

FEATURES

RS232C LINE DRIVER/RECEIVER

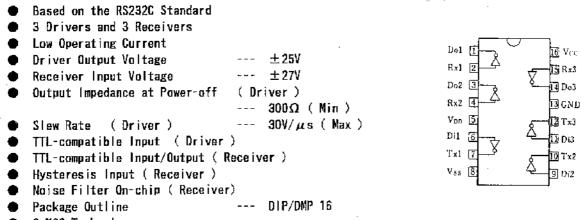
GENERAL DESCRIPTION

The NJU6402B is a RS232C line driver/receiver composed of 3 drivers and 3 receivers.

The drivers convert the input of TTL level signals into RS232C level signals and limit the slew rate below $30V/\mu s$.

The receivers accept the input levels both of RS-232C standard minimum requirement level(\pm 3V) and TTL level.

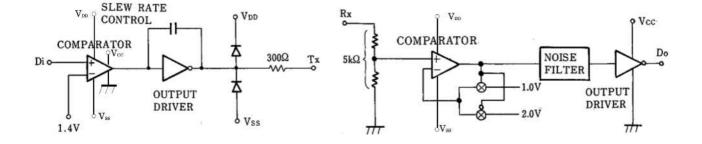
Furthermore, the hysteresis circuit and noise filter incorporated on each receiver ensures noise-free operation.


■ PACKAGE OUTLINE

NJU6402BM

PIN CONFIGURATION

NJU6402BD



C-MOS Technology

BLOCK DIAGRAM

(1) Driver Section (1-circuit)

(2) Receiver Section (1-circuit)

-7-7

TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION	NO.	SYMBOL	FUNCTION
1	Do 1	Receiver Output 1	9	Di2	Driver Input 2
2	Rx 1	Receiver Input 1	10	Tx2	Driver Qutput 2
3	Do 2	Receiver Output 2	11	Dia	Driver Input 3
4	Rx2	Receiver Input 2	12	ТхЭ	Driver Output 3
5	Voo	Positive Voltage Supply (+12V)	13	GND	Ground
6	Di1	Driver Input 1	14	Do3	Receiver Output 3
7	Tx1	Driver Output 1	15	Rx3	Receiver Input 3
8	Vss	Negative Voltage Supply (-12V)	16	Vcc	Logic Operating Voltage Supply(+5V)

FUNCTIONAL DESCRIPTION

(1) Driver Section

The drivers output the RS-232C standard signals which are converted from the TTL level signal to RS-232C standard level by the level shifter and limit the slew rate below $30V/\mu s(6V/\mu s typ)$, to the RS-232C lines.

The each driver incorporate series resistance to keep the output impedance to 300Ω or more during the power-off. This series resistance also protect the internal circuits against the overvoltage of $\pm 25V$ impressed from outside.

(2) Receiver Section

The input of each receiver incorporate the resistor(TYP:5k Ω) as the drivers load. This resistor also protect the internal circuits against the overvoltage of $\pm 27V$. The receiver accept the both of $\pm 3V$ of RS-232C standard minimum requirement level and TTL level as the threshold voltage of input comparators are adjusted for both input levels.

The noise less than $1V_{P-P}$ and spike noise below 3μ s pulse width are eliminated by the hysteresis circuits and noise filter.

The output signals are TTL compatible and capable of 8-LSTTL driving.

(Ta=25℃)

■ ABSOLUTE MAXIMUM RATINGS

PAR	AMETER	SYMBOL	RATINGS	UNIT
Supply Voltage		$\begin{array}{c c} V_{cc} & -0.3 \sim +6 \\ V_{00} & V_{cc} \sim +14 \\ V_{ss} & +0.3 \sim -14 \end{array} (Note1)$		۷
Receiver	input Voltage Output Voltage	V _{RI} Vdo	$^{\pm 27}_{-0.3} \sim V_{cc}$ +0.3	۷
Driver	Input Voltage Output Voltage Output Current	V _{DI} Vrx Irx	$^{-0.3} \stackrel{\sim}{_{\pm 25}} \stackrel{ m V_{cc}+0.3}{_{\pm 60}}$	V V mA
Power Diss	ipation	Po	D1P 500	mЖ
Operating	Temperature	Topr	- 20 ~ + 75	Ċ
Storage Te	mperature	Tstg	- 65 ~ + 150	ĉ

Notel) The Vob level must be maintained higher than Voc level. If the Voc rise up before Vob supply when the power is turned on, the latch-up may occur because of the reverse current flows from Voc to Vob. If there are possibilities of early Voc supply, the diode connect to Vob and Vss terminals shown in application circuits are required. Furthermore, the VSS must be maintained less than -4.5V for the normal operating.

ELECTRICAL CHARACTERISTICS

(Ta=25℃)

7-9

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Quiescent Current	lcc loo lss	Vcc=5.5V Vpp=12V Vss=-12V			1 1 1	mA
Operating Voltage	Vec Vpp Vss		4.5 4.5 -12		5.5 12 -4.5	V

■ DRIVER ELECTRICAL CHARACTERISTICS

 $(\text{Ta=25°C} \text{, } 4.5 {\leq} \text{V}_{\text{CC}} {\leq} 5.5 \text{V} \text{, } \text{V}_{\text{DD}} {=} 4.5 {\sim} 12 \text{V} \text{, } \text{V}_{\text{S}} {=} {-} 4.5 \text{V} {\sim} {-} 12 \text{V} \text{, } \text{GND=QV})$

PARAMETER	SYMBOL.	CONDITIO	NS	MIN	ТҮР	МАХ	UNIT
Imput Voltage H Level L Level			2.0		0.8	V	
Maximum Input Current	tre, tra	V _{VN} =GND or V _{DD}		- 10		+10	μA
H Level Output Voltage	. Vон	$\begin{array}{c c} V_{1N} = V_{1L} & V_{DD} = +4.5V, V_{S} \\ R_{L} = 3k \Omega & V_{DD} = +9V, V_{SS} \\ V_{DD} = +12V, V_{SS} \end{array}$;=-9V	3.0 6.5 9.0			v
L Level Output Voltage	Vol	$\begin{array}{c c} V_{1N}=V_{1R} & V_{0D}=+4.5V, V_{8}\\ R_{L}=3k\Omega & V_{0D}=+9V, V_{8S}\\ V_{0D}=+12V, V_{8S} \end{array}$;=-9V			-3.0 -6.5 -9.0	V
	los+	Vour=GND,Vop=+12V	V _{IN} =V _{IL}			+45	- πΑ
Output Short Current (Note 2)	los	V₅s=-12V	Vсы≍Vтн	-45			
Output Impedance	Rour	$V_{\rm CC} = V_{\rm DD} = V_{\rm SS} = 0V$, $-2V \leq V$	/ou⊤≦+2V	300			Ω

Note 2) The output short current is specified by 1 output terminal. If plural outputs short at once, the NJU6402B may destroy due to the power over the package power dissipation.

New Japan Radio Co.,Ltd.

DRIVER AC CHARACTERISTICS

 $(\text{Ta=25}^{\circ}\text{C}, \ 4.5 \leq V_{\text{CC}} \leq 5.5\text{V}, \ V_{\text{CD}} = 4.5 \sim 12\text{V}, \ V_{\text{SS}} = -4.5\text{V} \sim -12\text{V}, \ \text{GND} = 0\text{V}, \ \text{R}_{\text{L}} = 3k\Omega, \ \text{C}_{\text{L}} = 50\text{pF}) \ (\text{Note } 3,4)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Time	todi	$V_{0D} = +4.5V, V_{SS} = -4.5V$ $V_{0D} = +9V, V_{SS} = -9V$ $V_{0D} = +12V, V_{SS} = -12V$			6.0 5.0 4.0	μs
Propagation Delay Time	tado	$\begin{array}{c} V_{DD} = +4.5V, \ V_{SS} = -4.5V \\ V_{DD} = +9V, \ V_{SS} = -9V \\ V_{DD} = +12V, \ V_{SS} = -12V \end{array}$			6.0 5.0 4.0	μs
Rise/Fall Time (Note 5)	tr/tr	······································	0.2			μs
Delay Time Skew	t₅∗	V _{DD} =+12V, V _{SS} =-12V		400		лs
Slew Rate (Note 5)	Sei	$R_L=3$ to $7k\Omega$, $15pF \le C_L \le 2.5nF$		6	30	v/µs

Note 3) AC input waveform: $t_f = t_f \leq 20$ ns, $V_{1H} = 2.0V$, $V_{1L} = 0.8V$

Note 4) Input Rise/Fall time are less than $5\mu s$.

Note 5) Output slew rate, output rise time and fall time are specified output waveform changing time either from +3V to -3V or -3V to +3V.

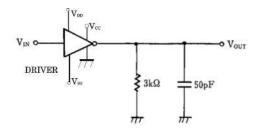
RECEIVER ELECTRICAL CHARACTERISTICS

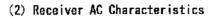
 $(Ta{=}25^\circ\!C\,,\ 4.5{\leq}V_{cc}{\leq}5.5V,\ V_{DD}{=}4.5{\sim}12V,\ V_{s\,s}{=}{-}4.5V{\sim}{-}12V,\ GND{=}0V)$

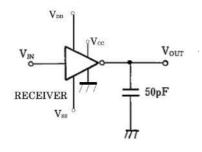
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Input Voltage H Level L Level	Vp Vn		1.3 0.5	2.0 1.0	2.5 1.7	۷
Hysteresis Voltage	Vн			1.0		۷
Input Impedance	RIN	$V_{1N}=\pm 3V\sim\pm 12V$	Э	5	7	kΩ
Output Voltage H Level L Level	Vor Vo∟	V _{IN} =V _N (Min.), [оцт=- 3.2mA V _{IN} =V _P (Max.), оцт=+ 3.2mA	2.8		0.4	۷

RECEIVER AC CHARACTERISTICS

 $(Ta=25^{\circ}C, 4.5 \le V_{cc} \le 5.5V, V_{op}=4.5 \sim 12V, V_{ss}=-4.5V \sim -12V, GND=0V, CL=50pF)$ (Note 6)

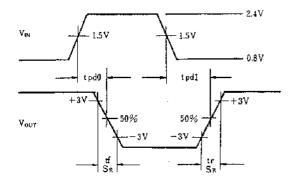

	·		-			
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Propagation Delay Time	tplk, tphl	Input Pulse Width≧10µs			6.5	μs
Delay Time Skew	tsк			400		пѕ
Output Rise Time	tr				300	ns
Output Fall Time	tr				300	กร


Note 6) AC input waveform tr=tf=200ns, V_{111} =+3V, V_{1L} =-3V, f=20kHz.

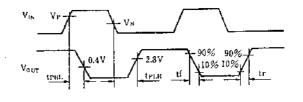


MEASUREMENT CIRCUITS

(1) Driver AC Characteristics



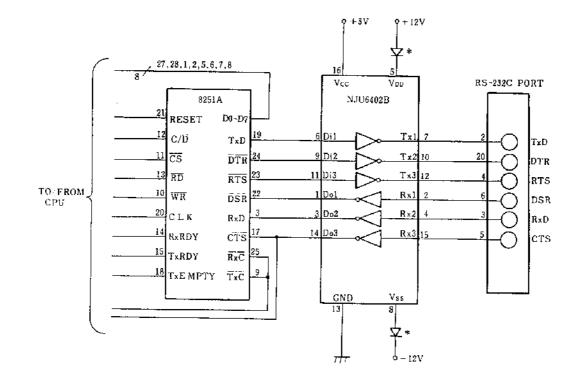
III MEASUREMENT WAVEFORM


,

(1) Driver AC Characteristics

٠

(2) Receiver AC Characteristics



.

-New Japan Radio Co.,Ltd.-

APPLICATION CIRCUIT

RS-232C port

* External diode for protective use. Protection of in case +5V voltage supplied before than +12V and overvoltage stress. **MEMO**

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nisshinbo Micro Devices: NJU6402BM-TE1