74LVC244A; 74LVCH244A

Octal buffer/line driver; 3-state

Rev. 8 — 26 June 2013

Product data sheet

General description 1.

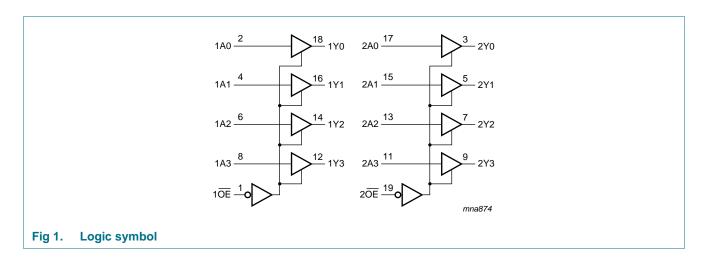
The 74LVC244A; 74LVCH244A is an octal non-inverting buffer/line driver with 3-state outputs. The 3-state outputs are controlled by the output enable inputs 1OE and 2OE. A HIGH on nOE causes the outputs to assume a high-impedance OFF-state. Schmitt-trigger action at all inputs makes the circuit highly tolerant for slower input rise and fall times.

Inputs can be driven from either 3.3 V or 5.0 V devices. In 3-state operation, outputs can handle 5 V. These features allow the use of these devices as translators in a mixed 3.3 V and 5 V environment.

The 74LVCH244A bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs.

Features and benefits 2.

- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low-power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- High-impedance when V_{CC} = 0 V
- Bus hold on all data inputs (74LVCH244A only)
- Complies with JEDEC standard:
 - ◆ JESD8-7A (1.65 V to 1.95 V)
 - ◆ JESD8-5A (2.3 V to 2.7 V)
 - ◆ JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C



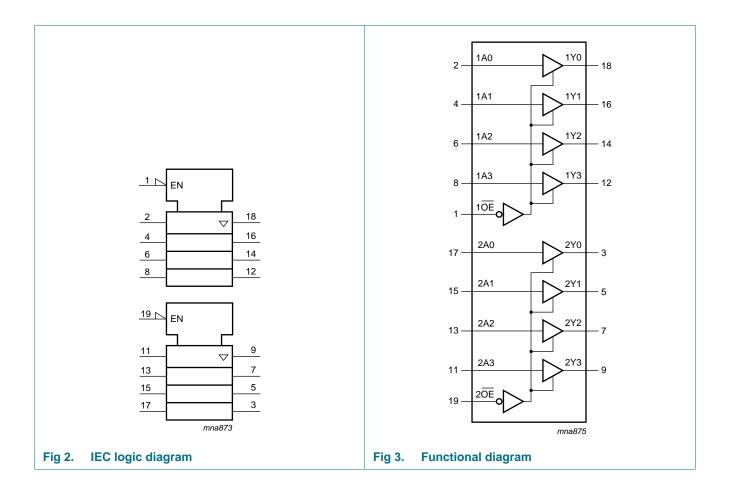
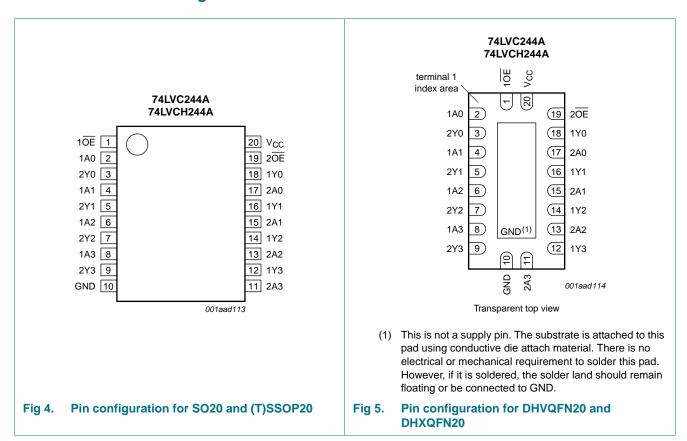

3. Ordering information

Table 1. Ordering information

Type number	Package				
	Temperature range	Name	Description	Version	
74LVC244AD	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1	
74LVCH244AD			body width 7.5 mm		
74LVC244ADB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads;	SOT339-1	
74LVCH244ADB			body width 5.3 mm		
74LVC244APW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads;	SOT360-1	
74LVCH244APW			body width 4.4 mm		
74LVC244ABQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced	SOT764-1	
74LVCH244ABQ			very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm		
74LVC244ABX	–40 °C to +125 °C	DHXQFN20	plastic dual in-line compatible thermal enhanced	SOT1045-2	
74LVCH244ABX	_		extremely thin quad flat package; no leads; 20 terminals; body $4.5 \times 2.5 \times 0.5$ mm		


4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1 OE , 2 OE	1, 19	output enable input (active low)
1A0, 1A1, 1A2, 1A3	2, 4, 6, 8	data input
2Y0, 2Y1, 2Y2, 2Y3	3, 5, 7, 9	data output
GND	10	ground (0 V)
2A0, 2A1, 2A2, 2A3	17, 15, 13, 11	data input
1Y0, 1Y1, 1Y2, 1Y3,	18, 16, 14, 12	data output
V _{CC}	20	supply voltage

6. Functional description

Table 3. Function table [1]

Control	Input	Output
nOE	nAn	nYn
L	L	L
L	Н	Н
Н	X	Z

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
V_{I}	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0 V$	-	±50	mA
V _O	output voltage	output HIGH or LOW	<u>[2]</u> –0.5	$V_{CC} + 0.5$	V
		output 3-state	^[2] -0.5	+6.5	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		- 65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3] _	500	mW

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^[3] For SO20 packages: above 70 °C derate linearly with 8 mW/K.
For (T)SSOP20 packages: above 60 °C derate linearly with 5.5 mW/K.
For DHVQFN20 and DHXQFN20 packages: above 60 °C derate linearly with 4.5 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	3.6	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW	0	-	V_{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 1.2 \text{ V to } 2.7 \text{ V}$	0	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	85 °C	–40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V _{IH}	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	0.65 × V _{CC}	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
V _{IL}	LOW-level	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	$I_O = -100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$	V _{CC} - 0.2	-	-	V _{CC} - 0.3	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	1.05	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8	-	-	1.65	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	2.05	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	٧
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2	-	-	2.0	-	٧
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	$I_O = 100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$	-	-	0.2	-	0.3	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	-	0.65	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	-	0.8	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	-	0.6	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.8	V

Table 6. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40	0 °C to +85	°C	–40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
I _I	input leakage current	V _I = 5.5 V or GND; V _{CC} = 3.6 V	[2]	-	±0.1	±5	-	±20	μА
I _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 5.5 \text{ V or GND}$; $V_{CC} = 3.6 \text{ V}$	[2]	-	±0.1	±5	-	±20	μА
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0.0 \text{ V}$		-	±0.1	±10	-	±20	μА
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 3.6 \text{ V}$		-	0.1	10	-	40	μА
ΔI_{CC}	additional supply current	per input pin; $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		-	5	500	-	5000	μΑ
Cı	input capacitance			-	4.0	-	-	-	pF
I _{BHL}	bus hold	$V_{CC} = 1.65 \text{ V}; V_I = 0.58 \text{ V}$	[3][4]	10	-	-	10	-	μΑ
	LOW current	$V_{CC} = 2.3 \text{ V}; V_I = 0.7 \text{ V}$		30	-	-	25	-	μΑ
		$V_{CC} = 3.0 \text{ V}; V_I = 0.8 \text{ V}$		75	-	-	60	-	μΑ
I _{BHH}	bus hold	$V_{CC} = 1.65 \text{ V}; V_I = 1.07 \text{ V}$	[3][4]	-10	-	-	-10	-	μΑ
	HIGH current	$V_{CC} = 2.3 \text{ V}; V_I = 1.7 \text{ V}$		-30	-	-	-25	-	μΑ
	Carrent	$V_{CC} = 3.0 \text{ V}; V_I = 2.0 \text{ V}$		-75	-	-	-60	-	μΑ
I _{BHLO}	bus hold	V _{CC} = 1.95 V	[3][5]	200	-	-	200	-	μΑ
	LOW overdrive	$V_{CC} = 2.7 \text{ V}$		300	-	-	300	-	μΑ
	current	$V_{CC} = 3.6 \text{ V}$		500	-	-	500	-	μΑ
I _{BHHO}	bus hold	V _{CC} = 1.95 V	[3][5]	-200	-	-	-200	-	μΑ
	HIGH	V _{CC} = 2.7 V		-300	-	-	-300	-	μΑ
	overdrive current	V _{CC} = 3.6 V		-500	-	-	-500	-	μΑ

^[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

^[2] The bus hold circuit is switched off when $V_{I} > V_{CC}$ allowing 5.5 V on the input terminal.

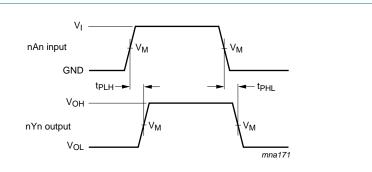
^[3] Valid for data inputs of bus hold parts only (74LVCH244A). Note that control inputs do not have a bus hold circuit.

^[4] The specified sustaining current at the data input holds the input below the specified V_I level.

^[5] The specified overdrive current at the data input forces the data input to the opposite input state.

10. Dynamic characteristics

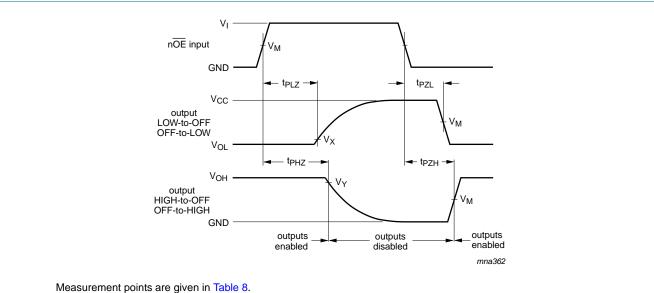
Table 7. **Dynamic characteristics**


Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to	Unit	
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation	nAn to nYn; see Figure 6	[2]						
	delay	V _{CC} = 1.2 V		-	17.0	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		1.5	6.4	13.7	1.5	15.8	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.0	3.4	7.1	1.0	8.2	ns
		V _{CC} = 2.7 V		1.5	3.4	6.9	1.5	9.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.5	2.9	5.9	1.5	7.5	ns
t _{en} enable time		nOE to nYn; see Figure 7	<u>[2]</u>						
		V _{CC} = 1.2 V		-	24.0	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		1.5	7.0	17.3	1.5	20.0	ns
		V _{CC} = 2.3 V to 2.7 V		1.5	3.9	9.5	1.5	11.0	ns
		V _{CC} = 2.7 V		1.5	4.1	8.6	1.5	11.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.2	7.6	1.0	9.5	ns
t _{dis}	disable time	nOE to nYn; see Figure 7	[2]						
		V _{CC} = 1.2 V		-	9.0	-	-	-	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.2	4.5	9.8	2.2	11.3	ns
		V_{CC} = 2.3 V to 2.7 V		0.5	3.6	5.5	0.5	6.4	ns
		V _{CC} = 2.7 V		1.5	3.3	6.8	1.5	8.5	ns
		V _{CC} = 3.0 V to 3.6 V		1.5	3.1	5.8	1.5	7.5	ns
t _{sk(o)}	output skew time		[3]	-	-	1.0	-	1.5	ns
C_{PD}	power	per input; $V_I = GND$ to V_{CC}	<u>[4]</u>						
	dissipation	V _{CC} = 1.65 V to 1.95 V		-	6.4	-	-	-	pF
	capacitance	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	9.6	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V		-	12.5	-	-	-	pF

- [1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
 - t_{en} is the same as t_{PZL} and t_{PZH} .
 - t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).
 - $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$
 - f_i = input frequency in MHz; f_o = output frequency in MHz
 - C_L = output load capacitance in pF
 - V_{CC} = supply voltage in Volts
 - N = number of inputs switching
 - $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

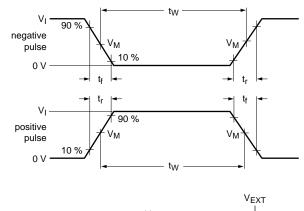
74LVC LVCH244A


11. AC waveforms

Measurement points are given in Table 8.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 6. The input (nAn) to output (nYn) propagation delays


Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

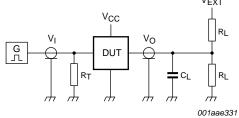

Fig 7. 3-state enable and disable times.

Table 8. **Measurement points**

Supply voltage	Input		Output								
V _{CC}	VI	V _M	V _M	V _X	V _Y						
1.2 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	$V_{OH}-0.15\ V$						
1.65 V to 1.95 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V						
2.3 V to 2.7 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V						
2.7 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$						
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	$V_{OH}-0.3\ V$						

74LVC LVCH244A

Test data is given in Table 9.

Definitions for test circuit:

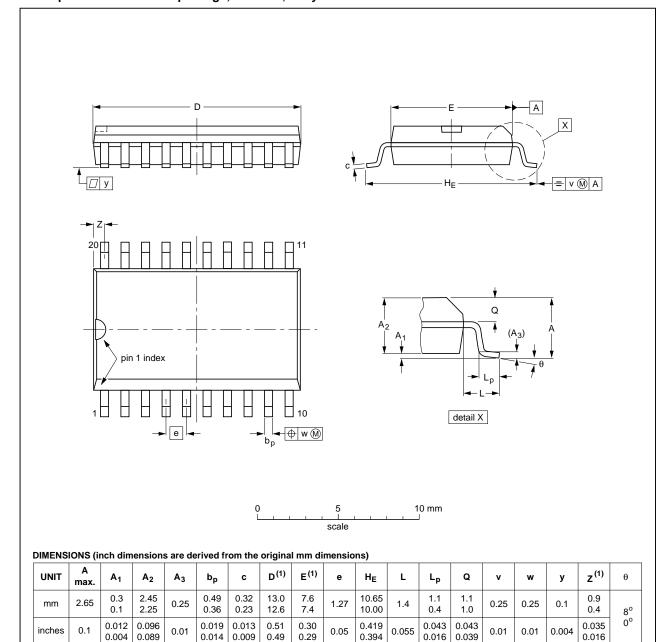
 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig 8. Test circuit for measuring switching times


Table 9. Test data

Supply voltage	Input		Load		V _{EXT}	V _{EXT}				
	VI	t _r , t _f	CL	R_L	t_{PLH}, t_{PHL}	t_{PLZ}, t_{PZL}	t_{PHZ}, t_{PZH}			
1.2 V	V_{CC}	≤ 2 ns	30 pF	1 k Ω	open	$2\times V_{CC}$	GND			
1.65 V to 1.95 V	V_{CC}	≤ 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND			
2.3 V to 2.7 V	V_{CC}	≤ 2 ns	30 pF	500Ω	open	$2\times V_{CC}$	GND			
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	$2\times V_{CC}$	GND			
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	$2\times V_{CC}$	GND			

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

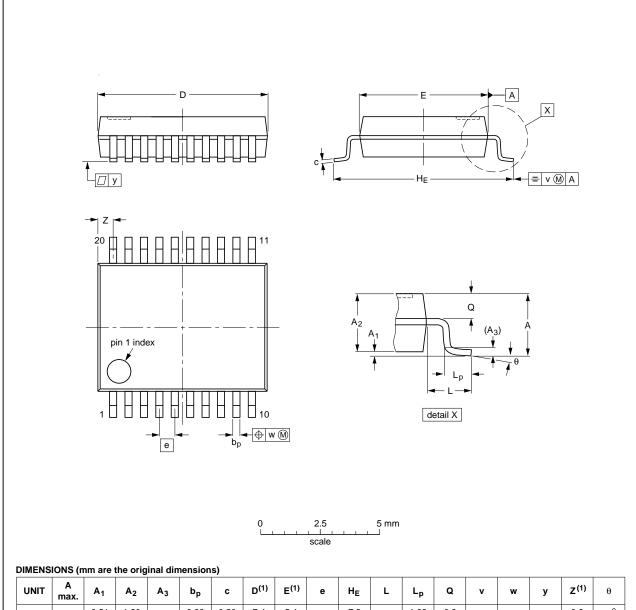
SOT163-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013				99-12-27 03-02-19

Fig 9. Package outline SOT163-1 (SO20)


74LVC_LVCH244A

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

	(.					٠-,												
UNI	. A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

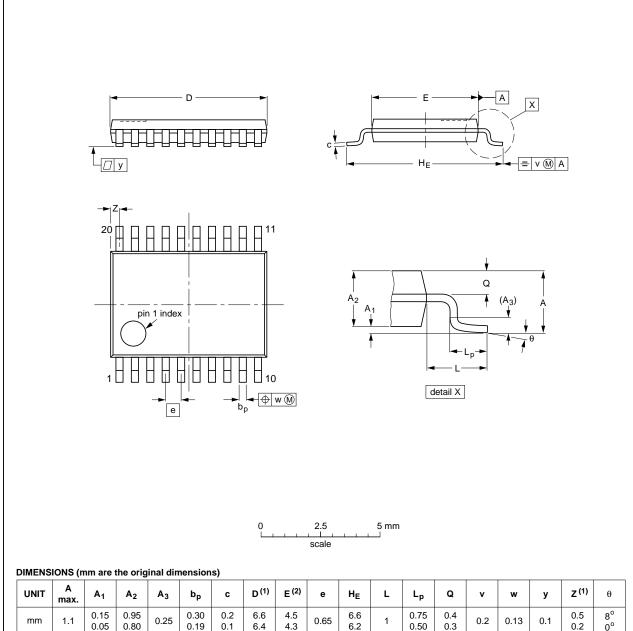

OUTLINE	REFERENCES			EUROPEAN	IOOUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT339-1		MO-150				99-12-27 03-02-19

Fig 10. Package outline SOT339-1 (SSOP20)

74LVC_LVCH244A

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

VERSION IEC JEDEC JEITA	ISSUE DATE
	PROJECTION
SOT360-1 MO-153	99-12-27 03-02-19

Fig 11. Package outline SOT360-1 (TSSOP20)

74LVC_LVCH244A

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

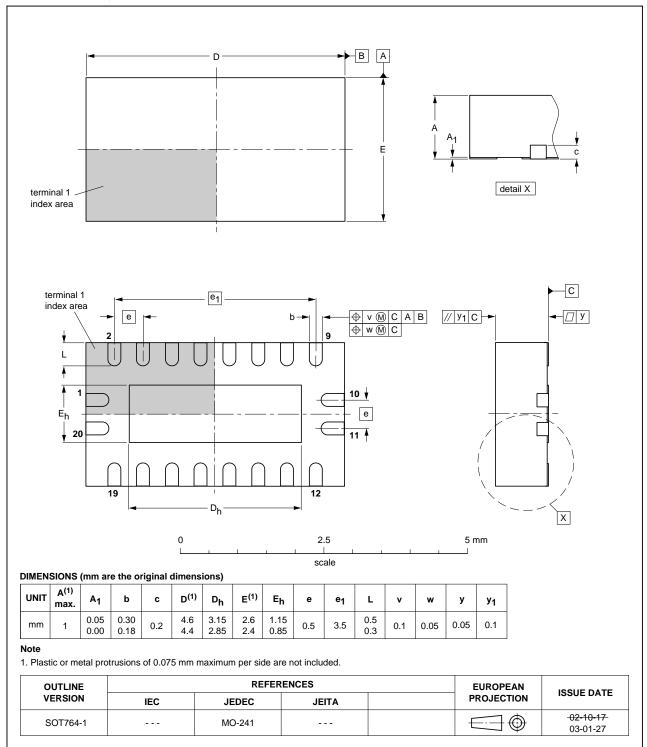


Fig 12. Package outline SOT764-1 (DHVQFN20)

74LVC_LVCH244A All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

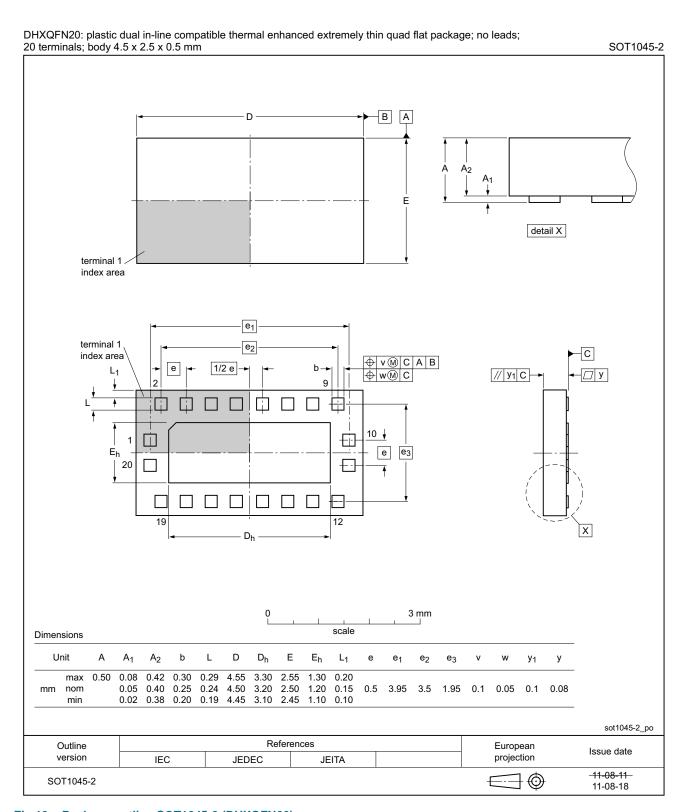


Fig 13. Package outline SOT1045-2 (DHXQFN20)

74LVC_LVCH244A

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC_LVCH244A v.8	20130626	Product data sheet	-	74LVC_LVCH244A v.7
Modifications:	71	numbers 74LVC244ABX aged to DHXQFN20 (SOT		BX DHXQFN20U (SOT1045-1)
74LVC_LVCH244A v.7	20111122	Product data sheet	-	74LVC_LVCH244A v.6
Modifications:		at of this document has b of NXP Semiconductors		comply with the new identity
	 Legal text 	s have been adapted to	the new company	name where appropriate.
	• <u>Table 4</u> , <u>Table 4</u> , ranges.	able 5, Table 6, Table 7,	Table 8 and Table	9: values added for lower voltage
74LVC_LVCH244A v.6	20090813	Product data sheet	-	74LVC_LVCH244A v.5
74LVC_LVCH244A v.5	20090709	Product data sheet	-	74LVC_LVCH244A v.4
74LVC_LVCH244A v.4	20031030	Product specification	-	74LVC_LVCH244A v.3
74LVC_LVCH244A v.3	20030520	Product specification	-	74LVC_H244A v.2
74LVC_H244A v.2	19980520	Product specification	-	74LVC244A_74LVCH244A v.1
74LVC244A_74LVCH244A v.1	19960906	Product specification	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC_LVCH244A

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

74LVC244A; 74LVCH244A

Octal buffer/line driver; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74LVC244A; 74LVCH244A

Octal buffer/line driver; 3-state

17. Contents

1	General description 1
2	Features and benefits
3	Ordering information
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 8
11	AC waveforms 9
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks
16	Contact information
17	Contents

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

 74LVC244ABQ,115
 74LVC244AD,112
 74LVC244ADB,112
 74LVC244ADB,118
 74LVC244ADB,118
 74LVC244ADB,118
 74LVCH244ADB,112
 74LVCH244ADB,112
 74LVCH244ADB,112
 74LVCH244ADB,113
 74LVCH244ADW,112
 74LVCH244ADW,113
 74LVCH244ADW,113
 74LVCH244ADW,113
 74LVCH244ADW,115

 74LVCH244ABX,115

NXP:

<u>74LVC244ABQ</u> <u>74LVC244ADB-T</u> <u>74LVC244APW</u> <u>74LVCH244ABQ-G</u> <u>74LVCH244AD</u> <u>74LVCH244ADB-T</u> <u>74LVCH24ADB-T</u> <u>74LVCH24ADB-T</u>