

NJM1458

The NJM1458 is a monolithic pair of Internally Compensated High Performance Amplifiers, constructed using the New JRC Planar epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of "latch-up" make the NJM1458 ideal for use as voltage followers. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier and general feedback applications.

The NJM1458 is short-circuit protected and require no external components for frequency compensation. The internal 6 dB/octabe roll-off insures stability in closed loop applications. For single amplifier performance, see the NJM741 data sheet.

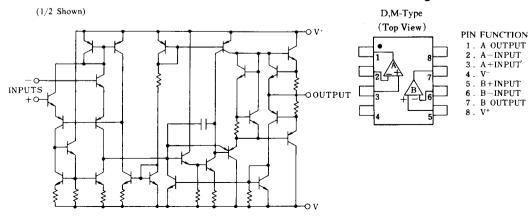
Package Outline

Absolute Maximum Ratings (Ta=25°C)

Supply Voltage	V^+/V^-	±18V	
Input Voltage (note)	$\mathbf{V_1}$	±15V	
Differential Input Voltage	V_{ID}	±30V	
Power Dissipation	P _D (D-Type)	500mW	
	(M-Type)	300mW	
Operating Temperature Range	T_{opr}	-20~+75°C	
Storage Temperature Range	T_{stg}	-40~+125°C	

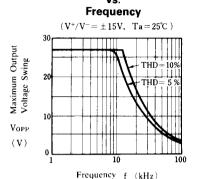
(note) For supply voltages less than ±15V, the absolute maximum

NJM1458M

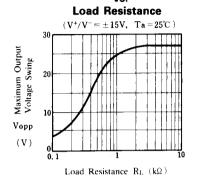

input voltage is equal to the supply voltage.

Electrical Characteristics ($Ta=25^{\circ}C$, $V^{+}/V^{-}=\pm15V$)

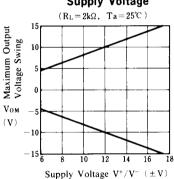
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Offset Voltage	Vio	$R_S \leq 10 k\Omega$	_	2.0	6.0	mV
Input Offset Current	I _{IO}		-	30	200	nΑ
Input Bias Current	IB			60	500	nA
Input Resistance	R _{IN}		0.3	1.0		MΩ
Large-signal Voltage Gain	A_{V}	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	86	106	_	dB
Maximum Output Voltage Swing I	V _{OM1}	R _L ≥10kΩ	±12	±14	_	V
Maximum Output Voltage Swing II	V _{OM2}	$R_L \ge 2k\Omega$	±10	±13	_	V
Input Common Mode Voltage Range	V _{ICM}		±12	±13		v
Common Mode Rejection Ratio	CMR	R _S ≦10kΩ	70	90	l —	dB
Supply Voltage Rejection Ratio	SVR	$R_S \leq 10k\Omega$	76.5	90	_	dB
Supply Current	I _{cc}		_	3.3	5.7	mA
Slew Rate	SR	$R_L \ge 2k\Omega$, $A_V = 1$	_	0.5		V/µs
Channel Separation Ratio	CS	f=1kHz	_	98	_	dB

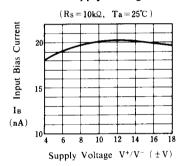

Equivalent Circuit

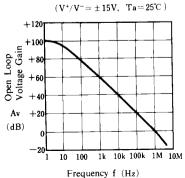
■ Connection Diagram

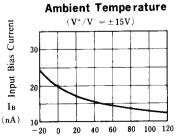


■ Typical Characteristics


Maximum Output Voltage Swing vs.


Maximum Output Voltage Swing vs.


Maximum Output Voltae Swing vs. Supply Voltage


Input Bias Current vs. Supply Voltage

Open Loop Frequency Response

Input Bias Current vs.

Ambient Temperature Ta (*C)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 $\frac{\text{Nisshinbo Micro Devices}}{\text{NJM1458E}}:$