (Use glibc)  ---> 

 

 
$ make –j1 V=s 

 

After building, flash image for LS1046ARDB is generated: 

bin/targets/layerscape/64b-glibc/ 

 

1.7.3 Deployment 

The SD card image for LS1046aRDB can be programmed into a SD card directly. 

$dd if= bin/targets/layerscape/64b-glibc/lede-layerscape-64b-ls1046ardb-ext4-
firmware.bin of=/dev/mmcblk0 

Then plug the SD card into LS1046aRDB board and start the board 

 

1.8 FRDM-KW41Z 

1.8.1  Introduction 

The FRDM-KW41Z is a development kit enabled by the Kinetis® W series KW41Z/31Z/21Z 
(KW41Z) family built on ARM® Cortex®-M0+ processor with integrated 2.4 GHz transceiver 
supporting Bluetooth® Smart/Bluetooth®Low Energy (BLE) v4.2, Generic FSK, IEEE® 802.15.4 
and Thread. The FRDM-KW41Z kit contains two Freedom boards that can be used as a 
development board or a shield to connect to a host processor.  

Explore more out-of-box demos and download software and tools on: 
www.nxp.com/FRDM-KW41Z/startnow 

http://www.nxp.com/FRDM-KW41Z/startnow


 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

13 

 

1.8.2  Firmware Download 

1.8.2.1 Firmware Introduction 

You can get firmware from IoT-gateway-images-v0.2.tar.bz2. Following shows 

KW41Z firmwares where to be used. 

1. ble_shell_frdmkw41z.bin: used by end device for BLE demo. 

2. LS1012aRDB_hci_black_box.bin: used by LS1012aRDB for BLE demo. 

3. LS1021aIOT_hci_black_box.bin: used by LS1021aIOT for BLE demo. 

4. LS1012ARDB_host_controlled_device.bin: used by LS1012aRDB for Thread 

demo. 

5. LS1012ARDB_router_eligible_device.bin: used by end device for Thread demo. 

6. LS1021aIOT_host_controlled_device.srec: used by LS10121aIOT for Thread 

demo. 

7. LS1021aIOT_end_device.srec: used by end device for Thread demo. 

 

1.8.2.2 LS1021A-IoT Platform 

Using micro-USB interface to connect KW41Z Freedom board to host PC.  KW41Z 
board will be recognized as a new storage device, copy the firmware to this storage 
device, then the firmware will be downloaded into board. 

 

1.8.2.3 LS1012ARDB Platform 

Using Jlink to load the firmware into kw41 on LS1012ARDB. 
1. Make sure that you install the latest J-Link driver. 

https://www.segger.com/jlink-software.html 
2. Connect Jlink to SWD interface of LS1012ARDB. 

 

Figure 1-1 Connect Jlink to LS1012aRDB 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

14 

 
3. Using Jlink commander from start menu that is created after installing jlink driver to 

download firmware into kw41 on LS1012ARDB. Following the steps below for 

flashing the image on the microcontroller. 

 

Figure 1-2 Use Jlink to flash firmware on KW41z 

2. BLE Demo 

2.1  Introduction 

The Bluetooth specification has a very well defined interface between the Controller and the 
Host called the HCI (Host Controller Interface). This interface is defined for and can be used with 
various transport layers including an asynchronous serial transport layer. 

 

Figure 2-1 BLE HCI Structure 

 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

15 

2.2  Hardware Preparation 

2.2.1 LS1021A-IoT Platform 

There are two FRDM-KW41Z Freedom boards needed, one is used as a shield to connect to 
LS1021A-IoT board, another is used as an end device to test BLE connection setup.  

 

Download firmware into FRDM-KW41Z Freedom boards and used as follows: 

a) FRDM-KW41Z board A which connect to LS1021A-IoT:  

1. Download firmware is named LS1021aIOT_hci_black_box.bin into this board.  

2. Plug it in arduino interface of ls1021A-IoT.  

3. Jump J30 and J31 as photo below. 

 

Figure 2-2 Jumper settings on FRDM-KW41Z 

 
b) FRDM-KW41Z board B which used as end device: 

1. Download firmware is named ble_shell_frdmkw41z.bin into this board.  

2. Connect it to host PC by micro-USB interface. 

3. Open a serial terminal to connect FRDM-KW41Z board by openSDA. 

4. Board start log is as follow: 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

16 

 
Figure 2-3 BLE shell start log on FRDM-KW41Z board B. 

 

2.2.2 LS1012ARDB Platform 

a) LS1012ARDB has a KW41z on the board which is connected by a dual-channel high 

performance UART bridge. The UART bridge is a SPI slave device. Because LS1012A 

SPI bus is muxed with LS1012A SDHC1 IOs. So Muxes are used on the board to select 

between the available options.  

Configure the SW2 switch as:  

Switch Option ON/OFF 

SW2 [1] CFG_MUX_SDHC2_S0 ON 

SW2 [2] CFG_MUX_SDHC2_S1 ON 

Table 2-1 BLE Switch Settings of LS1012aRDB 

 

b) Use Jlink to flash the firmware on KW41 of LS1012ARDB board: 

LS1012aRDB_hci_black_box.bin 

c) FRDM-KW41Z board B which used as end device is the same as LS1021A-IoT platform. 

 

2.3 LEDE Configuration 

$make menuconfig 

Set configures as following: 
 Utilities  ---> 
  <*> bluez-utils 

 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

17 

2.4 Test BLE connectivity 

2.4.1 LS1021A-IoT Platform 

After LS1021A-IoT board startup, do the following instruction to connect LS1021A-IoT to KW41Z 
board B by BLE protocol. 

1. Reset KW41Z board A by pressing SW1 on KW41Z board A. 
2. Connect the Linux Bluetooth stack to a serial HCI interface. 
 $ hciattach /dev/ttyLP0 any 115200 noflow nosleep 

 Device setup complete 

3. Start the hci0 interface manually. 
 $ hciconfig hci0 up 

4. Run the hciconfig command with no parameters to check the HCI interface. 
 $ hciconfig 
 hci0:   Type: BR/EDR  Bus: UART 
        BD Address: 00:04:9F:00:00:15  ACL MTU: 500:20  SCO MTU: 0:0 
        UP RUNNING 
        RX bytes:462 acl:0 sco:0 events:32 errors:0 
        TX bytes:240 acl:0 sco:0 commands:32 errors:0 

5. Advertising BLE on KW41Z board B. 
 Kinetis BLE Shell> gap advstart 

6. Scan for Advertising LE Devices. 
 $ hcitool -i hci0 lescan 

 LE Scan ... 

 00:04:9F:00:00:16 (unknown) 

7. Obtaining Remote LE Device (KW41Z board B) Information. 
 $ hcitool -i hci0 leinfo 00:04:9F:00:00:16 

 Requesting information ... 

         Handle: 705 (0x02c1) 

         LMP Version: 4.2 (0x8) LMP Subversion: 0x121 

         Manufacturer: NXP Semiconductors (formerly Philips Semiconductors) (37) 

         Features: 0xff 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

8. Connect to a remote LE device (KW41Z board B). 
# gatttool -I 

[                 ][LE]> connect 00:04:9F:00:00:16 

Attempting to connect to 00:04:9F:00:00:16 

Connection successful 

 
9. After disconnect from BLE network, if you want to connect it again, you should do 
from step 5. 

 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

18 

2.4.2 LS1012ARDB Platform 

After LS1012ARDB board startup, do the following instruction to connect the Linux Bluetooth 
stack to a serial HCI interface.  

$ hciattach /dev/ttySC1 any 9600 noflow nosleep 

Device setup complete 

Then do the same as LS1021A-IoT platform to test BLE demo. 

3. Thread Demo 

3.1 Introduction 

Kinetis Thread Stack provides Thread networking components over IEEE-802.15.4 MAC 2006 
layer running on Kinetis MCUs which are enabled to use IEEE 802.15.4. It provides a CoAP 
application profile API. 

The Kinetis Thread stack implements a serial Tunnel media interface which can be used to 
exchange FSCI encapsulated IPv6 packets with a host system. To provide connectivity to the 
host, there are 2 components needed: the TUN/TAP kernel module, which allows the operating 
system to create virtual interfaces and a program that knows to encapsulate/decapsulate IP 
packets to/from FSCI/THCI. 

 

Figure 3-1 Thread Stack Structure 

 

3.2 Hardware Preparation 

3.2.1 LS1021A-IoT Platform 

Prepare hardware as BLE demo hardware prepare. 

Download following firmware into FRDM-KW41Z boards: 

a) FRDM-KW41Z board A which connect to LS1021A-IoT: 

LS1021aIOT_host_controlled_device.srec 

b) FRDM-KW41Z board B which used as end device:  

LS1021aIOT_end_device.srec 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

19 

Board start log is as follow: 

 
Figure 3-2 Thread shell start log on FRDM-KW41Z board B. 

 

3.2.2 LS1012ARDB Platform 

Prepare hardware as BLE demo hardware prepare. 

Download following firmware into FRDM-KW41Z boards: 

a) Use Jlink to flash the firmware on KW41 of LS1012ARDB board: 

LS1012ARDB_host_controlled_device.bin 

b) Download following firmware into FRDM-KW41Z board B which used as end: 

LS1012ARDB_router_eligible_device.bin 

 

3.3  LEDE Configuration 

$make menuconfig 

Set configures as following: 

 Network  ---> 

  Routing and Redirection  ---> 

   <*> ip-full 

 

3.4  Test Thread connectivity 

3.4.1 LS1021A-IoT Platform 

After LS1021A-IoT board startup, do the following instruction to connect ls1021A-IoT to KW41Z 
board B by Thread protocol. 

1. Create a TUN/TAP interface and add ip route tables. 

$ make_tun.sh  

This script automates the creation of the TUN interface, while configuring it with the 
proper IPv6 addresses and routes. 
$ cat make_tun.sh 

#!/bin/bash 
# Create a new TUN interface for Thread interaction. 
ip -6 tuntap add mode tun fslthr0 
# Assign it a global IPv6 address. 
ip -6 addr add FD01::2 dev fslthr0 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

20 

# Add route to default address of Serial TUN embedded interface. 
ip -6 route add FD01::1 dev fslthr0 
# Add route to Unique Local /64 Prefix via fslthr0. 
ip -6 route add FD01:0000:0000:3EAD::/64 dev fslthr0 
# The interface is ready. 
ip link set fslthr0 up 
# Enable IPv6 routing on host. 
sysctl -w net.ipv6.conf.all.forwarding=1 

 
2. Reset KW41Z board A by pressing SW1 on KW41Z board A. 
3. Create thread network on LS1021A-IoT. 

$Thread_KW_Tun /dev/ttyLP0 fslthr0 1 15 115200 & 
[  170.543616] IPv6: ADDRCONF(NETDEV_CHANGE): fslthr0: link becomes ready 
WARNING: Cannot open /usr/share/hsdk/hsdk.conf => FSCI ACKs are disabled 
[THR] Factory Reset                 OK! 
[THR] Create Network                OK! 
[THR] Border Router Add Prefix      OK! 
[THR] Border Router Sync Prefix     OK! 
[MESHCOP] Start Commissioner        OK! 
[MESHCOP] Add Expected Joiner       OK! 
[MESHCOP] Sync Steering Data        OK! 

 
4. Join thread network on FRDM-KW41Z board B. Do the following after add expected 

joiner is ok on LS1021a-IOT board. 

$ thr join 
Joining a Thread network... 
Commissioning successful 

 
5. Test thread connectivity by ping tun/tap interface IP of LS1021A from FRDM-KW41Z 

board B. 

$ping FD01::2 
$ifconfig 
Interface 0: 6LoWPAN 
        Mesh local address (ML64): fdc8:9eea:ea7c::8ed:6664:78bf:826f 
        Mesh local address (ML16): fdc8:9eea:ea7c::ff:fe00:400 
        Unique local address: fd01::3ead:b0f0:e421:57e9:562a 
 

6. Ping the remote device IP(use the Unique local address) from LS1021a. 
$ping fd01::3ead:b0f0:e421:57e9:562a 

 

3.4.2 LS1012ARDB Platform 

After LS1012ARDB board startup, do the same steps as LS1021A-IoT to test thread demo. The 
only difference is how to use Thread_KW_Tun to create thread network on LS1012ARDB. 

$Thread_KW_Tun /dev/ttySC1 fslthr0 1 15 9600 & 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

21 

4. NFC Demo 

4.1 Introduction 

The PN7150 NFC module package comes with the following items 

 
 
 
 
1) PN7150 Module 
 
2) Arduino Shield Interface board 

(OM5578) 
 
3) NFC Sample Tag 
 
 
 

Figure 4-1 NFC module package 

 

LS1021A-IoT and LS1012ARDB platforms use OM5578/PN7150ARD module, which connects 
to I2C-0 bus as a NFC module through Arduino interface. The following diagram depicts the 
required hardware connection signals between PN7150 NFC module and LS1021A-
IoT/LS1012ARDB boards. 

 

Figure 4-2 Structure of NFC connect to LS1021a 

 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

22 

 

Figure 4-3 Structure of NFC connect to LS1012a 

 

4.2 Hardware Preparation 

4.2.1 LS1021A-IoT Platform 

Because LS1021A-IoT board does not connect GPIO pins to Arduino interface, we need to 
connect two GPIO pins to Arduino interface, like the photo below. (Link: J8.1->J502.3, J17.8-
>J502.5). 

Then, plug the PN7150 NFC card into Arduino interface of LS1021A-IoT. 

 

Figure 4-4 NFC hardware rework on LS1021aIOT 

 

4.2.2 LS1012ARDB Platform 

Just now LS1012ARDB RevC board support NFC, in order to make the NFC feature work 
correctly, need to rework the hardware, short circuit J16.2 and J17.14, as below photo shows. 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

23 

               

Figure 4-5 NFC hardware rework on LS1012aRDB 

 

In order to support NFC on LS1012aRDB RevD board, you need to configure the SW2 switch 
as: SW2[1-2]: ON/ON before power on, then set the SW2 switch as: SW2[1-2]: ON/OFF after 
power on the board. 

 

4.3 LEDE Configuration 

4.3.1 LS1021A-IoT Platform 

Set configures as following: 

 
$make menuconfig 
Kernel modules  ---> 

Other modules  ---> 
   <*> kmod-nxp_pn5xx 
Utilities  ---> 
 <*> libnfc-nci 

 

4.3.2 LS1012ARDB Platform 

$make menuconfig 
Kernel modules  ---> 

Other modules  ---> 
   <*> kmod-nxp_pn5xx 
Utilities  ---> 
 <*> libnfc-nci 

 

Note: Using NFC module on LS1012aRDB, the RCW will be changed to modify mux_GPIO pins. 
You need to clean the project and rebuild it to generate images. 

 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

24 

4.4 Test NFC feature 

Make sure the U-boot has identify the NFC module before startup the Linux Kernel with below 
command in uboot prompt:  

=> i2c probe 
=> Valid chip addresses: 00 08 09 1E 20 24 25 26 28 40 7C 
 

I2C address 0x28 is for OM5578/PN7150 module, if not identify it, please re-install the hardware 
and repeat the former command. 

 

4.4.1 LS1021A-IoT Platform 

After LS1021A-IoT board startup, do the below instruction to start NFC demo. 

$ ./data/nfc/nfcDemoApp poll 
 

4.4.2 LS1012ARDB Platform 

Make sure the SW2[1:2] = on:on. 

Make sure below sequences of power are implemented: 

1) Connect USB/serial port “CONSOLE” to PC USB port. 

2) Connect the supplied AC power to LS1012ARDB RevC board.  

 

In u-boot, make sure the correct RCW binary is being used, as below red shows: 

 Reset Configuration Word (RCW): 

       00000000: 08000008 00000000 00000000 00000000 

       00000010: 35080000 c000000c 40000000 00001800 

       00000020: 00000000 00000000 00000000 00014511 

       00000030: 00000000 18c2a120 00000096 00000000 

 

After LS1012ARDB board startup, do the below instruction to start NFC demo. 

  $ ./data/nfc/nfcDemoApp poll 

 

4.4.3 Logs 

When the application is running, the print log is: 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

25 

 

Figure 4-6 NFC Demo log 

 

Touching a NFC sample tag to OM5578/PN7150 NFC reader, the application print log: 

 

 

Figure 4-6 NFC Demo log after recognizing sample tag 

5. Wifi Demo 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

26 

5.1 Introduction 

A WNC DNXA-H1 card is used for the WiFi verification. And the corresponding kernel driver 
ATH9K also be set in default. This demo can be used on LS1021aIOT LS1012aRDB 
LS1043aRDB and LS1046aRDB. The LS1021A-IoT board has two mini-PCIe slots so the max 
two WiFi cards can be inserted. It cannot be inserted in MPCIE SLOT2 if there is only one WIFI 
card. 

5.2 Hardware Preparation 

Insert a WNC DNXA-H1 card as wifi card into mPCIE slot of LS1021A-IoT board like this. 

 
Figure 5-1 Wifi card on LS1021aIOT  

 

5.3 LEDE Configuration 

There is only need LEDE configuration as follows for LS1021aIOT board.  

$make menuconfig 

Set configures as following: 
Libraries  ---> 

<*> libnfnetlink 
<*> libnftnl 
<*> libnl 

Network  ---> 
<*> hostapd 
-*- hostapd-common 
<*> hostapd-utils 

Kernel modules  ---> 
Wireless Drivers  ---> 

<*> kmod-ath9k 
Base system  ---> 

<*> dnsmasq 
Luci---> 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

27 

Collection  ---> 
<*> luci 

 

 

Following steps is configuration for LS1012aRDB, LS1043aRDB and LS1046aRDB. 

1. Kernel configuration. 
$make kernel_menuconfig 
 
[*] Networking support  ---> 
      -*-   Wireless  ---> 

[*]   Wireless extensions 
[*]   WEXT_SPY 
[*]   WEXT_PRIV 
<*>   cfg80211 - wireless configuration API 
[*]     enable powersave by default 
<*>   Generic IEEE 802.11 Networking Stack (mac80211) 
[*]   Minstrel 
[*]     Minstrel 802.11n support 
-*-   Enable LED triggers 

 
Device Drivers  ---> 
     [*] Network device support  ---> 

[*]   Wireless LAN  ---> 
<*>   Atheros Wireless Cards  ---> 

<*>   Atheros 802.11n wireless cards support 
[*]   Atheros bluetooth coexistence support 
 [*]     Atheros ath9k PCI/PCIe bus support 
[*]   Atheros ath9k support for PC OEM cards  

 
2. LEDE configuration 

$make menuconfig 
Libraries  ---> 

<*> libnfnetlink 
<*> libnftnl 
<*> libnl 

Network  ---> 
<*> hostapd 
-*- hostapd-common 
<*> hostapd-utils 

Kernel modules  ---> 
Wireless Drivers  ---> 

<*> kmod-ath9k 
Base system  ---> 

<*> dnsmasq 
Luci---> 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

28 

Collection  ---> 
<*> luci 

 

5.4 Test WiFi Demo 

When first time startup the board, do the following instructions to set WiFi up. 
1). Generate wifi config file. 
 $wifi config 

2). Modify wifi config file to delete disable option. 
 $ vi /etc/config/wireless 
   #option disabled '1' 

3). Set eth1 which is connected to network as wan. 
 $vi /etc/config/network 

config interface 'lan' 
        option type 'bridge' 
        option ifname 'eth0' 
        option proto 'static' 
        option ipaddr '192.168.1.1' 
        option netmask '255.255.255.0' 
        option ip6assign '60' 
 
config interface 'wan' 
        option ifname 'eth1' 
        option proto 'dhcp' 

3). start wifi up. 

 $ wifi up 
[  317.647622] IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready 
[  317.655381] device wlan0 entered promiscuous mode 
[  317.669190] IPv6: ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready 
[  317.675638] br-lan: port 2(wlan0) entered forwarding state 
[  317.681116] br-lan: port 2(wlan0) entered forwarding state 
[  317.686689] IPv6: ADDRCONF(NETDEV_CHANGE): br-lan: link becomes ready 
[  319.672689] br-lan: port 2(wlan0) entered forwarding state 
[  327.782870] device wlan0 left promiscuous mode 
[  327.787420] br-lan: port 2(wlan0) entered disabled state 
[  328.008825] IPv6: ADDRCONF(NETDEV_UP): wlan0: link is not ready 
[  328.017056] device wlan0 entered promiscuous mode 
[  328.021790] br-lan: port 2(wlan0) entered forwarding state 
[  328.027288] br-lan: port 2(wlan0) entered forwarding state 
[  328.042613] IPv6: ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready 
[  330.022688] br-lan: port 2(wlan0) entered forwarding state 
 

4). You can join the wifi by your mobile phone, the SSID of WIFI is LEDE. 
 

6. Docker Demo 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

29 

6.1 Introduction 

Docker is a tool designed to make it easier to create, deploy, and run applications by using 
containers. Containers allow a developer to package up an application with all of the parts it 
needs, such as libraries and other dependencies, and ship it all out as one package. By doing 
so, the developer can rest assured that the application will run on any other Linux machine 
regardless of any customized settings that machine might have that could differ from the 
machine used for writing and testing the code. 

This chapter shows the steps to run Docker on LEDE filesystem environment and NXP 
ls1043ardb, ls1046ardb platform with 64B images. 

Note: Since the LEDE doesn’t include the Docker package, so this demo uses Docker binaries 
built standalone in 64B and copy them into the LEDE filesystem by the patch: 

0001-lede-docker-Add-docker-support-for-ls1043ardb-ls1046.patch 

Get the patch from the IoT release v0.2 tarball <IoT-gateway-LEDE-source-v0.2.tar.bz2>, apply 
it to the LEDE open source tree and lede-17.01 branch, an entire Docker running environment 
can be built out by LEDE.  

 

6.2 Hardware Preparation 

Make sure the ls1043ardb, ls1046ardb are bootup from SD card based on the following SW 
setting. 

Platform Boot Board SW Setting 

ls1043ardb SD card SW4[1-8] +SW5[1] = 0b'00100000_0 

ls1046ardb  SD card SW5[1-8] +SW4[1] = 0b'00100000_0 

6.3 Docker test case 

1. Obtain the LEDE project code and check to the lede-17.01 branch 

git clone https://github.com/lede-project/source.git lede 

cd lede 

git checkout remotes/origin/lede-17.01 -b lede-17.01 

./scripts/feeds update -a 

./scripts/feeds install -a 

 

2. Apply the LEDE patch for docker case. 

cd lede 

https://github.com/docker/docker
https://github.com/lede-project/source.git


 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

30 

git am 0001-lede-docker-Add-docker-support-for-ls1043ardb-ls1046.patch 

 
3. Use the lede-1701-docker-config as the LEDE .config 

cd lede 

mv lede-1701-docker-config .config 

 

4. Check the menuconfig 

cd lede 

make menuconfig 

# choose the ls1043ardb 64b or ls1046ardb 64b 

# exit and save 

 

5. Compile the LEDE and get the final image 

cd lede 

make -j8 V=s 

# get the binary image for ls1043ardb or ls1046ardb at 

# bin/targets/layerscape/64b-glibc/ 

# named ‘lede-layerscape-64b-ls1043ardb-ext4-firmware.bin’ or 

# ‘lede-layerscape-64b-ls1046ardb-ext4-firmware.bin’ 

 

6. Program the binary image into a SD card under a host Linux machine 

sudo dd if=./lede-layerscape-64b-ls1043ardb-ext4-firmware.bin of=/dev/sdx 

# check the SD card name "/dev/sdx" in your machine and replace the # “sdx” in above 
command 

 

7. Insert the programmed SD card into the ls1043ardb or ls1046ardb board and boot up 

 

8. Set the LEDE system network (an example on ls1043ardb board) 

 

# set the Ethernet interface IP addr 

root@LEDE:/# ifconfig eth2 10.192.208.230 

# set the default gateway 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

31 

root@LEDE:/# route add default gw 10.192.208.254 

# set the DNS server 

root@LEDE:/# vi /etc/resolv.conf 

# add the namespace in resolv.conf like: 

    nameserver 10.192.130.201 

    nameserver 10.228.49.200 

    nameserver 10.201.141.100 

# save and exit 

 

9. Run docker and aarch64/hello-world docker image 

root@LEDE:/# mkdir docker 

root@LEDE:/# docker daemon --graph=/docker& 

root@LEDE:/# docker pull aarch64/hello-world 

root@LEDE:/# docker images 

REPOSITORY            TAG                 IMAGE ID            CREATED             SIZE 

aarch64/hello-world   latest              70a49d30fa8f        3 months ago        2.088 kB 

root@LEDE:/# docker run --net=host aarch64/hello-world 

 

7. ZigBee Scenario 

ZigBee demonstration scenario bases on LS1012ARDB, JN516x-EK004 Evaluation Kit, refer to 
another user manual “Zigbee Solution for Industrial IoT User Guide Release v0.2”. 

 

8. OTA Implementation 

8.1 Introduction 

OTA refers to a method of updating u-boot, kernel, filesystem and even the full firmware to 
devices through network. If the updated firmware is not working, the device can rollback the 
firmware to latest version automatically. Because there is no hardware method to rollback device 
automatically, device could not rollback once the U-boot is not working when updating u-boot 
and full firmware. 

OTA implementation use some shell scripts and configure file to update and rollback: 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

32 

version.json: This is a JSON file which saves the board name and version of each firmware. 
Below is an example of version.json. 

 { 
           "updatePart":"kernel",  /* Name of firmware image which has been updated. */ 
               "updateVersion":"1.0.0", /* Version of firmware image which has been updated. */ 
           "all":"0.1.0", /* version of the full firmware image which has been used now */ 
          "u-boot":"0.1.0", /* version of the u-boot image which has been used now */ 
          "kernel":"0.1.0", /* version of the kernel image which has been used now */ 
          "filesystem":"0.1.0", /* version of the filesystem image which has been used now */ 
          "boardname":"ls1021aiot" /* used to get the corresponding firmware from server*/  

} 

update.json: This file is stored in server, it saves the name and version of firmware image which 
will be updated. 

Below is an example of update.json: 

 { 
            "updateStatus":"yes", /* set yes or no to tell devices is it need to update. */ 
            "updatePart":"kernel", /* name of update firmware. */ 
           "updateVersion":"0.3.0", /* version of update firmware */ 

} 

update_ota: This script can get a JSON file named update.json from server, then parse the file 
and get the new firmware version to confirm whether to download it from server or not, finally 
write the firmware into SD card to instead the old one. After that, save the "updatePart" and 
"updateVersion" into version.json, and mark the update status on 4080 block of SD card to let u-
boot know it. 

startupVersioncheck.sh: This script will check if the firmware has been updated, then update the 
version of the update part in version.json, and clean the flag of update status on 4080 block of 
SD card. This script will run automatically each time the system restart. 

rollback.sh: This script is running on the ramdisk filesystem after the filesystem is updating fail. It 
gets old firmware version from version.json and then update it from server. 

 

8.2 LEDE Configuration 

Set configures as following: 

$make menuconfig 
 Network  ---> 
  File Transfer  ---> 
   <*> wget 
Libraries  ---> 

<*> libustream-openssl 

 

8.3 OTA Test case 

1. Updating u-boot 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

33 

Write update.json on server like this: 
      { 
              "updateStatus":"yes", 
             "updatePart":"u-boot", 
              "updateVersion":"0.4.0", 

} 

 Upload the u-boot image on server path: 0.4.0/<boardname>/u-boot.bin 

 Run update_ota command on device board. 

2. Updating kernel 
Set the "updatePart" to "kernel" in update.json. 
Upload the kernel image on server path: 0.4.0/<boardname>/uImage 

Run update_ota command on device board. 
3. Updating filesystem 

Set the "updatePart" to "filesystem" in update.json. 
Upload the filesystem image on server path: 0.4.0/<boardname>/rootfs.ext4 

Run update_ota command on device board. 
 

4. Updating full firmware 
Set the "updatePart" to "all" in update.json. 
Upload the full firmware image on server path: 0.4.0/<boardname>/firmware_sdcard.bin 

Run update_ota command on device board. 
 

5. Rollback test 
Kernel and filesystem can use a wrong image to upload on server and test update on 
device. 

9. 4G-LTE Modem 

9.1 Introduction 

A HuaWei E3372 USB Modem is used for the 4G network verification.  

9.2 Hardware Preparation 

Insert a USB Modem into USB slot of LS1021A-IoT board. 

9.3 LEDE Configuration 

Set configures as following: 

$make menuconfig 
 Utilities  ---> 
  <*> usb-modeswitch 

 

Kernel configuration. 

$make kernel_menuconfig 
Device Drivers  ---> 



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

34 

     [*] Network device support  ---> 
<*>   USB Network Adapters ---> 
<*>   Multi-purpose USB Networking Framework---> 

<*>   CDC Ethernet support   
<*>  CDC EEM support 
<*> CDC NCM support 

9.4 Test 4G USB modem link to the internet 

Do the following instructions to set 4G Modem up. 

1.  Set eth3 connected to network. 
 

root@LEDE:/# vi /etc/config/network 

# add the wan in network like: 

config interface 'wan' 

        option ifname 'eth3' 

        option proto 'dhcp' 

 

# save and exit 

 

2. Test 4G modem link to the internet. 

root@LEDE:/# ping www.nxp.com 

PING www.nxp.com (210.192.117.231): 56 data bytes 

64 bytes from 210.192.117.231: seq=0 ttl=52 time=60.223 ms 

64 bytes from 210.192.117.231: seq=1 ttl=52 time=95.076 ms 

64 bytes from 210.192.117.231: seq=2 ttl=52 time=89.827 ms 

64 bytes from 210.192.117.231: seq=3 ttl=52 time=84.694 ms 

64 bytes from 210.192.117.231: seq=4 ttl=52 time=68.566 ms 

64 bytes from 210.192.117.231: seq=5 ttl=52 time=89.809 ms 

 

 

10. Known Issues 

Item Description 

  



 

NXP Digital Networking 

Global Software Development 

 

 

NXP_DN_UM  Version 0.3 

 

35 

  

  

 

 



Mouser Electronics
  

Authorized Distributor
 
  

Click to View Pricing, Inventory, Delivery & Lifecycle Information:
 
 
 
 NXP:   

  LS1012ARDB-PB  LS1012ARDB  LS1012ARDB-PC

http://www.mouser.com/nxp-semiconductors
http://www.mouser.com/access/?pn=LS1012ARDB-PB
http://www.mouser.com/access/?pn=LS1012ARDB
http://www.mouser.com/access/?pn=LS1012ARDB-PC

	1. Introduction
	1.1 LEDE Introduction
	1.2 Set up Host Environment
	1.3 Rebuild LEDE Project
	1.4 LS1021A-IoT Platform
	1.4.1 Switch Settings
	1.4.2 Build SDcard Image
	1.4.3  Deployment

	1.5 LS1012ARDB Platform
	1.5.1 Switch Settings
	1.5.2 Build Image
	1.5.3  Deployment

	1.6 LS1043ARDB Platform
	1.6.1 Switch Settings
	1.6.2 Build Image
	1.6.3 Deployment

	1.7 LS1046ARDB Platform
	1.7.1 Switch Settings
	1.7.2 Build Image
	1.7.3 Deployment

	1.8 FRDM-KW41Z
	1.8.1  Introduction
	1.8.2  Firmware Download
	1.8.2.1 Firmware Introduction
	1.8.2.2 LS1021A-IoT Platform
	1.8.2.3 LS1012ARDB Platform



	2. BLE Demo
	2.1  Introduction
	2.2  Hardware Preparation
	2.2.1 LS1021A-IoT Platform
	2.2.2 LS1012ARDB Platform

	2.3 LEDE Configuration
	2.4 Test BLE connectivity
	2.4.1 LS1021A-IoT Platform
	2.4.2 LS1012ARDB Platform


	3. Thread Demo
	3.1 Introduction
	3.2 Hardware Preparation
	3.2.1 LS1021A-IoT Platform
	3.2.2 LS1012ARDB Platform

	3.3  LEDE Configuration
	3.4  Test Thread connectivity
	3.4.1 LS1021A-IoT Platform
	3.4.2 LS1012ARDB Platform


	4. NFC Demo
	4.1 Introduction
	4.2 Hardware Preparation
	4.2.1 LS1021A-IoT Platform
	4.2.2 LS1012ARDB Platform

	4.3 LEDE Configuration
	4.3.1 LS1021A-IoT Platform
	4.3.2 LS1012ARDB Platform

	4.4 Test NFC feature
	4.4.1 LS1021A-IoT Platform
	4.4.2 LS1012ARDB Platform
	4.4.3 Logs


	5. Wifi Demo
	5.1 Introduction
	5.2 Hardware Preparation
	5.3 LEDE Configuration
	5.4 Test WiFi Demo

	6. Docker Demo
	6.1 Introduction
	6.2 Hardware Preparation
	6.3 Docker test case

	7. ZigBee Scenario
	8. OTA Implementation
	8.1 Introduction
	8.2 LEDE Configuration
	8.3 OTA Test case

	9. 4G-LTE Modem
	9.1 Introduction
	9.2 Hardware Preparation
	9.3 LEDE Configuration
	9.4 Test 4G USB modem link to the internet

	10. Known Issues

