Nurve Networks LLC Version 1.0

'-m-\- "-/mar;_, =icISIUISIS

T EXF'LDRINEi

THE CHAMELEON AVR 8-BiT”’

FAR

USER MANUAL AND PRI:IERAMMINE GuiDE aYaYar.
_—- -“f-:-‘k e o/

W N AN / \ / \ =
; / - 1‘\ \ x_, / |

mu\ y/ \r—>

3 s’

T

Andre’ LaMothe

www.xgamestation.com

CHAMELEON™ AVR 8-Bit User Manual v1.0
“Exploring the CHAMELEON AVR 8-Bit — A Guide to Programming the CHAMELEON AVR 8-Bit System”

Copyright © 2009 Nurve Networks LLC

Author
Andre’ LaMothe

Editor/Technical Reviewer
The “Collective”

Printing
0001

ISBN
Pending

All rights reserved. No part of this user manual shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the user of the information contained herein. Although every precaution has been taken in
the preparation of this user manual, the publisher and authors assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein.

Trademarks

All terms mentioned in this user manual that are known to be trademarks or service marks have been appropriately
capitalized. Nurve Networks LLC cannot attest to the accuracy of this information. Use of a term in this user manual should
not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this user manual as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor any
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this user
manual.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

eBook License

This electronic user manual may be printed for personal use and (1) copy may be made for archival purposes, but may not be
distributed by any means whatsoever, sold, resold, in any form, in whole, or in parts. Additionally, the contents of the DVD
this electronic user manual came on relating to the design, development, imagery, or any and all related subject matter
pertaining to the CHAMELEON™ systems are copyrighted as well and may not be distributed in any way whatsoever in
whole or in part. Individual programs are copyrighted by their respective owners and may require separate licensing.

NURVE NETWORKS LLC, . END-USER LICENSE AGREEMENT FOR CHAMELEON AVR HARDWARE, SOFTWARE , EBOOKS, AND USER MANUALS

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PRODUCT. IT CONTAINS SOFTWARE, THE USE OF
WHICH IS LICENSED BY NURVE NETWORKS LLC, INC., TO ITS CUSTOMERS FOR THEIR USE ONLY AS SET FORTH BELOW. IF YOU DO NOT AGREE TO THE
TERMS AND CONDITIONS OF THIS AGREEMENT, DO NOT USE THE SOFTWARE OR HARDWARE. USING ANY PART OF THE SOFTWARE OR HARDWARE
INDICATES THAT YOU ACCEPT THESE TERMS.

GRANT OF LICENSE: NURVE NETWORKS LLC (the "Licensor") grants to you this personal, limited, non-exclusive, non-transferable, non-assignable license solely to use in a
single copy of the Licensed Works on a single computer for use by a single concurrent user only, and solely provided that you adhere to all of the terms and conditions of this
Agreement. The foregoing is an express limited use license and not an assignment, sale, or other transfer of the Licensed Works or any Intellectual Property Rights of Licensor.

ASSENT: By opening the files and or packaging containing this software and or hardware, you agree that this Agreement is a legally binding and valid contract, agree to abide by
the intellectual property laws and all of the terms and conditions of this Agreement, and further agree to take all necessary steps to ensure that the terms and conditions of this
Agreement are not violated by any person or entity under your control or in your service.

OWNERSHIP OF SOFTWARE AND HARDWARE: The Licensor and/or its affiliates or subsidiaries own certain rights that may exist from time to time in this or any other
jurisdiction, whether foreign or domestic, under patent law, copyright law, publicity rights law, moral rights law, trade secret law, trademark law, unfair competition law or other
similar protections, regardless of whether or not such rights or protections are registered or perfected (the "Intellectual Property Rights"), in the computer software and hardware,
together with any related documentation (including design, systems and user) and other materials for use in connection with such computer software and hardware in this package
(collectively, the "Licensed Works"). ALL INTELLECTUAL PROPERTY RIGHTS IN AND TO THE LICENSED WORKS ARE AND SHALL REMAIN IN LICENSOR.

RESTRICTIONS:

(a) You are expressly prohibited from copying, modifying, merging, selling, leasing, redistributing, assigning, or transferring in any matter, Licensed Works or any portion
thereof.

(b) You may make a single copy of software materials within the package or otherwise related to Licensed Works only as required for backup purposes.

(¢) You are also expressly prohibited from reverse engineering, decompiling, translating, disassembling, deciphering, decrypting, or otherwise attempting to discover the source
code of the Licensed Works as the Licensed Works contain proprietary material of Licensor. You may not otherwise modify, alter, adapt, port, or merge the Licensed Works.
(d) You may not remove, alter, deface, overprint or otherwise obscure Licensor patent, trademark, service mark or copyright notices.

(e) You agree that the Licensed Works will not be shipped, transferred or exported into any other country, or used in any manner prohibited by any government agency or any
export laws, restrictions or regulations.

(f) You may not publish or distribute in any form of electronic or printed communication the materials within or otherwise related to Licensed Works, including but not limited to
the object code, documentation, help files, examples, and benchmarks.

TERM: This Agreement is effective until terminated. You may terminate this Agreement at any time by uninstalling the Licensed Works and destroying all copies of the Licensed
Works both HARDWARE and SOFTWARE. Upon any termination, you agree to uninstall the Licensed Works and return or destroy all copies of the Licensed Works, any
accompanying documentation, and all other associated materials.

WARRANTIES AND DISCLAIMER: EXCEPT AS EXPRESSLY PROVIDED OTHERWISE IN A WRITTEN AGREEMENT BETWEEN LICENSOR AND YOU, THE
LICENSED WORKS ARE NOW PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. WITHOUT
LIMITING THE FOREGOING, LICENSOR MAKES NO WARRANTY THAT (i) THE LICENSED WORKS WILL MEET YOUR REQUIREMENTS, (ii) THE USE OF THE
LICENSED WORKS WILL BE UNINTERRUPTED, TIMELY, SECURE, OR ERROR-FREE, (iii) THE RESULTS THAT MAY BE OBTAINED FROM THE USE OF THE
LICENSED WORKS WILL BE ACCURATE OR RELIABLE, (iv) THE QUALITY OF THE LICENSED WORKS WILL MEET YOUR EXPECTATIONS, (v) ANY ERRORS
IN THE LICENSED WORKS WILL BE CORRECTED, AND/OR (vi) YOU MAY USE, PRACTICE, EXECUTE, OR ACCESS THE LICENSED WORKS WITHOUT
VIOLATING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. IF
CALIFORNIA LAW IS NOT HELD TO APPLY TO THIS AGREEMENT FOR ANY REASON, THEN IN JURISDICTIONS WHERE WARRANTIES, GUARANTEES,
REPRESENTATIONS, AND/OR CONDITIONS OF ANY TYPE MAY NOT BE DISCLAIMED, ANY SUCH WARRANTY, GUARANTEE, REPRESENATION AND/OR
WARRANTY IS: (1) HEREBY LIMITED TO THE PERIOD OF EITHER (A) Five (5) DAYS FROM THE DATE OF OPENING THE PACKAGE CONTAINING THE
LICENSED WORKS OR (B) THE SHORTEST PERIOD ALLOWED BY LAW IN THE APPLICABLE JURISDICTION IF A FIVE (5) DAY LIMITATION WOULD BE
UNENFORCEABLE; AND (2) LICENSOR'S SOLE LIABILITY FOR ANY BREACH OF ANY SUCH WARRANTY, GUARANTEE, REPRESENTATION, AND/OR
CONDITION SHALL BE TO PROVIDE YOU WITH A NEW COPY OF THE LICENSED WORKS. IN NO EVENT SHALL LICENSOR OR ITS SUPPLIERS BE LIABLE
TO YOU OR ANY THIRD PARTY FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER, INCLUDING, WITHOUT LIMITATION, THOSE RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT LICENSOR HAD
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OF
THE LICENSED WORKS. SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF
ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

SEVERABILITY: In the event any provision of this License Agreement is found to be invalid, illegal or unenforceable, the validity, legality and enforceability of any of the
remaining provisions shall not in any way be affected or impaired and a valid, legal and enforceable provision of similar intent and economic impact shall be substituted therefore.

ENTIRE AGREEMENT: This License Agreement sets forth the entire understanding and agreement between you and NURVE NETWORKS LLC, supersedes all prior
agreements, whether written or oral, with respect to the Software, and may be amended only in a writing signed by both parties.

NURVE NETWORKS LLC
12724 Rush Creek Lane
Austin, TX 78732
support@ nurve.net
www.xgamestation.com

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

This document is valid with the following hardware, software and firmware versions:
e CHAMELEON AVR 8-Bit Board Revision A. or greater.
e Atmel AVR Studio 4.14 or greater.
e Arduino Toolchain 0017 or greater for Windows/Linux/Mac OS X.
e Propeller IDE 1.26 or greater.

The information herein will usually apply to newer versions but may not apply to older versions. Please contact Nurve
Networks LLC for any questions you may have.

Visit www.xgamestation.com & www.chameleon-dev.com for downloads, support and access to the Chameleon user
community and more!

For technical support, sales, general questions, share feedback, please contact Nurve Networks LLC at:

support@nurve.net / nurve_help@yahoo.com

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

“Exploring the CHAMELEON AVR 8-Bit”

User Manual and Programming Guide

LICENSING, TERMS & CONDITIONSceeiiiiiiiiissmmss s nsssssssssssns s s ssmm s s s e smmmnnn s n s 3
VERSION & SUPPORT/WEB SITE........iiiiiiiiiimmss s innsssisssssss s s sssssss s s s sssmmss s s s s snnsnnns 4
“EXPLORING THE CHAMELEON AVR 8-BIT” USER MANUAL AND PROGRAMMING GUIDE5
0.0 INTRODUCTION AND ORIGINS......cooii i sssssssmsss s s smss s e smmmn s s s e e n s nnan 11
1.0 ARCHITECTURAL OVERVIEWoiimminririsnssssss s ssssssssms s s s s s ssmmn s s s s s s e s s s snssmnnns 13
1.1 Package Contents 15
1.2 Chameleon AVR “Quick Start” Demo 16

FATSE TRINES FITSE... c.eeeiiiieiiieitee ettt ettt e sat e s et e sttt e et e bt e bt e e sab e e sab et eabe e e nbt e e sateesabeesabeeenbeeenaseesaneenane 16

PLAYING CTate-Tt]...c..ueiiiiiiiieeiee ettt ettt e ebt e s et e sab et et e e bt e sbt e e sab et sab et eabe e e nbteesateesabeesabeeenbeeenuneesaneenane 17
1.3 The Atmel Mega AVR328P Chip 19
1.3 The Parallax Propeller Chip 24

1.31 Propeller Core (COG) VIide0 HATAWATIEc.ueiiiiiiiiieeeiiiie ettt eetee ettt ettt e e ettt e e ettt e e s et eeessbteeesnaeeesensaeeesanseeesenneeesennes 26
1.4. System Startup and Reset Details 26
PART | - HARDWARE DESIGN PRIMER ... sss s s s s smmnnns 26
2.0 5.0V & 3.3V POWER SUPPLIEScoi i irinsisssssss s sssssssss s s s s ssmmss s s s s snssnnes 29
B3 0 1 S o I 07 | =105 U O 29
4.0 ATMEL 6-PIN ISP PROGRAMMING PORTmiiiiiiiiiinnmmsnssrssssssssssmssss s s s s ssssssmssss s s sssssnses 30
4.1 AVR ISP Programming Port 30
5.0 SERIAL USB UART PROGRAMMING PORTcoooiiiiiiiiiinemmmnenrrsnsssssssssss s s sssssssss s s s s nssnnssas 31
6.0 USB SERIAL UART ... nnnssssssmss s s s e m s s s e mmmnn e e e e e e e ammmnnn e s e e e nnnnnnan 33
7.0 ATMEL AVR 328P SUBSYSTENM ..o innsssssssss s ssssssssssss s s e sssmssss s s s sssnnses 34
8.0 PARALLAX PROPELLER SUBSYSTEM ... nnsssssssss s s ssssmss s s e 35
8.1 The Propeller Local 8-Bit I/O Port 35
9.0 THE SPI BUS AND COMMUNICATIONS SYSTEM ... rsssssssesn s s 36
10.0 VGA GRAPHICS HARDWAREcco i smmm s s s e mmnnns 36

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

10.1 Origins of the VGA 37
10.2 VGA Hardware Interface 38
10.3 VGA Signal Primer 41
10.3.1 VGA HOTIZONEAL TIHMHINEZ. ¢...teeiuitiiiiieniiee ittt ettt ettt ettt e ettt ettt e st e st e sttt ettt e sateesabeesabeesabeeenbseesabeesabeesabeeenbeeenaneesareenane 42
10.3.2 VGA VETtiCal TiIMING.....ccoueiiiiiiiiieniieiiee ettt ettt ettt sttt e ettt ettt e st e st e sttt ebe e e sateesabeesabeeebeeenbstesabeesabeesabeeenbeeenuneesaneesane 42
10.3.3 Generating the ACIVE VGA VIAEOeoruiiiiiiiiiiiiiiie ettt ettt ettt ettt et st e st e et e bt e sateesabeesabeeesbaeesaneesaneesane 43
11.0 NTSC/PAL COMPOSITE VIDEO HARDWAREomiiiicinsemmss s ssssssssssmsss s s ssmnnnns 44
11.1 Video Hardware Interface 44
11.2 Introduction to NTSC Video 45
11.2.1 Interlaced Versus PrOSIeSSIVE SCAMS.c..eiiutiiritiiriieriee et ettt ettt ettt ettt e st e st st e ettt e bt e e sabeesabeesbeeenbaeesaneesaneesane 45
11.2.2 Video FOrmats and INEEITACESceeeeuiieeiiiieeeiiiee ettt ettt e ettt e e ettt e e e ettt e e sttt e e ensb e e e s sasteeesnseeeeensaeeesensaeeesanseeesenneeesnnnes 47
11.2.3. Composite Color Video Blanking Sync INErfaceccocueiiiiiiniiiniiiiiiiiiiceeee sttt 47
11.2.4 COlOT ENCOGING.....conutiiiiiiiiiieiie ettt ettt ettt ettt ettt e et ettt e sat e e sab e e sabe e et e e bt e e sabeesabeesabeeenbaeenaneesaneesane 49
11.2.5 PUtting it All TOZERETc..uiiiiiiiiiieiie ettt ettt ettt e sat e st e sttt et e bt e sabeesabeesabeeenbeeenaneesaneesane 49
11.2.6 Generating B/W VIAE0 Data......ccc.ueeriiiiiiiiiiiiiiiieiee ettt ettt sttt ettt et st e st s et e bt e sabeesabeesbeeesbeeenaneesaneesane 52
11.2.7 Generating Color VIAE0 DALeeruiiiriiiiiiiiiiienit ettt ettt sttt ettt e st sab e st e st e e bt e e sabeesabeesabeeenbeeesaneesaneenane 52
11.2.8 NTSC SigNal REfEIEICESccoueiiiiiiriiiiiiiiiite ettt ettt ettt st et e sat e st e sttt et e bt e sabeesebeesabeeenbaeesaneesareenane 53
12.0 KEYBOARD & MOUSE HARDWARE........iiiiceemmn s rnnssssssss s ssmms s s s ssmmnnns 53
12.1 Keyboard Operation 54
12.1.1 Communication Protocol from Keyboard t0 HOSE.......c...ccocuiiiiiiiiiiniiiiiceieectentee sttt et 55
12.1.2 Keyboard Read ALZOTTTIIML.......ccoiiiiiiiiiiiiiiiteitteete ettt ettt ettt ettt et e st sab et et e bt e sabeesabeesabeeenbaeenaneesaneesane 56
12.1.3 Keyboard WIite ALOTTTRIN.......coiiiiiiiiiiiiiiii ettt ettt st ettt e st e s e sbeeesbeeesaneesaneeeane 56
12.1.4 Keyboard COMMANGS...........eeerutieriienieeriee ettt ettt eeiteesateestee sttt e sttt esaeeesabee sttt eabeeesateesabeesabeeeabeeenbseesubeesabeesabeeenbaeenaneesaneesane 57
12.2 Communication Protocol from Mouse to Host 58
12.2.1 BasiC MOUSE OPEIALIONeeruriieiiieniiieniiee ettt ettt e ettt e st e st e ettt e suteesateesabee sttt eabeeesuteesabeesabeeeabeeenbbeesabeesabeesabeeenbeeenaneesareesane 59
12.2.2 MOUSE DAta PACKELSeeiiiiiiieeeiiiie ettt ettt e ettt e ettt e e ettt e e s eabe e e e e sttt e e e st eeesaasteaesansaeeeensseeesansaeeesanseeesennneeesnnnes 59
12.2.3 MOAES OF OPEIALIONveiiiiiiiiiieiiieniieeitee ettt ettt e ettt e st e sttt et e e ut e e saaeesabee sttt ettt esuteesabeesabeeeabeeebeeesabeesabeesabeeenbeeenaneesaneesane 60
12.2.4 Sending Mouse COMIMEAINASeeevutiiriiiiriieiiee ettt sttt ettt ettt sat e st e st e e bt e e sateesabeesabe e sttt enbbeesabeesabeesabeeenbeeenaneesaneesane 61
12.2.5 MOUSE INTHATIZALIONeeeeiieiieeeiiiee ettt e e et ee e ettt e e et ee e s ettt e e s sateeeeasseeesaaseeeesnseeesansseeesansseassnnseeessnsaeeesansseeesanseeeeennneeesnnnes 63
12.2.6 Reading MOUSE IMOVEIMIENLccooutieruiierieeiieeeitteeiteesiteeetee ettt e sttt e sateesateesabe e ettt esateesaneesabeeeabeeenbseesubeesabeesabeeenbeeenaneesareesane 63
13.0 THE /O HEADERS....... . iiiciemmn s s s s e s p e mmmnnn e s e e e e nn s annmnnns 63
14.0 AUDIO HARDWARE ... iiiiiiemmn s s s s s e n s mmnn e s e e e e nnnnnnmnnns 65
14.1 A Little Background on Low Pass Filters (EE stuff) 66
14.1.1 Pulse Code ModUIAtion (PCIM)........cciiiiiiiiiiiiieeeeeeeciiiieeeeeeeeeitteeeeeeesettaaeeeeeeesaatssseesaaeeaaasssssaseaeesasssssssesaeesessssssseseeaeasaes 67
14.1.2 Frequency Modulation (FIVI)c.cooiiiiiiiiiiiiieete ettt ettt sttt ettt et st sttt et e bt e sabeesabee sttt esbeeesaneesaneeeane 68
14.1.3 Pulse Width Modulation (PWIM)cccoiiiiiiiiiiie e ieeiiiieee e e e eeeittt et e e e e e ettt e e eeeeeeatbsseeeaaeeasssssseseaeesaassssssesaeeseassssssseseaaeannes 68
15.0 INSTALLING THE TOOL CHAINS: AVRSTUDIO, ARDUINO, AND PROPELLER IDE 75
15.1 ATMEL’S AVR STUDIO TOOLCHAIN OVERVIEW.......oiemmn s insssssmsss s nssssssssnnnes 76
15.1.1 Installing AVR Studio 4.xx (Optional) 77
15.1.2 Installing the AVR ISP MKII Hardware (Optional) 81
15.1.3 Installing WinAVR™ 82

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

15.1.4 Building a Project and Testing the Tool Chain 86
15.1.4.1 Setting up the Project OPLIONSccc.ueirieiiiiiiiiieniee ettt ettt ettt sttt e ettt e sateesabeesabeeebe e esbteesabeesabeesabeeenbeeenaneesaneesane 89
Map File EXAMPIE (LINAP) ..eeerureiriiiiiiiieiitenitee ettt ettt ettt sttt ettt ettt e sate e st e st e ettt e sbteesabeesab et eabe e e nateeseteesabeesabeeenbteenuneesaneenane 91
LiSt File EXAMPLE (LISS)....ueeeeeuiiiieieiiieeeiiie e ettt e e ettt e e ettt e e ettt e e s ettt e e sttt e e s st tee s nseeeeeanseeeesasseeeeanseeeesnseeeeennseeesansseeesnseeesennseeesannes 91
| (5 21 (25 & Vi 01 0] (S 1 o>) TS SRRUPRSRRN 92
15.1.4.2 Adding Fles t0 the PrOJECEcoouuiiriiiiiiiiiiieiiete ettt ettt ettt ettt st et e et e st e st e sabeeesbteesaneesaneenane 94

15.1.5 Setting up the AVR ISP MKII Hardware 98

15.1.7 Final Words on AVR Studio Tool Chain Installation 105

15.2 ARDUINO TOOLCHAIN SETUP ... iiirciceemss s rssssssssss s s sss s s s e smmnnns 105

15.2.1 Installing the Arduino Toolchain in Windows 106

15.2.2 Copying the Files to Your Hard Drive 107

15.2.3 Preparation to Launch the Arduino Tool for the First Time 110
15.2.3.1 Installing a Serial Terminal PrOZIaM.ccccoiiiiiiiiriiiiiiciite ettt ettt ettt sttt sttt e sateesebeesbeeeebeeesanee e 112
15.2.3.1 Running the Arduino TOOL...........cooiiiiiiiiiiiiiieieee ettt ettt ettt ettt st st e bt e sateesebeesbeeebeeesanee e 114
15.2.3.2 Loading the HEello WOrld SKELCR.coueiiiiiiiiiiiiieie ettt sttt sttt e st st s e e esanee e 118
15.2.3.3 A Couple Notes About the Arduino Version of HEllo WOrldc.c.coovieiiiiiiiiiiiiiniiiiceceeeeeceeesee e 121

15.3 INSTALLING THE PARALLAX PROPELLER IDE........ e resssssess s 121

15.3.1 Launching the Propeller Tool 124

16.0 CHAMELEON INTER-PROCESSOR ARCHITECTURE OVERVIEW........ccooiiimmrriinrianeenas 128

16.1 Master Control Program (MCP) 129

16.2 Selecting the Drivers for the Virtual Peripherals 131
16.2.1 Complete Data FIOW from USET t0 DITVETccooueiiriiiiriiiiiiiiiie ittt sttt ettt ettt sttt et et e st e esaeeesanee e 132

16.3 Remote Procedure Call Primer (Theory) 133
16.3.1 ASCII or Binary ENCOded RPCSccc..eiiiiiiiiiiiiiiitieeiee ettt ettt sttt sttt e st e s e st ebeeenanee e 134
16.3.2 Compressing RPC for More BandWidth..........coceiiiiiiiiiiiiiiiiiiiiie ettt ettt s 135
16.3.3 Our Simplified RPC SrAtBZYcccuvierutiiiiiiiiieiiieeiiteeee ettt ettt ettt et ettt e st e sabe e st sbe e e bt e e sateesebeesabeeebeeenanee s 135

16.4 Virtual Peripheral Driver Overview 136
16.4.1 Normalization of Drivers for Common RPC Calls in FUtUIe............ccccuiiiiiiiiiiiiiiiee et 137

17.0 CHAMELEON AVR API OVERVIEW ... snnssssssss s s ss s s s e smmnnns 137

17.1 System Library Module 142
15.1.1 Header File CONLENtS OVEIVIEWccecuuirereiiieeeeiiteeeaiiteeseteeeesantteeesasateesaaseeeesansaeassassaeesaasseeesansseeesanseeessnnseeessnnseeessseeeeens 142
17.1.2 APT LIStING REIEIEIICEc.uueiiuiiiiiiiiiiie ittt ettt ettt ettt e sat e sab e st e et e bt e e sateesebeesabeeebeeenaneene 143
17.1.3 API FUNCHIONAl DECIATATIONS.eeeeeeeiiiee ettt e eeeite e ettt e eeitteeseteteeestateeseaateesaaseeaeessteesesseeesanseeaesanseeesenseeesanseeesansaeeeans 144

18.0 UART AND RS-232 LIBRARY MODULE PRIMER........oiiieenen s 145

18.1 The Architecture of the UART API Library and Support Functionality 146

18.2 Header File Contents Overview 147

18.3 API Listing Reference 148

18.4 API Functional Declarations 148

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

19.0 SPI AND I°C LIBRARY MODULE PRIMERccecetrtrtemseessssssassssssssssssssssssssssssssssssssnsnsssssnes 152
19.1 SPI Bus Basics 153

19.1.1 Basic SPT COMMUNICALIONS SEEPS -..cevveerureerteerietenittenteentee ettt ettt esteeesateesabeesbeeesbetesuteesabeesabee ettt esbaeesateesebeesabeeenneeenaneens 155
19.2 I’C Bus Basics 155

19.2.1 Understanding I?C BUS STALESc..vevveeveeeeeeeeeeessseseesessesessesessesessesesseses s sessesassessssesassesessesessassssenessesassesassesassenensaes 156
19.3 Header File Contents Overview 158
19.4 API Listing Reference 160
19.5 API Functional Declarations 161
20.0 NTSC LIBRARY MODULE PRIMER........ccooimmeiiiiiniissmmssss s ssssssssssss s s s s sssmssss s s s s sssnssses 167
20.1 Sending Messages to the Propeller Directly 168
20.2 Header File Contents Overview 169
20.3 API Listing Reference 169
20.4 API Functional Declarations 169
21.0 VGA LIBRARY MODULE PRIMER........ccocmeeisiiinsssmssn s snssssssss s s smm s s s s s 171
21.1 Header File Contents Overview 172
21.2 API Listing Reference 172
21.3 API Functional Declarations 173
22.0 GFX LIBRARY MODULE PRIMERcccoiiimmmiiiiiiniiissesss s snssssssssss s s sssmsn s s s s ssnsas 175
22.1 GFX Driver Architectural Overview 175

22.1.1 GFX Driver RegIStEr INTEITACE.eerutiiiiiiiiiiiiiieiiteete ettt ettt sttt sab e et esbt e st e sabeesabeeebeeenanee e 180
22.2 Header File Contents Overview 180
22.3 API Listing Reference 184
22.4 API Functional Declarations 186
23.0 SOUND LIBRARY MODULE PRIMER.........ueiiiiiciememss s s ssm s s s s 194
23.1 Header File Contents Overview 195
23.2 API Listing Reference 195
23.3 API Functional Declarations 195
24.0 KEYBOARD LIBRARY MODULE PRIMERcioiiiiieemmnn e ssmmsss s s 197
24.1 Header File Contents Overview 197
24.2 API Listing Reference 198

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

24.3 API Functional Declarations 199
25.0 MOUSE LIBRARY MODULE PRIMER.......iiiiiiniieemnns s nnssssssss s s sssmsss s s s snnnas 200
25.1 A Brief Mouse Primer 201
25.2 Header File Contents Overview 201
25.3 API Listing Reference 201
25.3 API Functional Declarations 202
26.0 PROPELLER LOCAL I/O PORT MODULE PRIMER........iiieeeeeen s s 203
26.1 Header File Contents Overview 203
26.2 API Listing Reference 203
26.3 API Functional Declarations 204
27.0 CHAMELEON HANDS-ON PROGRAMMING TUTORIALS AND DEMOSccccmriirriinnnees 205
27.1 Setup to Compile the Demos and Tutorials 205
27.1.1 Differences Between the AVRStudio and Arduino Demos and General Porting Strategies............cccecveervueerviecrneeeneeenneen. 205
537 1116 Ty 1 RSP UURRR 205
Renaming the main() Function and SEEUP()ceeeecuuererriiieeiiiie ettt ettt e e ettt e e ettt e e e et eeessebteeessateeeensaeeeesnsaeeesnseeesesseeesanneeaeens 206
NS o b1 VO I 510 V4 1< S URRUPPSRN 208
27.1.2 Setup for AVRStUdiO Version Of DEIMOScceruiiiriiiiiiiiiiiiiiiieitienite ettt ettt ettt ettt st e ettt e sbteesareesabeesabeeenbeeenanee e 209
27.1.3 Setup for Arduino Version Of DEIMOS.ccocueiiuiiiiiiniii ittt ettt ettt ettt sat e st e s e st e et e sanee e 209
Copying the SKetches from DIVcooiiiiiii ettt ettt ettt et esbt e sabeesabeesabeeebeeenanee e 210
27.1.3 Setting the Chameleon HardWare UPcoceiiiiiiiiiiiiiie ittt ettt sttt ettt e st ebeeesaeee e 210
28.1 Graphics Demos 211
28.1.1 NTSC Printing D IOccouueiiiiiiiiieniie ittt ettt ettt ettt ettt e st e st e et e bt e e sat e e sabeesabe e e bt e e sbt e e sabeesabeesabeeebeeenaneens 211
28.1.2 NTSC Glowing Top/Bottom OVerscan DEIMOc...eerueiriiiiiiiiiiiieniieeee ettt sttt sttt ettt e s e s e esbeeesaaee e 213
28.1.3 NTSC Smooth Scrolling Tilemap DEIMOccocuuiiiiiriiiiiiiiic ettt ettt sttt ettt e sbt e sabeesabeesbeeebeeesanee e 215
28.1.4 VGA PriNtiNG DEIMOeiiiiiiiiiiiiieti ettt ettt ettt sttt st e ettt e s et e sabe e st e e bt e e sttt e sabeesabeesabeeebeeenaneene 217
28.1.5 Dual NTSC / VGA Printing DEIMNOcoouviiiiiiiiiiiiiieiiee ettt ettt sttt ettt ettt et st e et esbteesaneesabeesabeeenbeeenaneene 219
28.1.6 VGA Star FIEld DEIMO. ...cc.uueiiiiiiiiieiiii ittt ettt ettt e st e bt e st e st e st e e bt e e sttt e sabeesabeesabeeebeeenaaeens 220
29.1 Sound Demos 222
B T I 1011131 B 1< ' T J RSSO 223
30.1 Input Device Demos 225
30.1.1 KEYDOAIA DIBIMNO.ceiuiiiiiiiiiiite ittt ettt et e st e st e st et e s ate e sab et sab et e b et e bt e e sat e e sabe e sabeeebe e e bt e e sabeesaneeeane 225
30.1.2 MoUSE “ASCIL PAINE” DEIMO.eeieiiiiiieeeiiiee ettt e e ettt e e ettt e e sttt e e ettteeesabatee s seteeeennateesansatessasseeessnsseeessnseeeesanseeessnnseeesannes 228
31.1 Serial, FLASH, and Port I/O Device Demos 230
31.1.1 Propeller Local Port LED BINKEr DEIMOccoueiiiiiiiiiiiiiiniieiiee ettt ettt ettt et 231
31.1.2 Serial RS-232 Communications DEMIO.ccecuiiiiriiiiieieiiieeeeieee e et tee e ettt e e ettt e e et e e s eataeeessnseeeesseeeeeenseeeesanseeessnnseeesannes 233
31.1.3 FLASH Memory Demo (with XModem Protocol Bonus EXample)coouiiriiiiiiiniiiiiiiiiienieenieceieceee e 238
DG (07 1311 T g o] (oo RSP OURR 239
Sending X-Modem Files from the PCcoooiiiiiiiiiii ettt sttt ettt e st e s e et e bt e sabeesaneesane 243
32.1 Native Mode / Bootloader mode 248
33.1 Developing Your Own Propeller Drivers 249
33.1.1 Adding SPIN Driver Support for the Status LEDccooiiiiiiiiiiiiiiiiiieieeiee ettt et et 250
31.1.2 Adding AVR Support at the CHEent/Master SIAE.......ccceeeriiiriiiiiiiiiieiitt ettt ettt sttt ettt esanee e 252

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

34.1 Advanced Concepts and Ideas 254
35.1 Demo Coder Applications, Games, and Languages 255

35.1.1 Chameleon BASIC by DaVvid BELZ......ccc.ceoviiiiiiiiiiiiiiiiitieee ettt sttt ettt ettt sttt et st esaneeeane 255

35.1.2 Crate-It! DY JT COOKeeeiiiiiiieiiieiite ettt ettt ettt sttt e eat e s et e st e sttt et e e bt e e sateesabeesabeeeabeeenbteesuteesaneenane 255
Epilog - From Intel 4004 to the Multiprocessing/Multicore Chameleon 256
APPENDIX A: SCHEMATICSciiiiriirrrrssnnns 257
APPENDIX B: ATMEL AVR 328P PINOUTccciiiiiirnrmmrssnas 259
APPENDIX C — BOARD LAYOUT AND I/O HEADERS ... 260
APPENDIX D - USING THE AVR IN "STAND-ALONE" MODE.cccoiiirrrrnrnnnsnnnsssssssssssssssssssssas 261
APPENDIX E - USING THE PROPELLER IN "STAND-ALONE" MODE.cccoiiimmrnnrnnnnnsnsssssnnnns 261
APPENDIX F — PORTING HYDRA AND PARALLAX DEVELOPMENT BOARD APPLICATIONS TO
LI L0 7 |0 0 262
APPENDIX G - RUNNING ON THE MAC AND LINUX. ...ccciiiirrrmmnnnnsssnas 262
APPENDIX H - OVERCLOCKING THE AVR AND PROPELLER.........cccocrririrrrrnrsnnssssssssssssssssssnnas 263
H.1 Overclocking the Propeller Microcontroller 263
H.2 Overclocking the AVR328P Microcontroller. 263
APPENDIX I: ASCII/ BINARY / HEX / OCTAL UNIVERSAL LOOKUP TABLES.cccoeeemmerrnnn. 264
APPENDIX J: ANSI TERMINAL CODES......ccciiiiirmrnmmrsssnas 266

EXAIMPIES .ottt e et e et e ettt s e e et e et e e et e e s et e e et e e esnneee e 267

10

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

0.0 Introduction and Origins

Welcome to the Hardware/Programming Manual for the Chameleon AVR 8-Bit Development Kit. This is a light-
hearted, non-censored, no-holds-barred manual. If you find technical errors or have comments, simply write them down in
a file and please send them to us at support@nurve.net or post on our forums and we will continue to merge them into
this working document.

The document contains two main sections —

= The Hardware Manual - This is a fast and furious circuit description of the Chameleon AVR 8-Bit Board’s dual
processor implementation around the Atmel AVR 328P and Parallax Propeller processors. The Atmel 328P chip
is 8-bit, single cycle instruction (in most cases) supporting 16-bit math and multiplication. It has 32K of FLASH
and 2K of SRAM. We are running it at 16 MHz on the Chameleon, but its capable of running 20 MHz nominally
and beyond when over clocked. The Parallax Propeller chip is used for media processing and runs at 80Mhz per
core with 8 cores. Each instruction takes 4 clocks thus the Propeller runs at 20 MIPS per core nominally. It has
32K of SRAM and 32K ROM.

= The Programming Manual — This is the nitty gritty of the manual and has examples of programming graphics,
sound, keyboard, mice, I/O, etc., and explains how the processors work together along with their various tool
chains.

The Chameleon PIC 16-Bit is very similar to the Chameleon AVR 8-Bit. In fact, the

Nfear | Processor was removed from my originally design and replaced by the PIC 16 and the
I/0 interfaced re-connected, so if you learn one system you learn them both more or
less.

The Chameleon’s were designed to be application boards to solve real world problems that you might have day to day in
your designs, engineering classes, or work. The Chameleons philosophy is to be very powerful, but very simple. | have
always been very interested in graphics and media processing, however, its is very hard to get a simple embedded
system or development board to output NTSC, PAL, VGA, etc. Thus, | set out to design something that wasn’t a
development or educational kit like our other products, but was something you just “use” to solve problems that is also
good at displaying information and interfacing to user input devices. Nonetheless, | wanted the Chameleons to be able
to do graphics, produce sound, interface to keyboards and mice and be as small as a credit card. There are a number of
approaches to this design, but with multiprocessing and multicore so popular, | thought it would be interesting to use both
concepts in a product. The Chameleon is the culmination of these ideas. To create a product that with very little coding
you could output NTSC/PAL graphics, VGA graphics, read keyboards, and mice as well as communicate with serial ports
and perform digital and analog 1/0.

The selection of the processors was difficult as it always is. We have to balance price, performance, user base, flexibility
and a number of other factors. Additionally, since the Chameleon is a dual processor design, | had to think of a clean way
to interface the processors such as shared memory, SPI, I°C, etc. Taking all those factors into consideration, | decided to
use the Atmel AVR AT328P processor for the Master and the Parallax Propeller chip for the Slave. The PIC version
uses a PIC24 16-bit processor, but the idea is the same.

Thus, the idea is that the AVR (or PIC) with its huge fan/user base will be the ring leader, you code in C/ASM on the AVR
processor and then over a SPI interface you send commands to the Propeller chip (which is running a SPI driver) and
then issues the commands from the AVR to various processors (more on this in the Architecture Overview). This is the
perfect fusion and balance of the two processors. From the AVR’s perspective the Propeller chip is simply a media
processor, the programmer need not know a single thing about the Propeller if he doesn’t want to. On the other hand, this
setup is incredibly flexible. The Propeller can run any set of drivers on it that we wish and thru an agreed on
communications protocol the AVR can control these drivers remotely and get work done.

Finally, when | started designing the AVR version of the Chameleon a couple years ago, | kept hearing about this product
called the Arduino, finally | went to the site and checked it out, but was surprised that there was no “Arduino” per se. The
Arduino isn’'t a product so much as it’'s an ideal or methodology of software and tools. There is nothing but a single AVR
ATMega 168/328 on each Arduino board there is no extra hardware to do anything. So | looked deeper and found out the
Arduino guys came to the same conclusion | did about embedded system programming — its too hard!

The tool chains area nightmare, installation has too many steps, and its just too complicated for newbie’s that just want to
play with something. So what they did was not concentrate on hardware, but concentrate on software. They took the AVR
tool GNU GCC tool chain and covered it up with a Java application. Therefore, from your perspective as a programmer
you don’t need to know anything about AVRStudio, GNU GCC, WinAVR, etc. All you need to know is how to type in the

11

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

Arduino text editor and press a couple buttons. Now, programming AVRs (and PICs) is a challenge as well. You normally
need an ISP (in circuit programmer) and to use another tool. Thus, you first write your code with AVRStudio, compile it,
then you have a binary that you download with yet another software tool and a physical ISP programmer.

This again is a nightmare and a mess for newbies, so the Arduino guys also integrated this into the tool and supplied a
“bootloader” on the AVR chips their Arduino's ship with, therefore all you need is a serial connection to the AVR chip on
the Arduino hardware and the Arduino tool can initiate communications and download to the FLASH memory.

Therefore, with a single AVR chip programmed with the Arduino bootloader and the Arduino software tool, you can write
code and immediately download to the chip. Moreover, they ported the tool to Mac and Linux, so the experience from
Windows, to Mac OS X to Linux is more or less the same (once you have the tool installed). This is good since AVRStudio
does NOT even work on Mac or Linux!!!

Anyway, | knew | had to try and be compatible with the Arduino tool since it would be very cool if people could use
Arduino software and tools on the Chameleons. Of course, | was using the new Atmel 328P in my designs and Arduino
was still using the Atmel 168, but | hoped they would upgrade in time and they did! So now the Chameleons will run the
Arduino tool chain and you can use Chameleons as supped up Arduinos'. Of course, our boards are physically different
and our headers are slightly different, but more or less with a little work any program designed for the Arduino can be
ported to the Chameleon in a matter of minutes. Then you get the power of the Propeller media processor to display text,
graphics, read keyboards, mice, and make sounds, etc.

As an example, imagine you have an Arduino servo controller program and it uses one of the PWM ports on the AVR
328P. Since we are using the same chip, the Chameleon has the same PWM ports and we export the pins out to the
digital and analog I/O headers just like the Arduino. But, now imagine that instead of just sending a signal on the digital
ports to move the servo right or left, you can use a PS/2 keyboard? Or mouse? And now imagine that you can display the
position and angle on a VGA monitor and even draw the servo in color graphics on the screen!

So the Chameleon is like a super charged Arduino with support for graphics, audio, keyboard, mice and much more! And
the cool thing is that the code you have to write to support the added features and capabilities of the Chameleon are
usually just a few lines that call API functions to communicate with the Parallax Propeller media processor.

The Chameleon PIC 16-Bit is very similar to the Chameleon AVR 8-Bit, but porting the
Arduino software to the Chameleon version has not been done yet. However, all the
pieces are there. There is a GNU GCC compiler for the PIC24, and other than that its
([0 =l just a matter of porting the Arduino libraries and runtime software template. The Java
application is chip agnostic and is nothing more than a Java app. So hopefully,
someone ports the Arduino software to run on the Chameleon PIC as well, so all us PIC
users can experience the ease of use and multiplatform support as well.

Last, but not least, peruse the entire manual before doing anything. There are a few
IMPORTANT! items that are embedded in the middle or end that will help you understand things, so

B best to read the whole thing first then go ahead and start playing with the hardware and
programming.

So without further ado, let’s begin!

12

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

1.0 Architectural Overview

Figure 1.0 — The Chameleon AVR 8-Bit.

NTSC Video

Audio
i PS2 (Mouse/Keyboard)

g e

VGA Port

NI

r 00090 Cee
Power LED (Green) __iy

Serial Selecti
(UP -Propelles
(Down - AVR Mod

"" el
o-1mv VD%L

Power Switch (left ON)

The Chameleon AVR 8-Bit or simply the “Chameleon AVR” is developed around the Atmel 8-Bit Mega AVR 328P28-
Pin DIP QFP. Figure 1.1 shows an image of the Chameleon AVR 8-bit annotated. The Chameleon AVR has the following
hardware features:

28-Pin DIP Package version of the AVR 328P, runs at 16 MHz with a maximum speed of 20 MHz suggested by
Atmel. However, it can easily be over clocked to 25-30 MHz.

Parallax Propeller multicore processor, 32K RAM, 32K ROM, QFP 44-Pin package running at 80 MHz per core
with 64K Byte serial EEPROM for program storage (2x required memory).

RCA Video and Audio Out Ports.

HD15 Standard VGA Out Port.

Single PS/2 Keyboard (and mouse) Port.

Single 9V DC power in with regulated output of 5.0V @ 500mA and 3.3V @ 500 mA on board to support external
peripherals and components (the AVR 328P is 5V, Propeller is 3.3V).

Removable XTALs to support faster speeds and experimenting with various reference clocks.

Expansion headers that exposes |/O, power, clocking ,etc. for both the AVR and Propeller.

USB UART built in with Mini-B connector.

6-PIN ISP (In System Programming) interface compatible with Atmel AVRISP MKII as well as other 3" party
programmers.

1 MByte of SPI FLASH storage chip that can be used as local storage or a full FAT file system.

“Break Away” experimenter prototyping board that can be snapped off for prototyping and adding extra hardware
to the Chameleon.

13

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

Figure 1.1 — Chameleon system level diagram.

NTSC TV VGA Monitor

AA

VT100
Emulator

PC is running tools such as

N the Propeller IDE, AVRStudio,
) D\ i sttt and Arduino IDE.
{ e

Local Mouse . VIDEO aupio |vea

PS/2

Serial packets to PC,
VT100, Custom, etc.

Mouse

USB (serial UART) [
E ; % I
FTDI virtual COM port

dri i PC Remote Keyboard
Chameleon AVR/PIC to interface to USB

Rev.A serial UART on Chameleon.

PC connection is not required.
Only needed for development.

Referring to Figure 1.1, this is a system level diagram of the relationship of the Chameleon to all the system components.
First, everything to the right is optional and only needed for programming the Chameleon. Once the Chameleon is
programmed it’s a stand alone application that you can put anywhere you like. With that in mind, let’s take a quick look at
how things work. To begin with, there are two processors on the Chameleon AVR, the AVR ATMega 328P and the
Parallax Propeller chip. The AVR chip is used as the “master” processor. You write your application on there in C/C++,
ASM, or with the Arduino tool and then using a very simply API you send “messages” to the Propeller chip. The
messages direct the Propeller chip to perform tasks. These tasks can ultimately be anything, but for now, we have set the
Propeller up so it can generate NTSC and VGA graphics, audio, and read keyboards and mice. So the Propeller does all
the work for you, the AVR does very little, thus freeing the AVR to take the role as master controller.

The messages sent to the Propeller are transferred over a high speed SPI (serial peripheral interface) link. The AVR has
SPI hardware built in, so sending bytes to the Propeller is as simple as setting up a few registers and writing some bytes.
However, the Propeller has no SPI hardware, so we had to write drivers that emulate the SPI protocol with software. This
means there are limits to the speed you can send SPI traffic as well as the software SPI drivers are not very robust, they
are just “starter” drivers for you, | suggest you improve them.

As an example of how the system works, let’s say you have a AVR C/C++ program you developed with AVRStudio or
maybe the Arduino tool. It has a A/D convertor and measures temperature. The temperature is then sent out to a crude
LCD screen and looks ugly. Also, there are some controls for the program that you must use some external push button
switches to set, but it would be nice if you had a keyboard or mouse for user input. This is no problem for the chameleon!

You would take you original program, compile it for the Chameleon, then add a few lines of code from our NTSC or VGA
API that command the Propeller to draw text on the screen. Then you can print out your temperature information nicely on
a little NTSC/VGA monitor. Moreover, you can write some simple GUI controls, so with the mouse or keyboard you could
make command selections on the NTSC/VGA screen! Very slick! As another example, you can use the Chameleon’s built
in USB serial port to communicate to the PC. So say you want to control some motors, or do some A/D, but you want the
PC to take that information and plug it into some larger application. Normally, to get something interfaced with the PC is
nightmare in the era or post legacy devices where only USB connectors exist and there are no parallel or DB9 serial ports.
But, with the Chameleon its easy, you just write your driver code on the Chameleon, use the serial UART library to
communicate to the PC and send the information. Moreover, you can display status and what’s going on thru one of the
local video ports of the Chameleon, so even if the PC is remote the local Chameleon can display what’s going on and
what its being told to do by the PC.

14

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

The possibilities are limitless with the Chameleon. We wanted to take the work out of generating video, audio, reading
keyboards and mice out of the picture for you, but at the same time insulate you from what’s going on under the hood —
unless you really want to know.

Next, let’s inventory your Chameleon AVR 8-Bit Kit.

Figure 1.2 — Chameleon AVR 8-Bit kit contents (DVD not shown).

BREAK AWAY SCORING "~

©
©
©

?@@@@@@@@@@

E R RXIRRIIERLEE
£ R I RRIRLEAMAER
EREFIFIEIacc
EXrrxraanroon
S EFrrrarnsoRoocm
L O
& EELE MR
EEEANDRERIDEGR
TR XL ERLILE NPT LULUR
AR EEEDEENNEULK

: BI-CoLOR LED
BREAK AWAY SCORING

e —
- .

You should have the following items in your kit, referring to Figure 1.2.
= Chameleon AVR 8-Bit System Board.
= DVD ROM with all the software, demos, IDE, tools, and this document.

= White solderless experimenter board to be affixed to “break away” experimenter prototyping area on Chameleon if
desired.
= (1) Bi-color Red/Green LED.

Not Included

= 9V power supply with tip +, ring -, 2.1mm barrel.
= Mini B USB cable to go from PC to Chameleon AVR.
= AVR MK I ISP Programmer.

The Chameleon will run off the USB cable, so you do not require a wall adapter for development. Also, the Chameleon
AVR is pre-loaded with the Arduino bootloader, therefore, if you use the Chameleon in “Arduino mode” only you will not
need an Atmel AVR ISP MK Il programmer, but we recommend one so that you can use AVR Studio to write more
advanced C/C++ and ASM programs and to have more control over the platform. Additionally, if you inadvertently damage
the FLASH'ed bootloader you will have to reload it. Thus, you need an AVR ISP MK II or similar programming hardware
tool in the event you need to re-FLASH the bootloader.

15

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

1.2 Chameleon AVR “Quick Start” Demo

Figure 1.3 — The Console demo running — Crate-it!

Hit Enter

wWww.Chameleon—dev.com
W . xga?fﬂsggzon «COM

e1s bw: Hirovwuki Imabay

The Chameleon AVR 8-bit is pre-loaded with a demo programmed into the AVR’s FLASH memory, a screen shot is
shown in Figure 1.3 that illustrates images of both the NTSC and VGA monitors during the demo. We will use this to test
your system out. The following are a series of steps to try the demo out and make sure your hardware is working.

We are going to assume you are running Windows XP or similar. Linux and Mac
systems are similar for this simple demo experiment. However, Linux and Mac detect
and install the FTDI USB drivers differently which we will cover in their respective setups
in the Appendices.

IMPORTANT!

First Things First...

Before we plug the Chameleon in and test it, a couple things to pay attention to. First, the Chameleon can be powered by
either a 9V DC adapter or draw power from the USB port connection. If you have a 9V DC adapter then you can use it for
power. However, to “talk” to the Chameleon you are going to need a mini-B USB cable no matter what. Therefore, when

we get to the power setup in Step 3, you can either plug in both the 9V adapter and the USB cable or just the USB cable.

If you plug in the USB port cable then the PC will detect a new USB device and if you have Windows SP 2/3 then it should
install the FTDI drivers itself. If it doesn't, its alright we will perform driver installation later during the software installation
phase. Point is, the moment you plug the Chameleon into the Windows PC, plug and play is going to detect the new USB
device of the serial UART built into the Chameleon, so don'’t panic!

Step 1: Place your Chameleon AVR on a flat surface, no carpet! Static electricity!

Step 2: Make sure the power switch at the front is in the OFF position, this is to the RIGHT.

Step 3: Plug your 9V DC wall adapter in and plug the 2.1mm connector into the bottom right power port on the
Chameleon AVR. If you do not have a power adapter then you can power the Chameleon AVR with the USB port. Plug a
USB mini-B cable from you PC to your Chameleon AVR. We suggest using a powered USB hub since the Chameleon

will draw a lot of power.

Step 4: Insert the A/V cable into the ORANGE (video) and WHITE (audio) port of the Chameleon AVR located top-right of
the board and then insert them into your NTSC/Multi-System TV’s A/V port.

Step 5: Plug a PS/2 compatible keyboard into the PS/2 port on the Chameleon (top right).

Step 6: Turn the power ON by sliding the ON/OFF switch to the LEFT then hit the Reset button as well (next to the AVR
chip).

16

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

Step 7: The demo will start immediately, it’s a little block pushing game called “Crate-it!”. Use the keyboard arrow keys to
move your character and push blocks around and move them to their resting positions (usually on the opposite side of the
screen).

You should see something like that shown in Figure 1.3. The actual program that is loaded into the AVR is located on your
DVD here:

DVD-ROM:\ CHAM_AVR \ SOURCE \ CRATE_IT_V010.C
The Arduino version is located in the \Sketches directory on the DVD here:
DVD-ROM :\ CHAM_AVR \ TOOLS \ ARDUINO \ SKETCHES \ CHAM_AVR_CRATE_IT
Both versions are nearly identical, the Arduino version has simply been converted into an Arduino Sketch.

Of course, the demo needs many other driver and system files to link with, but we will get to this latter when we discuss
the installation of AVR Studio/WinAVR/Arduino and the tool chain in general for C/C++ and ASM programming.

The demo took about a week to develop and was written by one of our Demo coder’s JT Cook to see what he could do
wit the Chameleon in a week and rely 100% on our drivers. The results are pretty amazing, and the cool thing is the game
literally was ported to the PIC version in a matter of minutes. So as an extra bonus by leveraging the Propeller to do alll
media processing, the AVR/PIC processor running the applications (or games) is usually in pure C/C++ and since the
interface APlIs to the Propeller are the same you get the exact same experience when you port an applications from the
Chameleon AVR to PIC and vice versa. Of course, the PIC version is faster and has more memory — but, use AVR users
like it that way — a challenge!

Hit the Reset button over and over and the demo will reset and reload immediately, If the system ever locks up (rare, and
always due to bad code), then simply hit Reset a few times or cycle the power.

Playing Crate-It!

Crate-it! is your standard block pushing game where you want to get the objects (blocks) from one side of the screen to
resting positions on the other side. The problem is that if a block hits up against an immovable object, they can get stuck

and you are out of luck. These types of games are very easy to develop, but hard to play. You have to really think about
what order you move blocks and you have to be weary about getting stuck.

This version requires an NTSC monitor, and the local PS/2 keyboard plugged in. Also, make sure to have the audio port
connected to your TV, there is sound.

To play, simply move the character with the arrow keys and push the blocks around. The first level has the blocks on the
left side and their resting positions on the right side, so you have to “push” the moveable blocks from the left side to the
right side without getting stuck, or putting yourself in a corner. The first level has 6 blocks that must be moved.

This concludes the Quick Start demo.

17

TQFP Top View
59
_ SEZ-2
EESEDPLCE
BEES S22 =2
===0 0000
(.)(_)O‘,;mmg:n_
[TR =]
EDDO‘)OOOO
Z><><LIJDDDD
RS
NESKOI{)T!‘OON
fEEERRERER
OO000nnon
¥-33858Q
(PCINT19/0C2BANT1) PD3 O] 1 © Q 24 [PC1 (ADC1/PCINTY)
(PCINT20/XCK/TO) PD4 O] 2 23 [1PCO (ADCO/PCINTS)
GND 3 22 0 ADC7
vce O 4 21 J GND
GND 5 20 [1 AREF
vcc e 19 [0 ADC6
(PCINT6/XTAL1/TOSC1) PB6 O] 7 18 O AVCC
(PCINT7/XTAL2/TOSC2) PB7 [] 8 O O 17 [0 PB5 (SCK/PCINTS)
O — O ™M s W W
(= el S
|Hp SRS
BREE8n88ad
oo 0o o oo
=)
EZz2 55082
535099s3
Q Tp <=
SSgEZCIBSE
“0Z02a8%2
&‘&UBUI—\O
OFQZ9Q
ZE=Zz=5E~
5z 5 a2
L5 o —Ff
& -~ _

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

Figure 1.4 — The Atmel Mega AVR 328P packing for 28-Pin TQFP and PDIP packages.

(PCINT14/RESET
(PCINT16/RXD
(PCINTA7/TXD
(PCINT18/INTO

(PCINT19/0C2B/INT1

(PCINT20/XCK/TO

PC6
PDO [
PD1 [
PD2 O
PD3 O
PD4 [
vee O

GND O

(PCINT&/XTAL1/TOSCA
(PCINT7/XTAL2/TOSC2
(PCINT21/OCOB/T1
(PCINT22/0COA/AINO
(PCINT23/AIN1
(PCINTO/CLKO/ICP1

PB6]
PB7]
PD5 [
PD6 O
PD7
PBO]

28
27
26
25
24
23
22
21
20
19
18
17
16
15

1 PC5
[1PC4
[1PC3
1 PC2
M PC1

[1PCO
[1GND
[0 AREF

[AVCC

[1 PB5 (SCK/PCINTS)

[1 PB4 (MISO/PCINT4)

[PB3 (MOSI/OC2A/PCINT3)
[0 PB2 (SS/OC1B/PCINT2)

[1 PB1 (OC1A/PCINT1)

ADC5/SCL/PCINT13)
ADCA4/SDA/PCINT12)
ADC3/PCINT11)
ADC2/PCINT10)
ADC1/PCINT9)
ADCO/PCINTS)

18

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

Figure 1.5 - The Atmel Mega AVR 328P architecture block diagram.

GND
vce

=
1 |

1
H Watchdog » Power debugWIRE H
1 Tlrger Supervision ¥]
] 1
i Watchdog > POI;’{E 281[_) & PROGRAM |
: Oscillator LOGIC :
' v :
] .
' Oscillator Flash SRAM :
| .| Circuits/ .
: g Clock s 1t 1
1 Generation 1
] I
] ‘ 1
' AVYR cru :
1 _
' T EEPROM :
' |
i ¢]I 1 AVCC
1) !
] A r 3 AT _:_ AREF
: GND
' h A v) 4 I :

2
: 8bit T/C 0 16bit T/C 1 A/D Conv. [&* :
] F 3 |
, M e — — |
]
V| 2 |l soitTic2 ’Z‘:”a'og < B'”t‘zma' of | !
: = omp. andgap | !
Z A)

]
: — :
! |
]
1 USART 0 SPI TWI |

|
: A 4 A A A A)
1 1
! A h 4 v . I
] b :
]
1 \ 4 ¢ h | | 4 ¢ h A ¢ h A :
: PORT D (8) PORTB (8) PORT C (7) I
: ~ F F r :
1 1 RESET
' J

XTAL[1..2]
" " A
PD[0..7] PE[0..7] PC[0..6] ADC[6..7]

The Atmel AVR 328P (P stands for Pico Power) comes in a number of packages including 28-pin DIP (duel inline
package). We are using the Mega AVR 328P DIP package in the Chameleon. Figure 1.4 shows the packaging and pin out
of the chip. The AVR 328P was designed as a general purpose, high performance microcontroller with an 8-bit data path,
single clock execution on many instructions, as well as support for 16-bit operations and built in multiply instructions. The
chip has a large FLASH memory of 32K Bytes, but a smaller 2K Byte SRAM which makes a lot of RAM intensive
applications challenging; however, the Chameleon is designed for control applications and 2K of RAM should be more
than enough for anything you need. Moreover, the 328P has 2x the amount of FLASH as the 168 which successfully was
used in thousands if not tens of thousands of Ardunios and everyone did just fine. For complete details on the processor,
please review the datasheet located on the DVD-ROM here:

DVD-ROM: \ cham_avr \ docs \ datasheets \ ATMega48 88 168 328 doc8161.pdf

Table 1.2 below shows the various differences between the 48, 88, 168, and 328 variants for reference. Additionally, there
is a useful EEPROM memory as well that can be used as a little disk drive or memory storage for whatever purposes. Of

19

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

course, the AVR 328P allows re-writing to the FLASH as well, so unused portions of FLASH can be used for storage;
however, it's not ideal to constantly re-write FLASH since there is a limit to the number of times it can be re-written;
100,000 give or take. Additionally, you can use the 1MByte SPI FLASH on the Chameleon as well for storage.

FLASH memories typically have a maximum number of times they can be written;
something in the range of 10,000 to 100,000. This doesn’t mean that at 10,001 or
100,001 the memory won’t work, it just means the erase cycles and write cycles may
take longer to get the memory to clear or write. And this then degrades further as the
write/erase cycles persist. Thus, if you were to code all day and re-write your FLASH
100x times a day, then at 100,000 re-write cycles, you would have 3-4 years before you
ever saw any problems. On the other hand, if you write code to use the FLASH as a
solid state disk and constantly re-write the memory 10,000x a run, you can see how
quickly you might degrade the memory. Thus, use the EEPROM for memory you need
to update and still be non-volatile and save the life of the FLASH.

Table 1.2 - Differences between ATmega 48P, 88P, 168PP, and 328P.

Device Flash EEPROM RAM
ATmega 48P 4 K Byte 256 Bytes 512 Bytes
ATmega 88P 8 K Byte 512 Bytes 1 K Byte
ATmegal68P 16 K Byte 512 Bytes 1 K Byte
ATmega328P 32 K Byte 1 K Byte 2 K Byte

Note: The “P” suffix simply means “Pico Power” and has nothing to do with the chip operation or functionality. The Pico
power version is identical to the non-pico power for our purposes and | will use them interchangeably.

Figure 1.5 shows the AVR 328P architecture in block diagram form and Table 1.3 lists the pins and their function for the
AVR 328P.

Since the AVR 328P has so many internal peripherals and only a finite number of pins,
many functions are multiplexed on the I/O pins such as SPI, 12C, UARTs, A/D, D/A, etc.
Thus, when you enable one of the peripherals they will typically override the 1/O
functionality and take on the special functions requested. However, when you don’t
enable any peripherals each I/0 pin is a simple I/O pin as listed in Table 1.3.

Table 1.3 — The AVR 328P general pin descriptions.

Pin Group Description

Port B (PB7:PB0) - Port B is an 8-bit bi-directional I/0 port with internal pull-up resistors (selected for each bit). The Port
B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running. Port B also contains the SPI interface signals as well as
the clocking input pins.

Port C (PC6:PCO0) - Port C serves as analog inputs to the Analog-to-digital Converter. Port C is an 7-bit bi-directional 1/0
port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics
with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-
up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not
running. Note: even though Port C only has 7-pins bonded out on the chip, the port register is still 8-bits wide, but the 8"
bit is simply ignored.

Port D (PD7:PDO0) - Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port
D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a
reset condition becomes active, even if the clock is not running. Port D also contains the UART signals.

20

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

/RESET - Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the
clock is not running.

XTAL1 - Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 — Output from the inverting Oscillator amplifier.

VCC — Main power, 5V.

GND — System ground.

AVCC - AVCC is the supply voltage pin for the Analog-to-digital Converter. It should be externally connected to VCC,
even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.

AREF - This is the analog reference pin for the Analog-to-digital Converter.

The AVR 328P is a 8-bit RISC-like architecture chip with instructions being either 16 or 32-bits in size (mostly 16-bit).
The memory model is a “Hardware Architecture” meaning that the data and memory are located in separate memories
that are not addressed as a contiguous space, but rather as separate memories with different instructions to read/write to
them. This allows faster execution since the same buses aren’t used to access data and program space. Therefore, you
will typically access SRAM as a continuous 2K of memory and program/FLASH memory is in a completely different
address space as is EEPROM memory. Thus, there are 3 different memories that the AVR 328P supports. Additionally,
the AVR 328P maps registers as well as all it'’s I/0 ports in the SRAM memory space for ease of access. Figure 1.6 show
these memories.

Harvard as opposed to Von Neumann architecture are the two primary computer
memory organizations used in modern processors. Harvard was created at Harvard
University, thus the moniker, and likewise Von Neumann was designed by
mathematician John Von Neumann Von Neumann differs from Harvard in that Von
Neumann uses a single memory for both data and program storage.

Figure 1.6 - FLASH and SRAM memory layouts.

Program Memory Data Memory
0%0000 32 Registers 0x0000 - 0x001F
64 1/0 Registers 0x0020 - 0x005F
160 Ext I/0O Reg. 0x0060 - 0x00FF
0x0100
Internal SRAM
Application Flash Section (5612/1024/1024/2048 x 8)

0x04FF/0x04FF/0xOFF/0x08FF

L

Boot Flash Section
0xOFFF/0x1FFF/0x3FFF

Referring to Figure 1.6, Program Memory is composed of both a “Boot FLASH Section” and the “Application
Section”. The boot section holds boot ROM code and can be different sizes or disabled. The application section then
holds the actual run-time code for the application. The Data Memory is stored in SRAM of course and is 2048 bytes in
length. However, due to register space allocation there is a shift in the addresses; the first 256 byte addresses are used to
access registers and system 1/O then from address [$0100 - $08FF] is the 2K block of free memory. Not shown in the

21

© 2009 NURVE NETWORKS LLC “Exploring the Chameleon AVR 8-Bit”

memory map is the “stack” which will need to go somewhere when you run your code, the C/C++ compiler sets this up
for you. When programming in pure ASM, you would have to set the stack pointer appropriately

The AVR C/C++ compiler is based on the GNU GCC tool chain and thus is not the best optimizing compiler on the planet,
but isn’'t bad. Hence, our approach will be to use C primarily for our coding and any time critical performance code you will
want to write in assembly language if you need to. But, we want to rely on C as much as possible for ease of use. ASM
should be used for drivers when necessary via APIs that can be called from C. Additionally, the Arduino tool chain uses
C/C++ as well. Even though the Arduino folks call the language “Processing”, its just good old C/C++!!!

The tool of choice for native AVR development is of course AVR Studio. This tool was
developed by Atmel and supports source level debugging, various programmer and ICE
debuggers etc. However, the C/C++ compiler is a plug in based on GNU GCC called
“WinAVR”. We will discuss the installation of the tool chain shortly, but keep in mind
the separation. Additionally, we will be using straight “C” for coding. C++ is supported,
but due to its overhead and lack of 100% support for embedded applications, we will
avoid it. C is much more compatible with all embedded systems and C++ is just asking
for trouble especially with the compiler.

NOTE

Figure 1.7 — Atmel AVR Studio 4 in action.

[~

L - [B]x]]
File Project Build Edit View Tools Debug Window Help e
DSdd EE R | Py 4L EE EY BT g sz = Ei 0@ % Trace Disabled St % kT (O e e e wn BB S x B

| avrGeC x

= %G5 xgs_avr_test (defaul)* ~ /7 return success

=423 Source Files return(1);
[E] cHAM_AVR_FLASH_DRY_v010.¢
[5] CHAM_AVR_GF%_DRY_V010.c » 7/ end GFX_Set Bottom Ouverscan Color
[£] CHAM_AUR_KEYBOARD_DRY_V010.c
[5] CHAM_AUR_MOUSE_DRY V010, N N T Vo]
[5] cHAM_AvR_NTSC_DRY_YD10.c ; : 2 2 . =
] Gl vn PROR o DRy i }nt GFX_Set Tilemap Width(int width)
-
F?CH"‘MJ‘V“O“"‘DJRUU‘”“ /7 sets the width of the tile map, 32, 64, 128, 256 are available and encoded as 8,1,2,3
E CHAM_AYR_SYSTEM_V010.c SPI_Prop_Send_Cnd{ GPU_GFX_SCREEN WIDTH_W, width, 8x88);
=) CHAM_AVR_TEST_PGM_VERL.c
5] cham_aur_Twi_sPL_DRY_y010.¢ 7/ let prop finish transaction
[£] CHAM_AUR_LART_DRY_Y010.c delay us(SPI_PROP_DELAY_LONE_US);
(5] cHamM_AvR_vaa_DRY_v010.c
5-£3 Header Files // return success
[E] CHAM_AVR_FLASH_DRY_V010.h return(1);
[] cHAM_AVR_GFX_DRY_¥010.h
[E] cHAM_aVR_header_template.h > // end GFY¥_Set_Tilemap_Width
[CHAM_AUR_KEVEOARD_DRY_V010.h
[E] CHAM_VR_MOLSE _DRY_Y0I0. /77788000 7000808F 80000080000 000000FE0000IEIEREFETTTTEELEEEIIIERTIEIITTEEIIETIIIIETiiIITT080000000000800000000000000000F00
[E] CHAM_AUR_NTSC_DRY_¥D10.h ; .) .
5] CHAM_AUR_PROP_PORT_DRY_V010.h int GFX_Get_Top_Overscan_Color{void) AVRISP mkll in ISP mode with ATmega328P
IEy chanir_soLKD_CRY_vo1n.f 5/ retrieves the 8-bit top overscan color
[E] CHAM_avR_SYSTEM_W010.h e P Main Program } Fuses | LookBits | Advanced | HW Setings | HwInfo | Auto