INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

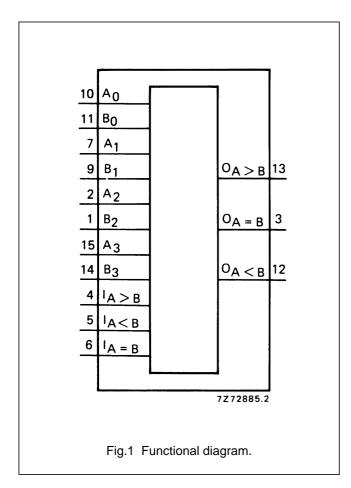
HEF4585B MSI

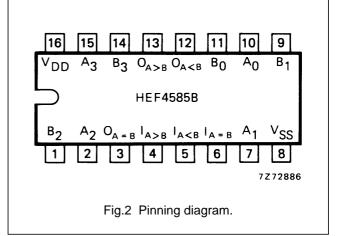
4-bit magnitude comparator

Product specification
File under Integrated Circuits, IC04

January 1995

4-bit magnitude comparator


HEF4585B MSI


DESCRIPTION

The HEF4585B is a 4-bit magnitude comparator which compares two 4-bit words (A and B), whether they are 'less than', 'equal to', or 'greater than'. Each word has four parallel inputs (A $_0$ to A $_3$ and B $_0$ to B $_3$); A $_3$ and B $_3$ being the most significant inputs. Three outputs are provided; A greater than B (O $_A$ > $_B$), A less than B (O $_A$ < $_B$) and A equal to B (O $_A$ = $_B$). Three expander inputs (I $_A$ > $_B$, I $_A$ < $_B$ and I $_A$ = $_B$) allow cascading of the devices without external gates.

For proper compare operation the expander inputs to the least significant position must be connected as follows: $I_{A=B}=I_{A>B}=HIGH, I_{A<B}=LOW.$ For words greater than 4-bits, units can be cascaded by connecting outputs $O_{A<B}$ and $O_{A=B}$ to the corresponding inputs of the next significant comparator (input $I_{A>B}$ is connected to a HIGH).

Operation is not restricted to binary codes, the devices will work with any monotonic code. The function table describes the operation of the device under all possible logic conditions.

HEF4585BP(N): 16-lead DIL; plastic (SOT38-1)

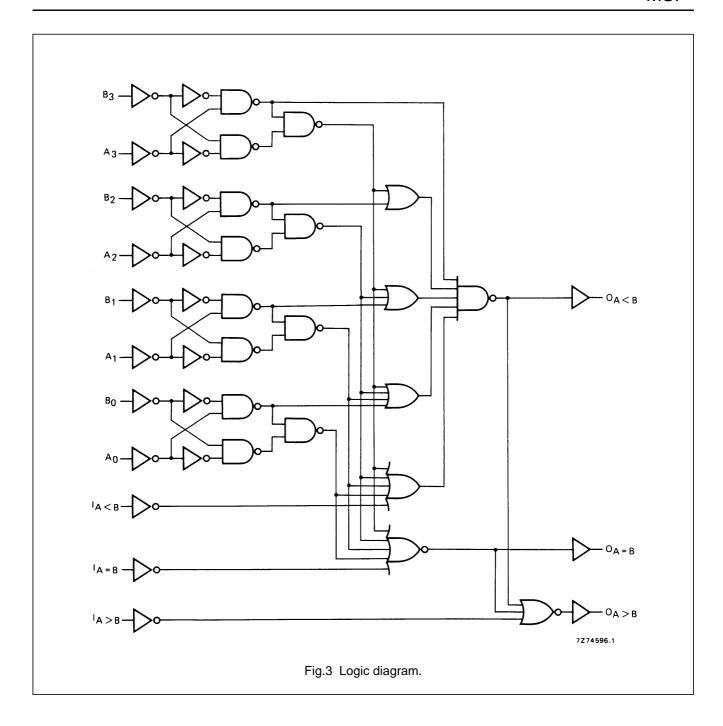
HEF4585BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4585BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

 A_0 to A_3 word A parallel inputs B_0 to B_3 word B parallel inputs $I_{A > B}$, $I_{A < B}$, $I_{A = B}$ expander inputs $O_{A > B}$ A greater than B output $O_{A < B}$ A less than B output


 $O_{A < B}$ A less than B output $O_{A = B}$ A equal to B output

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

4-bit magnitude comparator

HEF4585B MSI

Philips Semiconductors Product specification

4-bit magnitude comparator

HEF4585B MSI

FUNCTION TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A > B}	I _{A < B}	I _{A = B}	O _{A > B}	O _{A < B}	O _{A = B}
A ₃ > B ₃	Х	Х	Х	Н	Х	Х	Н	L	L
$A_3 < B_3$	Х	X	Х	Χ	X	Х	L	Н	L
$A_3 = B_3$	$A_2 > B_2$	X	Х	Н	X	Х	Н	L	L
$A_3 = B_3$	$A_2 < B_2$	X	X	Χ	X	Х	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	A ₁ > B ₁	Х	Н	Х	Х	Н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 < B_1$	X	Χ	X	Х	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	Н	X	Х	Н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	Χ	X	X	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	X	L	Н	L	L	Н
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Н	L	L	Н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Χ	Н	L	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Х	Н	Н	L	Н	Н
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	L	L	L	L	L

Notes

L = LOW state (the less positive voltage)

X = state is immaterial

The upper 11 lines describe the normal operation under all conditions that will occur in a single device or in a serial expansion scheme.

The lower 2 lines describe the operation under abnormal conditions on the cascading inputs. These conditions occur when the parallel expansion technique is used.

^{1.} H = HIGH state (the more positive voltage)

Philips Semiconductors Product specification

4-bit magnitude comparator

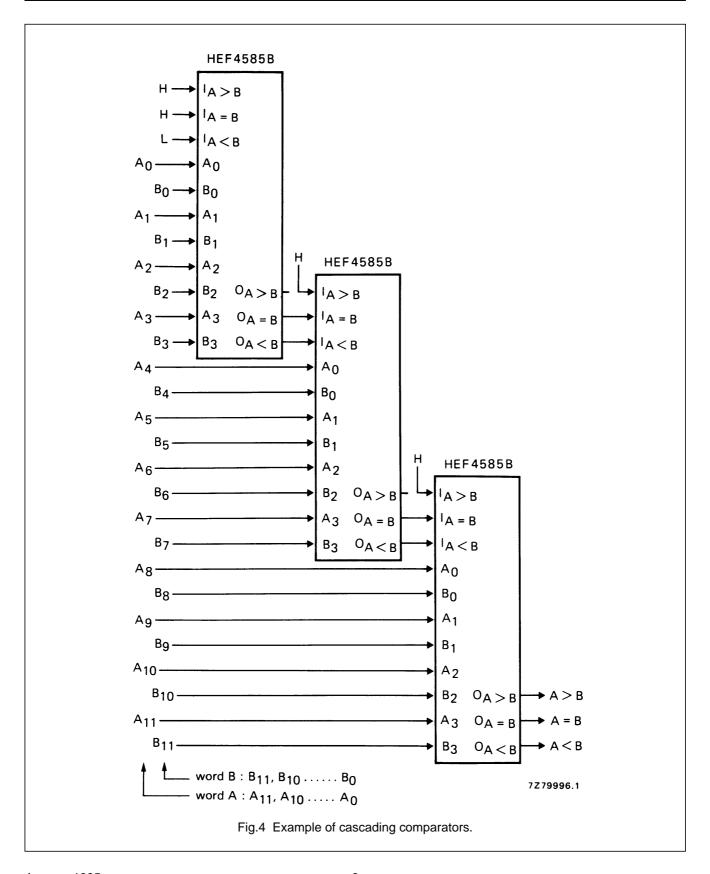
HEF4585B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$A_n, B_n \rightarrow O_n$	5		160	320	ns	133 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	65	130	ns	54 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns + (0,16 ns/pF) C _L
	5		150	300	ns	123 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	60	120	ns	49 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns + (0,16 ns/pF) C _L
$I_n \rightarrow O_n$	5		110	220	ns	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	45	90	ns	34 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
	5		120	240	ns	93 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	50	100	ns	39 ns + (0,23 ns/pF) C _L
	15		35	70	ns	27 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1250 \text{ f}_{i} + \sum (f_{o}C_{L}) \times V_{DD}^{2}$	where
dissipation per	10	5500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_i = input freq. (MHz)
package (P)	15	15 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)


APPLICATION INFORMATION

Some examples of applications for the HEF4585B are:

- Process controllers.
- Servo-motor control.

4-bit magnitude comparator

HEF4585B MSI

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

HEF4585BPN HEF4585BTD HEF4585BTD-T