VROHS

RF Power LDMOS Transistor

N-Channel Enhancement-Mode Lateral MOSFET

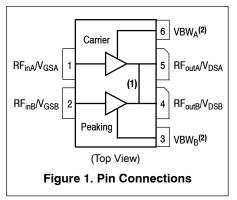
This 87 W asymmetrical Doherty RF power LDMOS transistor is designed for cellular base station applications requiring very wide instantaneous bandwidth capability covering the frequency range of 2300 to 2400 MHz.

2300 MHz

• Typical Doherty Single-Carrier W-CDMA Performance: $V_{DD} = 30$ Vdc, $I_{DQA} = 650$ mA, $V_{GSB} = 0.65$ Vdc, $P_{out} = 87$ W Avg., Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF.

Frequency	G _{ps} (dB)	η _D (%)	Output PAR (dB)	ACPR (dBc)
2300 MHz	14.7	47.0	7.8	-30.7
2350 MHz	15.1	46.4	7.6	-31.7
2400 MHz	15.2	46.5	7.5	-33.3

Features


- · Advanced high performance in-package Doherty
- Designed for wide instantaneous bandwidth applications
- Greater negative gate-source voltage range for improved Class C operation
- Able to withstand extremely high output VSWR and broadband operating conditions
- Designed for digital predistortion error correction systems

A3T23H450W23SR6

2300–2400 MHz, 87 W AVG., 30 V AIRFAST RF POWER LDMOS TRANSISTOR

- 1. Pin connections 4 and 5 are DC coupled and RF independent.
- 2. Device can operate with V_{DD} current supplied through pin 3 and pin 6.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
CW Operation @ $T_C = 25^{\circ}C$ when DC current is fed through pin 3 and pin 6 Derate above 25°C	CW	166 1.0	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 78°C, 87 W Avg., W-CDMA, 30 Vdc, I _{DQA} = 650 mA, V _{GSB} = 0.65 Vdc, 2350 MHz	R _{θJC}	0.15	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	2
Charge Device Model (per JS-002-2014)	C3

Table 4. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	—	_	5	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	—	_	1	μAdc
On Characteristics - Side A, Carrier					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 180 μAdc)	V _{GS(th)}	1.3	1.8	2.3	Vdc
Gate Quiescent Voltage (V _{DD} = 30 Vdc, I _{DA} = 650 mAdc, Measured in Functional Test)	V _{GSA(Q)}	2.2	2.6	3.0	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.8 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc
On Characteristics - Side B, Peaking					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 360 μAdc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.6 Adc)	V _{DS(on)}	0.1	0.15	0.3	Vdc

1. Continuous use at maximum temperature will affect MTTF.

2. MTTF calculator available at http://www.nxp.com/RF/calculators.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

4. Side A and Side B are tied together for these measurements.

(continued)

A3T23H450W23SR6

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit

Functional Tests ^(1,2,3) (In NXP Doherty Test Fixture, 50 ohm system) V_{DD} = 30 Vdc, I_{DQA} = 650 mA, V_{GSB} = 0.65 Vdc, P_{out} = 87 W Avg., f = 2300 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	14.0	14.7	17.0	dB
Drain Efficiency	η _D	44.2	47.0	—	%
Pout @ 3 dB Compression Point, CW	P3dB	56.4	57.4	—	dBm
Adjacent Channel Power Ratio	ACPR	—	-30.7	-27.5	dBc

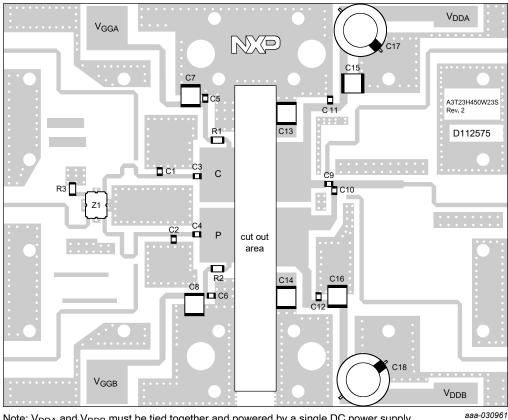
Load Mismatch ⁽³⁾ (In NXP Doherty Test Fixture, 50 ohm system) I_{DQA} = 650 mA, V_{GSB} = 0.65 Vdc, f = 2350 MHz, 12 µsec(on), 10% Duty Cycle

VSWR 10:1 at 32 Vdc, 501 W Pulsed CW Output Power	No Device Degradation
(3 dB Input Overdrive from 301 W Pulsed CW Rated Power)	

Typical Performance ⁽³⁾ (In NXP Doherty Test Fixture, 50 ohm system) V_{DD} = 30 Vdc, I_{DQA} = 650 mA, V_{GSB} = 0.65 Vdc, 2300–2400 MHz Bandwidth

Pout @ 3 dB Compression Point (4)	P3dB	—	562	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 2300–2400 MHz bandwidth)	Φ	_	-21	_	o
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		240		MHz
Gain Flatness in 100 MHz Bandwidth @ P _{out} = 87 W Avg.	G _F	_	0.25	—	dB
Gain Variation over Temperature (-40°C to +85°C)	ΔG	_	0.004	_	dB/°C
Output Power Variation over Temperature (-40°C to +85°C)	∆P1dB		0.004		dB/°C

Table 5. Ordering Information


Device	Tape and Reel Information	Package
A3T23H450W23SR6	R6 Suffix = 150 Units, 56 mm Tape Width, 13-inch Reel	ACP-1230S-4L2S

1. V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

2. Part internally matched both on input and output.

3. Measurements made with device in an asymmetrical Doherty configuration.

4. P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

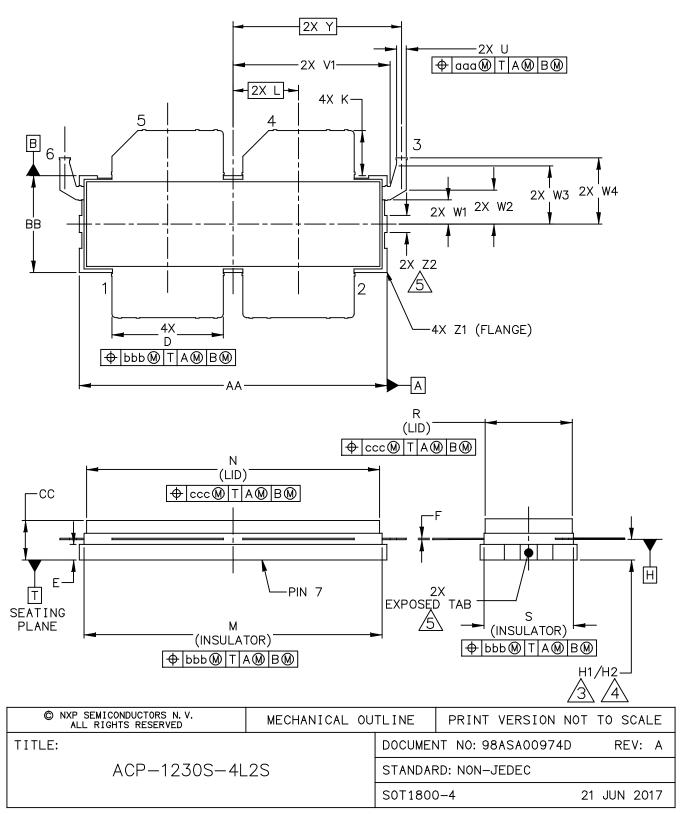

Note: V_{DDA} and V_{DDB} must be tied together and powered by a single DC power supply.

Figure 2. A3T23H450W23SR6 Test Circuit Component Layout

Table 6. A3T23H450W23SR6 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	1.2 pF Chip Capacitor	ATC600F1R2BT250XT	ATC
C2	0.8 pF Chip Capacitor	ATC600F0R8BT250XT	ATC
C3, C4, C5, C6, C11, C12	8.2 pF Chip Capacitor	ATC600F8R2BT250XT	ATC
C7, C8, C13, C14, C15, C16	10 μF Chip Capacitor	C5750X7S2A106M230KB	TDK
C9	3.0 pF Chip Capacitor	ATC600F3R0BT250XT	ATC
C10	5.1 pF Chip Capacitor	ATC600F5R1BT250XT	ATC
C17, C18	470 μ F, 63 V Electrolytic Capacitor	MCGPR63V477M13X26	Multicomp
R1, R2	3.3 Ω, 1/8 W Chip Resistor	CRCW08053R30FKEA	Vishay
R3	50 Ω , 30 W Termination Resistor	RFP-375375N6Z50-2	Anaren
Z1	2300–2700 MHz Band, 90°, 2 dB Hybrid Coupler	X3C25P1-02S	Anaren
PCB	Rogers RO4350B, 0.020", $\varepsilon_r = 3.66$	D112575	MTL

PACKAGE DIMENSIONS

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH

3. DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

A. TOLERANCE OF DIMENSION H2 IS TENTATIVE.

- 5. THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.
- 6. DATUM H IS LOCATED AT THE BOTTOM OF THE LEAD FRAME AND IS COINCIDENT WITH THE LEAD WHERE THE LEADS EXIT THE PLASTIC BODY.
- 7. DIMENSIONS M AND S DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .012 INCH (0.30 MM) PER SIDE. DIMENSIONS M AND S DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 8. DIMENSIONS D, U AND K DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .010 INCH (0.25 MM) TOTAL IN EXCESS OF THE D, U AND K DIMENSION AT MAXIMUM MATERIAL CONDITION.

	INC	HES	MIL	LIMETERS		IN	ICHES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	МАХ
AA	1.265	1.275	32.13	32.39	S	.365	.375	9.27	9.53
BB	.395	.405	10.03	10.29	U	.035	.045	0.89	1.14
CC	.160	.190	4.06	4.83	V1	.640	.655	16.26	16.64
D	.455	.465	11.56	11.81	W1	.105	.115	2.67	2.92
Е	.062	.069	1.57	1.75	W2	.135	.145	3.43	3.68
F	.004	.007	0.10	0.18	W3	.245	.255	6.22	6.48
H1	.082	.090	2.08	2.29	W4	.265	.281	6.73	7.14
H2	.078	.094	1.98	2.39	Y	0.695 BSC		17.65 BSC	
К	.175	.195	4.45	4.95	Z1	R.000	R.040	R0.00	R1.02
L	0.270) BSC	6	.86 BSC	Z2	.060	.100	1.52	2.54
М	1.219	1.241	30.96	31.52	aaa		015	0.38	
N	1.218	1.242	30.94	31.55	bbb		D10	0.2	25
R	.365	.375	9.27	9.53	ccc		020	0.	51
(NDUCTORS N.V. IS RESERVED		MECHANICA	L OUT	LINE	PRINT VEF	SION NOT	TO SCALE
TITLE:						DOCUME	NT NO: 98ASA	00974D	REV: A
ACP-1230S-4L2S STANDARD					RD: NON-JEDE	C			
					Γ	SOT1800	-4	2	1 JUN 2017

9. DATUM A AND B TO BE DETERMINED AT DATUM T.

A3T23H450W23SR6

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- .s2p File

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2018	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: A3T23H450W23SR6