NJM8532R-Z

Rail-to-Rail Input/Output Dual Operational Amplifier

FEATURES

GENERAL DESCRIPTION

•	AEC-Q100 grade1	
---	-----------------	--

Operating Temperature

Operating Voltage

Rail-to-Rail Input

Rail-to-Rail Output

Load Drivability

Offset Voltage

Slew Rate

Low Input Voltage Noise

Adequate phase margin

Bipolar Technology

Package Outline

Ta=-40°C to+125°C 1.8 to 14.0V V_{ICM}= 0 to 5.0V, at V*=5V V_{OH}≥4.85V/ V_{OL}≤0.15V, at V* = 5V, R_L = 20kΩ (Ta=-40°C to +125°C) V_{OH}≥4.7V/ V_{OL}≤0.3V, at V* = 5V, R_L = 2kΩ (Ta=-40°C to +125°C) 5mV max. (Ta=-40°C to +125°C) 0.4V/μs typ.

10nV/√Hz typ. at f=1kHz

 Φ_M =75deg. typ., at R_L=2k Ω

MSOP8 (VSP8)

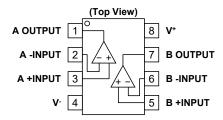
The NJM8532 is dual rail to rail input and output single supply operational amplifier featuring 14V supply voltage, low noise and low power.

A wide supply voltage range from 1.8V to 14V with a rail to rail input and output allows the device to be used in wide variety of applications, such as audio amplifier, hi-side current sensing, buffering and others. Furthermore, low supply current of 580µA typical at NJM8532 combined with a wide bandwidth of 1MHz and low very low noise of 10nV/√Hz at 1kHz make NJM8532 very suitable for a variety of battery-powered applications that require a good balance between low power, low noise and wide bandwidth.

■ PRODUCT NAME INFORMATION

NJM8532 <u>R</u> - <u>Z</u> (<u>TE2</u>)

Description of configuration


Suffix	Parameter	Description
R	Package code	Indicates the package. R: MSOP8 (VSP8)
Z	Quality grade	Automotive.
TE2	Packing	Refer to the packing specifications.

■ ORDER INFORMATION

Product Name	Package	RoHS	Halogen- Free	Terminal Finish	Marking	Weight (mg)	MOQ (pcs)
NJM8532R-Z (TE2)	MSOP8 (VSP8)	✓	✓	Sn2Bi	8532Z	21	2000

■ PIN DESCRIPTIONS

Pin No. MSOP8 (VSP8)	Symbol	I/O	Description
1	A OUTPUT	0	Output channel A
2	A -INPUT	I	Inverting input channel A
3	A +INPUT	I	Non-inverting input channel A
7	B OUTPUT	0	Output channel B
6	B-INPUT	I	Inverting input channel B
5	B +INPUT	I	Non-inverting input channel B
8	V ⁺	-	Positive supply
4	V-	-	Negative supply or GND (single supply)

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply Voltage	V ⁺	15.0	V
Differential Input Voltage Range	V _{ID}	±1.0	V
Common Mode Input Voltage Range	Vicm	-0.3 to V ⁺ + 0.3 ^{*1}	V
Input Current	I _{IN}	2* ²	mA
Power Dissipation *3	P _D	500 *³	mW
Storage Temperature Range	T _{stg}	-40 to +150	°C

^{*1} For supply voltage less than 15V, the absolute maximum input voltage is equal to the supply voltage.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

■ THERMAL CHARACTERISTICS

Dodrogo	Measu	Linit	
Package	Thermal Resistance (θja)	Thermal Characterization Parameter (ψjt)	Unit
MSOP8 (VSP8) 250		62	°C/W

θja:Junction-to-Ambient Thermal Resistance ψjt:Junction-to-Top Thermal Characterization Parameter On the PCB "EIA/JEDEC (76.2 × 114.3 × 1.6 mm, 2 layers, FR-4)"

■ ELECTROSTATIC DISCHARGE (ESD) PROTECTION VOLTAGE

Parameter	Conditions Protection Voltage					
HBM	$C = 100 \text{ pF}, R = 1.5 \text{ k}\Omega$	±2000 V				
CDM	Direct CDM	±1000 V				

ELECTROSTATIC DISCHARGE RATINGS The electrostatic discharge test is done based on JEITA ED-4701. In the HBM method, ESD is applied using the power supply pin and GND pin as reference pins.

^{*2} The inputs are protected by diodes. If the differential input voltage exceeds 1.0V, the input current must be limited 2 mA or less by using a restriction resistance. Input voltages outside the supply voltage will be clamped by ESD protection diodes. If the input voltage exceeds the supply voltage, the input current must be limited 2 mA or less by using a restriction resistance.

^{*3} On the PCB "EIA/JEDEC (76.2 × 114.3 × 1.6 mm, 2 layers, FR-4)"

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Rating	Unit
Supply Voltage	V ⁺		1.8 to 14	V
Operating Temperature	Та		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

■ ELECTRICAL CHARACTERISTICS 1

 V^+ = 5V, Ta = 25°C, unless otherwise specified.

Parameter	Symbol	ed. Test Conditions	Min	Тур	Max	Unit
DC CHARACTERISTICS						
		No signal applied	-	580	900	
Operating Current	lcc	No signal applied,Ta=-40 °C to +125 °C	-	-	900	μΑ
Input Offset Voltage	Vio	Ta=-40 °C to +125 °C	-	1 -	4 5	mV
Input Bias Current	lв	Ta=-40 °C to +125 °C	-	50 -	250 275	nA
Input Offset Current	lio	Ta=-40 °C to +125 °C	-	5 -	100 100	nA
		V_{OUT} =1.5V to 3.5V, R_L =2k Ω to 2.5V	60	85	-	
Large Signal Voltage Gain	Av	V_{OUT} =1.5V to 3.5V,R _L =2kΩ to 2.5V, Ta=-40 °C to +125 °C	60	-	-	dB
		CMR+: 2.5V≤V _{CM} ≤5V, CMR-: 0V≤V _{CM} ≤2.5V *4	55	70	-	
Common Mode Rejection Ratio	CMR	CMR+: 2.5V≤V _{CM} ≤5V, CMR-: 0V≤V _{CM} ≤2.5V *4 Ta=-40 °C to +125 °C	55	-	-	dB
Supply Voltage Rejection Ratio	SVR	V+N-=±2.0V to ±3.0V	70	85	-	dB
		V ⁺ /V ⁻ =±2.0V to ±3.0V, Ta=-40 °C to +125 °C	70	-	-	
	V _{OH1}	R _L =20kΩ to 2.5V	4.90	4.95	-	V
		R _L =20kΩ to 2.5V, Ta=-40 °C to +125 °C	4.85	-	-	
Maximum Output Voltage 1		R _L =20kΩ to 2.5V	-	0.05	0.10	V
	V _{OL1}	R _L =20kΩ to 2.5V, Ta=-40 °C to +125 °C	-	-	0.15	
		$R_L=2k\Omega$ to 2.5V	4.75	4.85	-	
	V _{OH2}	R _L =2kΩ to 2.5V, Ta=-40 °C to +125 °C	4.70	-	-	V
Maximum Output Voltage 2		$R_L=2k\Omega$ to 2.5V	-	0.15	0.25	
	V _{OL2}	R _L =2kΩ to 2.5V, Ta=-40 °C to +125 °C	-	-	0.30	V
Input Common Mode Voltage	1/	CMR≥55dB	0	-	5	V
Range	V _{ICM}	CMR≥55dB, Ta=-40 °C to +125 °C	0	_	5	V
AC CHARACTERISTICS						
Gain Bandwidth Product	GBW	R _L =2kΩ	-	1	-	MHz
Phase Margin	Фм	R _L =2kΩ	-	75	-	Deg
Equivalent Input Noise Voltage	e n	f=1kHz	-	10	-	nV/√Hz
TRANSIENT CHARACTERIST				ı	1	
Slew Rate	SR	R _L =2kΩ	-	0.4	-	V/µs

^{*4} CMR is represented by either CMR+ or CMR- has lower value. CMR+ is measured with 2.5V≤V_{CM}≤5.0 and CMR- is measured with 0V≤V_{CM}≤2.5V.

■ ELECTRICAL CHARACTERISTICS 2

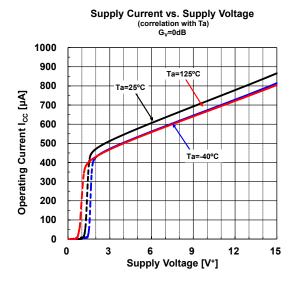
V+ = 3V, Ta = 25°C, unless otherwise specified.

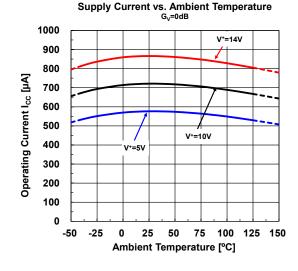
V ⁺ = 3V, Ta = 25°C, unless of Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DC CHARACTERISTICS						
		No signal applied	-	510	880	
Operating Current	lcc	No signal applied,Ta=-40 °C to +125 °C	-	-	880	μA
Input Offset Voltage	Vio		-	1	4	mV
input Onset Voltage	VIO	Ta=-40 °C to +125 °C	-	-	5	1117
Input Bias Current	lв		-	50	250	nA
	.5	Ta=-40 °C to +125 °C	-	-	275	
Input Offset Current	lıo		-	5	100	nA
		Ta=-40 °C to +125 °C	-	- 04	100	
Large Signal Voltage Gain	A _V	V _{OUT} =0.5V to 2.5V,R _L =2kΩ to 1.5V	60	84	-	dB
Large Signal Vollage Gall I	Av	V_{OUT} =0.5V to 2.5V,R _L =2k Ω to 1.5V, Ta=-40 °C to +125 °C	60	-	-	uБ
		CMR+: 1.5V≤V _{CM} ≤3V, CMR-: 0V≤VCM≤1.5V *5	48	63	-	
Common Mode Rejection Ratio	CMR	CMR+: 1.5V≤VCM≤3V, CMR-: 0V≤VCM≤1.5V *5, Ta=-40 °C to +125 °C	48	-	-	dB
Supply Voltage Rejection Ratio	SVR	V+V=±1.2V to ±2.0V	68	83	-	
		V ⁺ /V ⁻ =±1.2V to ±2.0V, Ta=-40 °C to +125 °C	65	-	-	dB
	V _{ОН1}	R _L =20kΩ to 1.5V	2.90	2.95	-	V
		R _L =20kΩ to 1.5V, Ta=-40 °C to +125 °C	2.85	-	-	
Maximum Output Voltage 1		R _L =20kΩ to 1.5V	-	0.05	0.10	
	V _{OL1}	R _L =20kΩ to 1.5V, Ta=-40 °C to +125 °C	-	-	0.15	V
		R _L =2kΩ to 1.5V	2.75	2.85	-	
May discuss Outrout Vallages 2	V _{OH2}	R _L =2kΩ to 1.5V, Ta=-40 °C to +125 °C	2.70	-	-	V
Maximum Output Voltage 2		R _L =2kΩ to 1.5V	-	0.15	0.25	
	V _{OL2}	R _L =2kΩ to 1.5V, Ta=-40 °C to +125 °C	-	-	0.30	V
Input Common Mode Voltage	\/·	CMR≥48dB	0	-	3	V
Range	VICM	CMR≥48dB, Ta=-40 °C to +125 °C	0	-	3	V
AC CHARACTERISTICS						
Gain Bandwidth Product	GBW	R _L =2kΩ	-	1	-	MHz
Phase Margin	Фм	$R_L=2k\Omega$	-	75	-	Deg
Equivalent Input Noise Voltage	e n	f=1kHz	-	10	-	nV/√Hz
TRANSIENT CHARACTERIST	1		T	1	ı	T
Slew Rate	SR	R _L =2kΩ	-	0.35	-	V/µs

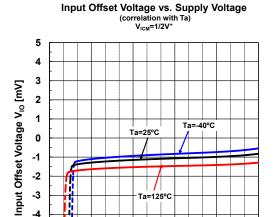
 $^{^{^{5}}}$ CMR is represented by either CMR+ or CMR-has lower value. CMR+ is measured with 1.5V≤V_{CM}≤3.0 and CMR- is measured with 0V≤V_{CM}≤1.5V.

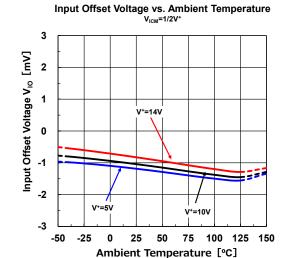
■ ELECTRICAL CHARACTERISTICS 3

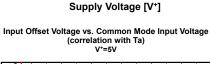
V⁺ = 1.8V, Ta = 25°C, unless otherwise specified.

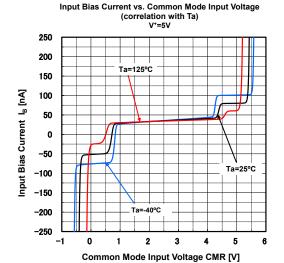

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DC CHARACTERISTICS						
		No signal applied	-	460	800	
Operating Current	lcc	No signal applied,Ta=-40 °C to +125 °C	-	-	800	μΑ
Input Offset Voltage	V _{IO}		-	1	4	mV
Input Onset Voltage	VIO	Ta=-40 °C to +125 °C	-	-	5	IIIV
Input Bias Current	l _B		-	50	250	nA
Inpac Blad Gallone	15	Ta=-40 °C to +125 °C	-	-	275	
Input Offset Current	lio		-	5	100	nA
•		Ta=-40 °C to +125 °C	-	-	100	
Lawre Cierral Valtage Cair		V _{OUT} =0.4V to 1.4V,R _L =2kΩ to 0.9V	60	83	-	٩D
Large Signal Voltage Gain	A _V	V_{OUT} =0.4V to 1.4V,R _L =2k Ω to 0.9V, Ta=-40 °C to +125 °C	60	-	-	dB
		CMR+: 0. 9V≤V _{CM} ≤1.8V, CMR-: 0V≤V _{CM} ≤0.9V *6	40	55	-	
Common Mode Rejection Ratio	CMR	CMR+: 0. 9V≤V _{CM} ≤1.8V, CMR-: 0V≤V _{CM} ≤0.9V *6, Ta=-40 °C to +125 °C	40	-	-	dB
Supply Voltage Rejection Ratio	SVR	V+V-=±0.9V to ±1.2V	65	80	-	
		V+V-=±0.9V to ±1.2V, Ta=-40 °C to +125 °C	60	-	-	dB
	V _{OH1}	R _L =20kΩ to 0.9V	1.70	1.75	-	V
		R _L =20kΩ to 0.9V, Ta=-40 °C to +125 °C	1.65	-	-	
Maximum Output Voltage 1		R _L =20kΩ to 0.9V	-	0.05	0.10	
	V _{OL1}	R _L =20kΩ to 0.9V, Ta=-40 °C to +125 °C	-	-	0.15	V
		R _L =2kΩ to 0.9V	1.55	1.65	-	
M : 0 / 1// 1 0	V _{OH2}	R _L =2kΩ to 0.9V, Ta=-40 °C to +125 °C	1.50	-	-	V
Maximum Output Voltage 2		R _L =2kΩ to 0.9V	-	0.15	0.25	
	V _{OL2}	R _L =2kΩ to 0.9V, Ta=-40 °C to +125 °C	-	-	0.30	V
Input Common Mode Voltage	V	CMR≥40dB	0	-	1.8	17
Range	VICM	CMR≥40dB, Ta=-40 °C to +125 °C	0	-	1.8	V
AC CHARACTERISTICS						
Gain Bandwidth Product	GBW	R _L =2kΩ	-	1	-	MHz
Phase Margin	Фм	R _L =2kΩ	-	75	-	Deg
Equivalent Input Noise Voltage	e n	f=1kHz	-	10	-	nV/√Hz
TRANSIENT CHARACTERIST	TICS		1	1	T	
Slew Rate	SR	RL=2kΩ	-	0.3	-	V/µs

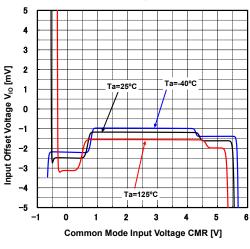

^{*6} CMR is represented by either CMR+ or CMR-has lower value. CMR+ is measured with 0.9V≤V_{CM}≤1.8 and CMR- is measured with 0V≤V_{CM}≤0.9V.




■ TYPICAL CHARACTERISTICS


Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

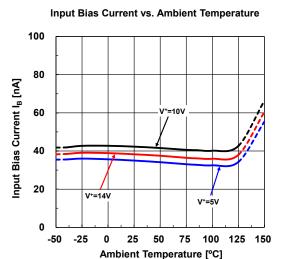


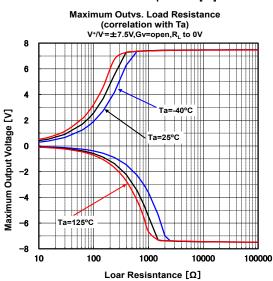

9

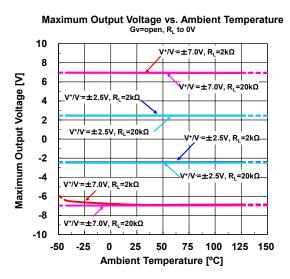
12

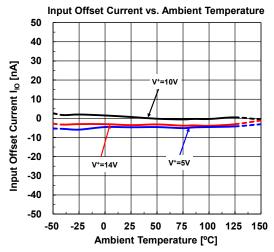
15

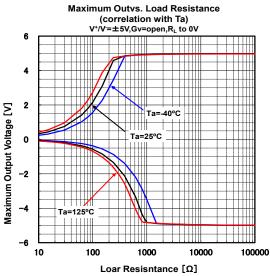
6

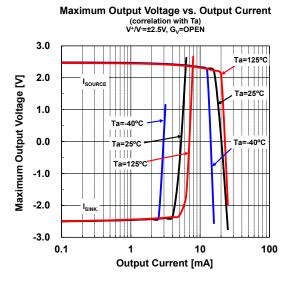


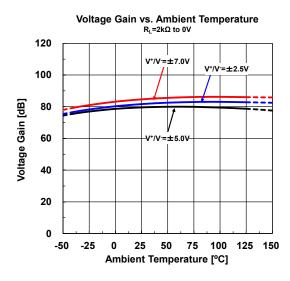


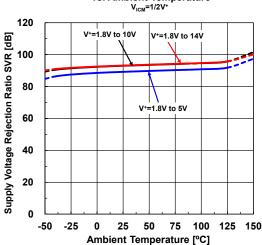

ے _{5۔} 0


■ TYPICAL CHARACTERISTICS

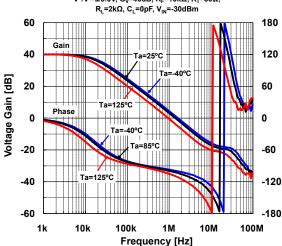

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

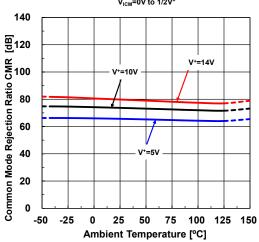




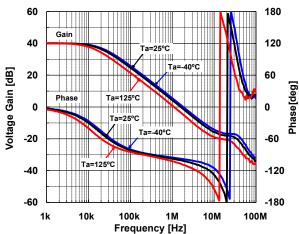


■ TYPICAL CHARACTERISTICS

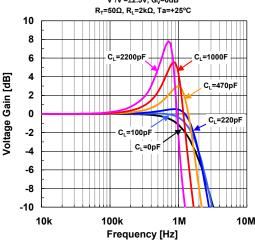

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.



Voltage Gain/Phase vs. Frequency $$\label{eq:V+V-} \begin{split} V^+/V = & \pm 5.0 \text{V, } G_V = & 40 \text{dB, } R_F = 10 \text{k}\Omega, R_T = 50\Omega, \\ R_L = & 2 \text{k}\Omega, C_L = 0 \text{pF, } V_{\text{IN}} = -30 \text{dBm} \end{split}$$

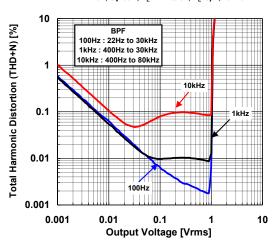


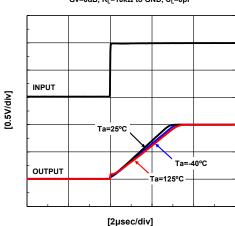
Common Mode Rejection Ratio vs. Ambient Temperature V_{ICM}=0V to 1/2V


Voltage Gain/Phase vs. Frequency

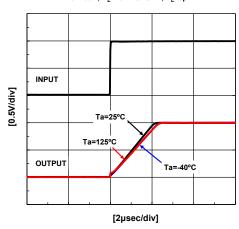
(correlation with Ta) V*/V= \pm 7.0V, A_v=40dB, R_F=10k Ω , R_T=50 Ω , R_L=2k Ω , C_L=0pF, V_{IV}=-30dBm

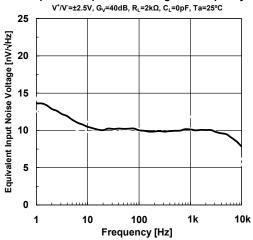
Voltage Gain vs. Frequency (with Capacitance Load)

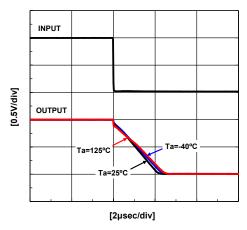

V*/V=±2.5V, G_V=0dB

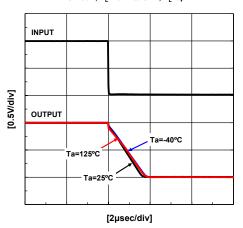

■ TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.


Total Harmonic Distortion vs. Output Voltage $V^*/V=\pm 1.5V$, $G_V=6dB$, $R_L=2k\Omega$ to 0V, $C_L=0pF$, $Ta=25^{\circ}C$


 $\begin{array}{c} \textbf{Pulse Response} \; (\text{Rise}) \\ \textbf{V+/V=\pm2.5V, V_{IN}=1V_{p.p.}} \; \text{f=10kHz} \\ \textbf{Gv=0dB, R}_{L} = 10 \text{k}\Omega \; \text{to GND, C}_{L} = 0 \text{pF} \end{array}$

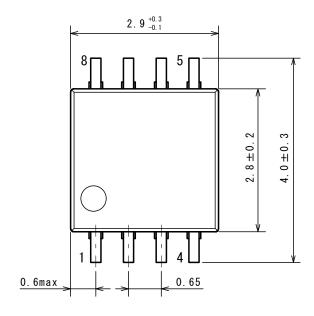

Pulse Response (Rise) $V^{+}/V^{-}\pm7.0V,\,V_{IN}^{-}=1V_{P,P},\,f=10kHz$ $Gv=0dB,\,R_{L}^{-}=10k\Omega\,\,to\,\,GND,\,C_{L}^{-}=0pF$

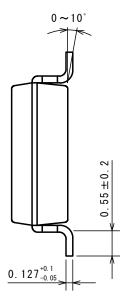

Equivalent Input Noise Voltage vs. Frequency

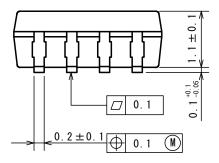
 $\begin{array}{c} \textbf{Pulse Response} \; (\text{Fall}) \\ \textbf{V}^*/\textbf{V} = \pm 2.5 \textbf{V}, \textbf{V}_{\text{IN}} = 1 \textbf{V}_{\text{P-P}}, \, \text{f} = 10 \text{kHz} \\ \textbf{Gv} = 0 \text{dB}, \; \textbf{R}_{\text{L}} = 10 \text{k} \Omega \; \text{to GND}, \; \textbf{C}_{\text{L}} = 0 \text{pF} \end{array}$

 $\begin{array}{c} \textbf{Pulse Response} \; (\text{Fall}) \\ \textbf{V}^{+}/\textbf{V} = \pm 7.0 \textbf{V}, \textbf{V}_{\text{IN}} = 1 \textbf{V}_{\text{P.P.}}, \; \text{f} = 10 \text{kHz} \\ \textbf{Gv} = 0 \text{dB}, \; \textbf{R}_{\text{L}} = 10 \text{k} \Omega \; \text{to GND}, \; \textbf{C}_{\text{L}} = 0 \text{pF} \end{array}$

■ REVISION HISTORY


Date	Revision	Changes
May 24, 2023	Ver.4.0	Changed Datasheet format. Correction of errors Unity Gain Bandwidth -> Gain Bandwidth Product GB -> GBW VNI -> en

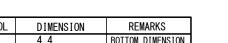


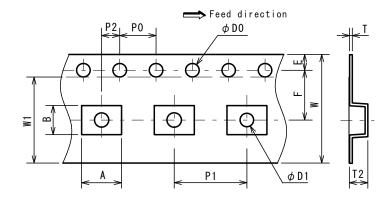

MSOP8 (VSP8) PI-VSP8-E-B

■ PACKAGE DIMENSIONS


UNIT: mm

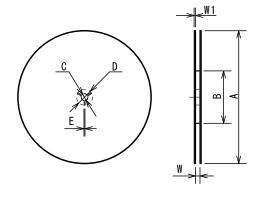
■ EXAMPLE OF SOLDER PADS DIMENSIONS

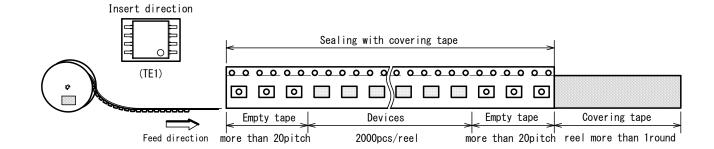

UNIT: mm


Nisshinbo Micro Devices Inc.

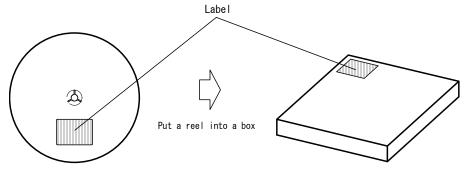
MSOP8 (VSP8)

■ PACKING SPEC


TAPING DIMENSIONS


SYMBOL	DIMENSION	REMARKS
Α	4. 4	BOTTOM DIMENSION
В	3. 2	BOTTOM DIMENSION
D0	1. 5 +0.1	
D1	1.5 +0.1	
E	1.75±0.1	
F	5.5±0.05	
P0	4.0±0.1	
P1	8.0±0.1	
P2	2.0±0.05	
T	0.30 ± 0.05	
T2	2.0 (MAX.)	
W	12.0±0.3	
W1	9. 5	THICKNESS 0.1max

REEL DIMENSIONS



SYMBOL	DIMENSION	
Α	$\phi 254 \pm 2$	
В	$\phi 100 \pm 1$	
С	φ 13±0.2	
D	ϕ 21±0.8	
Е	2±0.5	
W	13.5±0.5	
W1	2.0±0.2	

TAPING STATE

PACKING STATE

- The products and the product specifications described in this document are subject to change or discontinuation of production without
 notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the
 latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for automotive applications. Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.

8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nisshinbo Micro Devices:

NJM8532RZ-TE2