# **Automotive NJM2879-H**

# **LDO with Reverse Current Protection / Discharge Function**

#### **■ FEATURES**

AEC-Q100 Grade 1

• Operating Voltage Range

2.3V to 6.5V

Output Voltage Accuracy

Vo ±2.0%

Output Current

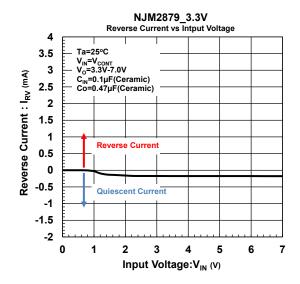
Io (min.) = 200 mA

- Reverse Current Protection
- Discharge Function
- ON/OFF Control
- Correspond to Low ESR capacitor (MLCC)
- Thermal Shutdown Circuit
- Over Current Protection Circuit
- Package

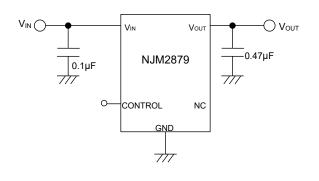
SOT-23-5

#### **■ GENERAL DESCRIPTION**

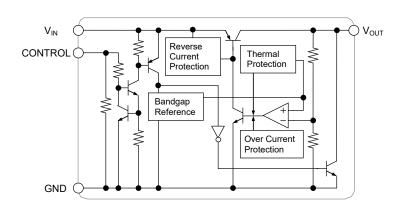
The NJM2879 is a low dropout regulator which achieves high ripple rejection, low noise and high speed response with the bipolar technology.


Small packaging and  $0.47\mu F$  decoupling capacitor make the NJM2879 suitable for space conscious applications. Moreover, the NJM2879 is not required noise reduction capacitor.

In addition, the reverse current protection makes external SBD unnecessary.


# **■ APPLICATION**

- Automotive infotainment
- Automotive ECU unit
- Industrial equipment


### **■ REVERSE CURRENT PROTECTION CHARACTERISTICS**



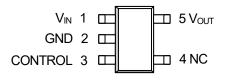
# **■ TYPICAL APPLICATION**



#### ■ BLOCK DIAGRAM



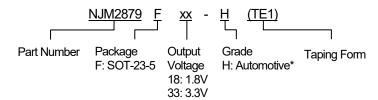



# **■ OUTPUT VOLTAGE RANK**

SOT-23-5

| STATUS | PART NUMBER  | OUTPUT<br>VOLTAGE | STATUS | PART NUMBER  | OUTPUT<br>VOLTAGE |
|--------|--------------|-------------------|--------|--------------|-------------------|
| PLAN   | NJM2879F15-H | 1.5V              | M.P.   | NJM2879F33-H | 3.3V              |
| M.P.   | NJM2879F18-H | 1.8V              | PLAN   | NJM2879F05-H | 5.0V              |
| PLAN   | NJM2879F25-H | 2.5V              |        |              |                   |

#### **■ PIN CONFIGURATION**


SOT-23-5



| PIN NO | NAME    | FUNCTION       |
|--------|---------|----------------|
| 1      | VIN     | Input          |
| 2      | GND     | Ground         |
| 3      | CONTROL | ON/OFF Control |
| 4      | NC      | No Connection* |
| 5      | Vout    | Output         |

Note) NC pin is not connect to internally circuit. This pin can be open or connected to ground. Connecting to ground is recommended to improve thermal dissipation.

# **■ PRODUCT NAME INFORMATION**



## **■ ORDERING INFORMATION**

| PART NUMBER        | OUTPUT<br>VOLTAGE | PACKAGE<br>OUTLINE | RoHS | HALOGEN-<br>FREE | TERMINAL<br>FINISH | MARKING | WEIGHT<br>(mg) | QUANTITY<br>PER REEL<br>(pcs) |
|--------------------|-------------------|--------------------|------|------------------|--------------------|---------|----------------|-------------------------------|
| NJM2879F18-H (TE1) | 1.8V              | SOT-23-5           | Yes  | Yes              | Sn2Bi              | AU2     | 15             | 3000                          |
| NJM2879F33-H (TE1) | 3.3V              | SOT-23-5           | Yes  | Yes              | Sn2Bi              | AU1     | 15             | 3000                          |



# ■ ABSOLUTE MAXIMUM RATINGS

| PARAMETER                  | SYMBOL            | RAT                                     | TINGS       | UNIT  |
|----------------------------|-------------------|-----------------------------------------|-------------|-------|
| Input Voltage              | V <sub>IN</sub>   | −0.3 to 7                               |             | V     |
| Control Pin Voltage        | V <sub>CONT</sub> | -0.3 to 7                               |             | V     |
| Output Valtage             | Vолт              | V <sub>0</sub> ≤1.8V                    | -0.3 to 5.5 | V     |
| Output Voltage             | VOUT              | Vo>1.8V                                 | -0.3 to 7   | V     |
| Power Dissipation(Ta=25°C) | P <sub>D</sub>    | 2-Layer / 4-Layer                       |             | mW    |
| SOT-23-5                   | ı b               | 480 <sup>(1)</sup> / 650 <sup>(2)</sup> |             | 11100 |
| Junction Temperature       | Tj                | -40 to 150                              |             | °C    |
| Operating Temperature      | Topr              | -40 to 125                              |             | °C    |
| Storage Temperature        | T <sub>stg</sub>  | -50 to 150                              |             | °C    |

<sup>(1)</sup> Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JEDEC standard, 2Layers)

# ■ RECOMMENDED OPERATING CONDITIONS

| PARAMETER               | SYMBOL            | RATINGS    | UNIT |
|-------------------------|-------------------|------------|------|
| Operating Voltage Range | V <sub>IN</sub>   | 2.3 to 6.5 | V    |
| Control Voltage         | V <sub>CONT</sub> | 0 to 6.5   | V    |



<sup>(2)</sup> Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JEDEC standard, 4Layers), internal Cu area: 74.2×74.2mm

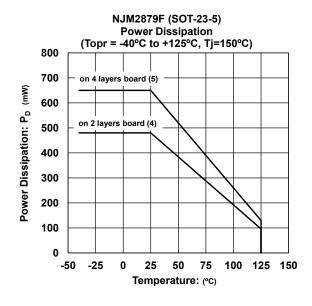
# **■ ELECTRICAL CHARACTERISTICS**

(Unless other noted,  $V_{IN} = V_O + 1V$ ,  $C_{IN} = 0.1 \mu F$ ,  $C_O = 0.47 \mu F$  ( $C_O = 1.0 \mu F$ :  $1.8 V < V_O \le 2.6 V$ ,  $C_O = 2.2 \mu F$ :  $V_O \le 1.8 V$ ),  $Ta = 25 ^{\circ}C$ )

| PARAMETER                                         | SYMBOL          | TEST CONDITION                                                     | V                    | MIN   | TYP  | MAX   | UNIT   |
|---------------------------------------------------|-----------------|--------------------------------------------------------------------|----------------------|-------|------|-------|--------|
| O. t t.) /- 15                                    |                 | I <sub>O</sub> =30mA                                               |                      | -1.0% | -    | +1.0% |        |
| Output Voltage                                    | Vo              | I <sub>O</sub> =30mA, Ta=-40°C to 125°C                            |                      | -2.0% | -    | +2.0% | V      |
| Quiescent Current                                 |                 | Io=0mA, except IconT                                               |                      | -     | 150  | 200   |        |
|                                                   | lQ lQ           | Io=0mA, except Icont, Ta=-40°0                                     | C to 125°C           | -     | -    | 250   | μA     |
| Outleaseast Current at OFF state                  | 1               | V <sub>CONT</sub> =0V                                              |                      | -     | -    | 10    | μΑ     |
| Quiescent Current at OFF-state                    | IQ(OFF)         | V <sub>CONT</sub> =0V, Ta=-40°C to 125°C                           |                      | -     | -    | 20    |        |
| Output Current                                    | la la           | V <sub>0</sub> × 0.9V                                              |                      | 200   | 1    | -     | mA     |
| Output Current                                    | lo              | Vo × 0.9V, Ta=-40°C to 125°C                                       |                      | 200   | -    | -     | IIIA   |
|                                                   |                 | V <sub>IN</sub> =V <sub>O</sub> +1V to 6.5V, I <sub>O</sub> =30mA  | V <sub>0</sub> =1.8V | -     | 1    | 6.6   |        |
| Line Pegulation                                   | A\ / - / A\ /   | VIN-VOTIV 10 0.5V, 10-30111A                                       | Vo=3.3V              | -     | 1    | 7.3   | mV     |
| Line Regulation                                   | ΔVo/ΔVin        | $V_{IN}=V_{O}+1V$ to 6.5V, $I_{O}=30$ mA,                          | Vo=1.8V              | -     | -    | 14    | IIIV   |
|                                                   |                 | Ta=-40°C to 125°C                                                  | Vo=3.3V              | -     | -    | 15    | 1      |
|                                                   | ΔVο/ΔΙο         | I I₀=0mA to 200mA ⊢                                                | Vo=1.8V              | -     | -    | 27    | mV     |
| Load Domilation                                   |                 |                                                                    | Vo=3.3V              | -     | -    | 50    |        |
| Load Regulation                                   |                 | I <sub>0</sub> =0mA to 200mA,<br>Ta=-40°C to 125°C                 | V <sub>0</sub> =1.8V | -     | -    | 65    |        |
|                                                   |                 |                                                                    | V <sub>0</sub> =3.3V | -     | -    | 119   |        |
| Dropout Voltage (3)                               | ΔVιο            | I <sub>O</sub> =100mA                                              |                      | -     | 0.12 | 0.20  | V      |
| Dropout voltage (%)                               |                 | I <sub>O</sub> =100mA, Ta=-40°C to 125°C                           |                      | -     | -    | 0.37  |        |
| Average Temperature Coefficient of Output Voltage | ΔV₀/∆Τα         | Ta=-40°C to 125°C, lo=30mA                                         |                      | -     | ±50  | -     | ppm/°C |
| Ripple Rejection                                  | 55              | ein=200mVrms, f=1kHz,                                              | Vo=1.8V              | -     | 70   | -     | dB     |
| Rippie Rejection                                  | RR              | I <sub>O</sub> =10mA                                               | V <sub>0</sub> =3.3V | -     | 66   | -     |        |
| Output Naise Valtage                              | V               | f=10Hz to 80kHz, I <sub>0</sub> =10mA                              | V <sub>0</sub> =1.8V | -     | 34   | -     | \ /maa |
| Output Noise Voltage                              | V <sub>NO</sub> | f=10Hz to 80kHz, Io=10mA                                           | Vo=3.3V              | -     | 48   | -     | μVrms  |
| Control Current                                   | l               | V <sub>CONT</sub> =1.6V                                            |                      | -     | 3    | 12    | μΑ     |
| Control Current                                   | ICONT           | V <sub>CONT</sub> =1.8V, Ta=-40°C to 125°C                         |                      | -     | 1    | 20    |        |
| Control Voltage at                                | V               |                                                                    |                      | 1.6   | 1    | -     | V      |
| ON-state                                          | VCONT(ON)       | Ta=-40°C to 125°C                                                  |                      | 1.8   | ı    | -     | V      |
| Control Voltage at                                | Voortott        |                                                                    |                      | -     | -    | 0.6   | V      |
| OFF-state                                         | VCONT(OFF)      | Ta=-40°C to 125°C                                                  |                      | -     | -    | 0.5   |        |
| Discharge Current at OFF atata                    | le              | V <sub>IN</sub> =2.3V, V <sub>CONT</sub> =0V, V <sub>O</sub> =0.5V |                      | 2     | 9    | _     | mA     |
| Discharge Current at OFF-state                    | ldis            | V <sub>IN</sub> =6.5V, V <sub>CONT</sub> =0V, V <sub>O</sub> =0.5V |                      | 15    | 25   | -     |        |

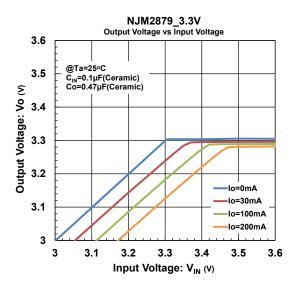
<sup>(3)</sup> Except Output Voltage Rank less than 2.1V

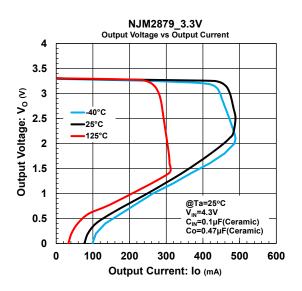


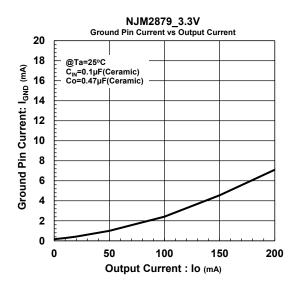

The above specifications are common specifications for all output voltages. Therefore, it may be different from the individual specification for a specific output voltage.

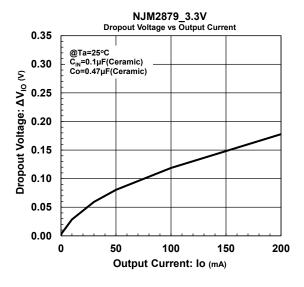
# **■ THERMAL CHARACTERISTICS**

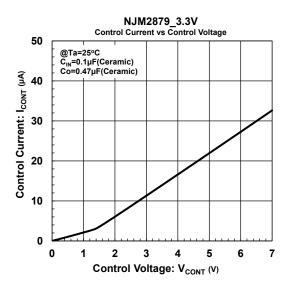
| PARAMETER                                                      | SYMBOL | VALUE                                                        | UNIT |
|----------------------------------------------------------------|--------|--------------------------------------------------------------|------|
| Junction-to-Ambient Thermal Resistance<br>SOT-23-5             | θја    | 2-Layer / 4-Layer<br>260 <sup>(4)</sup> / 192 <sup>(5)</sup> | °CW  |
| Junction-to-Top of Package Characterization Parameter SOT-23-5 | ψjt    | 2-Layer / 4-Layer<br>70 <sup>(4)</sup> / 60 <sup>(5)</sup>   | °CW  |

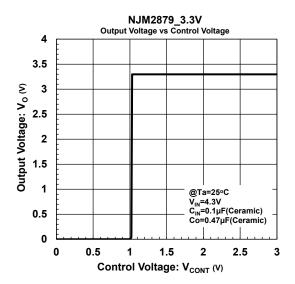

<sup>(4)</sup> Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JEDEC standard, 2Layers)

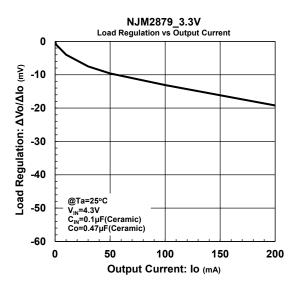

# ■ POWER DISSIPATION vs. AMBIENT TEMPERATURE

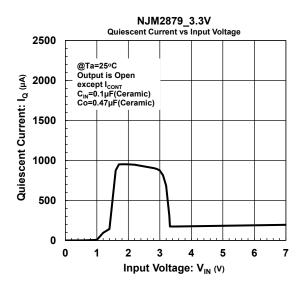


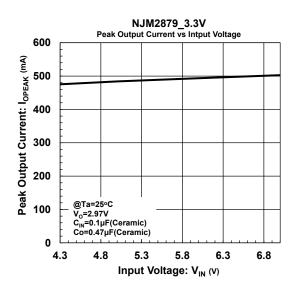



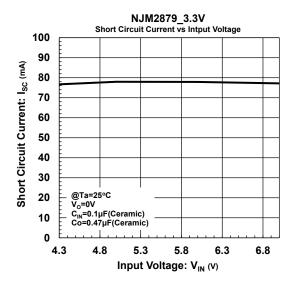


<sup>(5)</sup> Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JEDEC standard, 4Layers), internal Cu area: 74.2×74.2mm

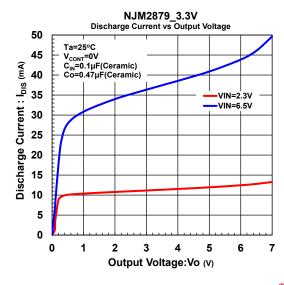


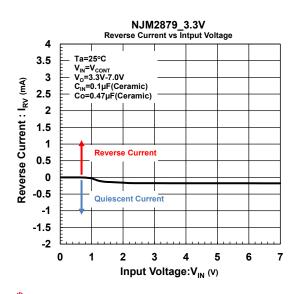



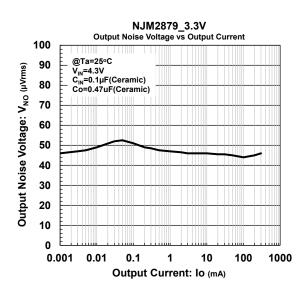



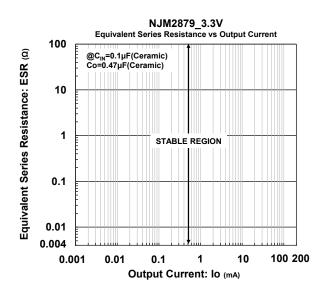



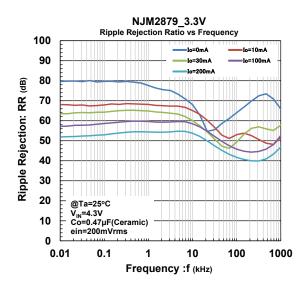



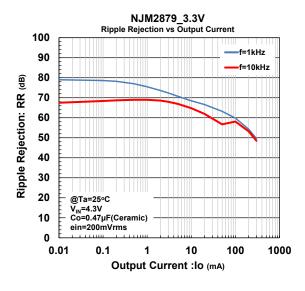



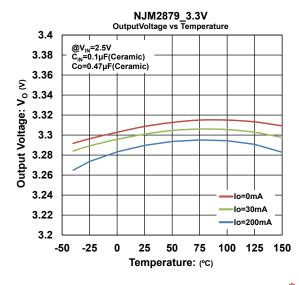



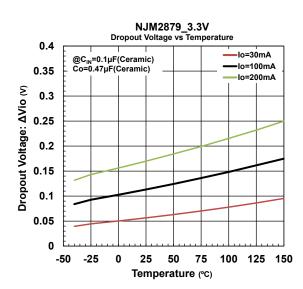



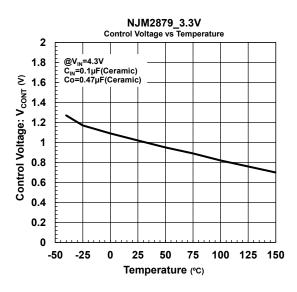



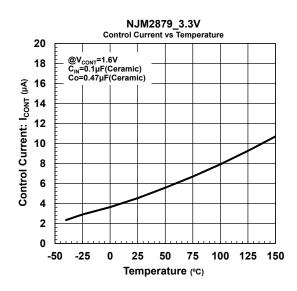



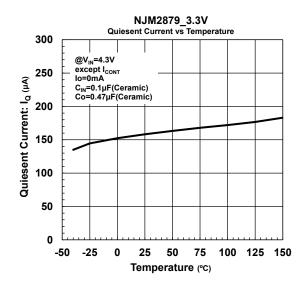



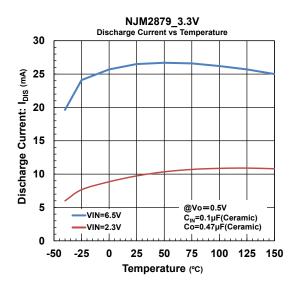



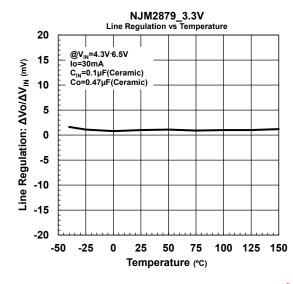


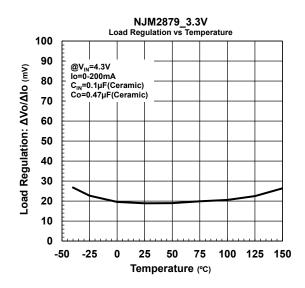



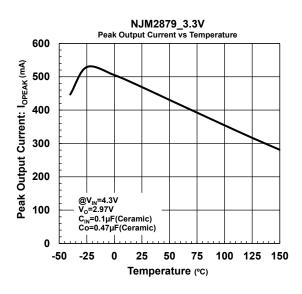



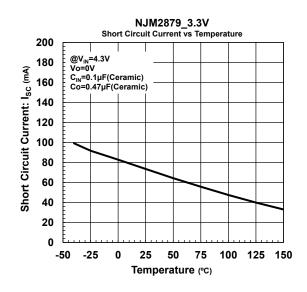



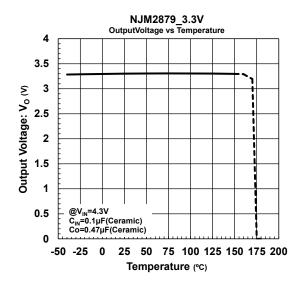



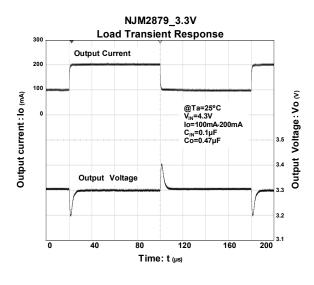



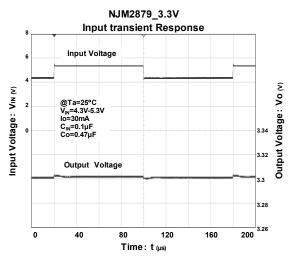


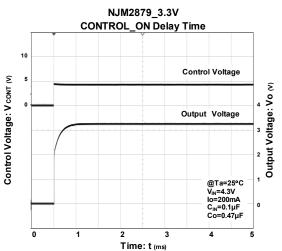



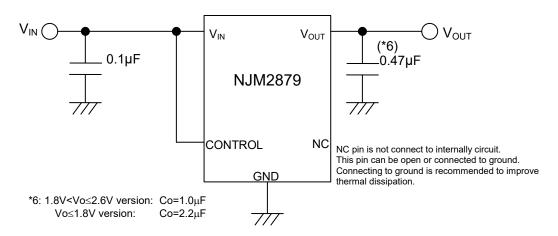



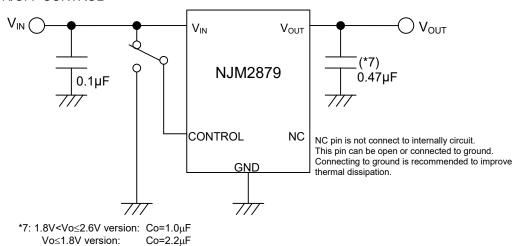










# **■ TYPICAL APPLICATION**

1. In the case where ON/OFF Control is not required



Connect CONTROL Pin to  $V_{\text{IN}}$  Pin

# 2. In use of ON/OFF CONTROL



State of CONTROL Pin:

"H"  $\rightarrow$  output is enabled.

"L" or "open"  $\rightarrow$  output is disabled

# Automotive NJM2879-H

#### ■ APPLICATION NOTE / GLOSSARY

#### **Reverse Current Protection**

The NJM2879 has built-in Reverse Current Protection circuit.

This circuit prevents the large reverse current when output voltage is higher than input voltage.

Therefore external schottky-barrier diode (SBD) is not required

#### **Discharge Function**

The NJM2879 has a built-in discharge circuit to discharge the charged output capacitors.

Discharge circuit operates when the CONTROL Pin is set in LOW level. The circuit discharges the charged output capacitors rapidly.

# Input Capacitor C<sub>IN</sub>

The input capacitor  $C_{IN}$  is required in order to prevent oscillation and reduce power supply ripple of applications when high power supply impedance or a long power supply line.

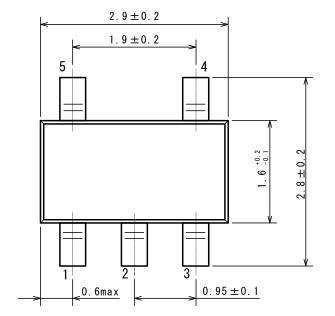
Therefore, the recommended capacitance (refer to conditions of ELECTRIC CHARACTERISTIC) or larger input capacitor, connected between  $V_{IN}$  and GND as short path as possible, is recommended in order to avoid the problem.

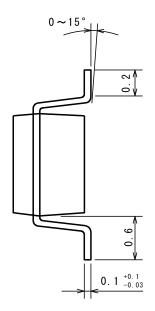
# Output Capacitor Co

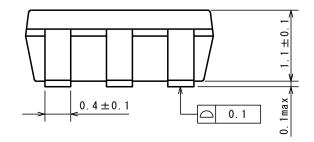
The output capacitor  $C_0$  is required for a phase compensation of the internal error amplifier, and the capacitance and the equivalent series resistance (ESR) influence stable operation of the regulator.

If use a smaller output capacitor than the recommended capacitance (refer to conditions of ELECTRIC CHARACTERISTIC), it may cause excess output noise or oscillation of the regulator due to lack of the phase compensation. Therefore, the recommended capacitance or larger output capacitor, connected between V<sub>OUT</sub> and GND as short path as possible, is recommended for stable operation. The recommended capacitance may be different by output voltage, therefore confirm the recommended capacitance of the required output voltage.

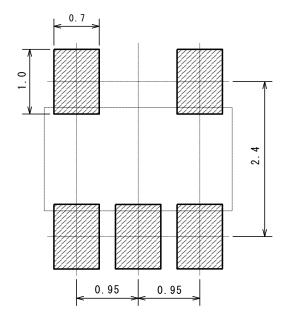
Furthermore, a larger output capacitor reduces output noise and ripple output, and also improves Output Transient Response when a load changes rapidly.


Selecting the output capacitor, should consider varied characteristics of a capacitor: frequency characteristics, temperature characteristics, DC bias characteristics and so on. Therefore, the capacitor that has a sufficient margin of the rated voltage against the output voltage and superior temperature characteristics, is recommended for Co.





SOT-23-5

Unit: mm

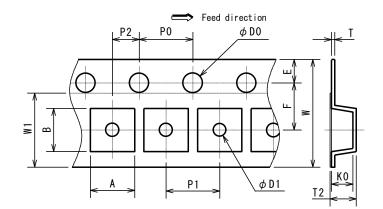

# **■ PACKAGE DIMENSIONS**





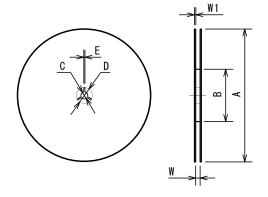


# **■ EXAMPLE OF SOLDER PADS DIMENSIONS**



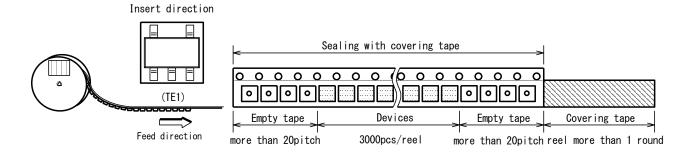

# **Automotive NJM2879-H**

SOT-23-5

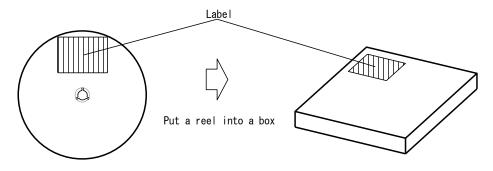

# ■ PACKING SPEC TAPING DIMENSIONS

Unit: mm




| SYMBOL | DIMENSION       | REMARKS          |
|--------|-----------------|------------------|
| A      | 3.3±0.1         | BOTTOM DIMENSION |
| В      | 3.2±0.1         | BOTTOM DIMENSION |
| D0     | 1. 55           |                  |
| D1     | 1. 05           |                  |
| E      | 1.75±0.1        |                  |
| F      | 3.5±0.05        |                  |
| P0     | 4.0±0.1         |                  |
| P1     | 4.0±0.1         |                  |
| P2     | 2.0±0.05        |                  |
| T      | $0.25 \pm 0.05$ |                  |
| T2     | 1. 82           |                  |
| K0     | 1.5±0.1         |                  |
| W      | 8.0±0.3         |                  |
| W1     | 5. 5            | THICKNESS 0.1MAX |

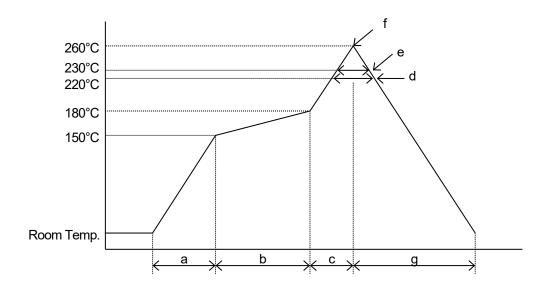
#### **REEL DIMENSIONS**




| SYMBOL | DIMENSION    |
|--------|--------------|
| Α      | $\phi$ 180±1 |
| В      | φ 60±1       |
| С      | φ 13±0.2     |
| D      | φ 21±0.8     |
| Е      | 2±0.5        |
| W      | 9±0.5        |
| W1     | 1.2±0.2      |

# **TAPING STATE**




# **PACKING STATE**



# **■ RECOMMENDED MOUNTING METHOD**

# INFRARED REFLOW SOLDERING METHOD

Recommended reflow soldering procedure



a:Temperature ramping rate : 1 to 4°C /s b:Pre-heating temperature : 150 to 180°C

time : 60 to 120s

c:Temperature ramp rate
d:220°C or higher time
e:230°C or higher time
f:Peak temperature
g:Temperature ramping rate
: 1 to 4°C /s
: Shorter than 60s
: Shorter than 40s
: Lower than 260°C
: 1 to 6°C /s

The temperature indicates at the surface of mold package.

# Nisshinbo Micro Devices Inc.

# **Automotive NJM2879-H**

# **■ REVISION HYSTORY**

| DATE        | REVISION | CHANGES                                                                                |  |
|-------------|----------|----------------------------------------------------------------------------------------|--|
| 8.Aug.2017  | Ver.1.0  | New Release Automotive "H" spec.                                                       |  |
| 19.Sep.2017 | Ver.1.1  | Add the Typical Characteristics graphs. Revise the "Load Regulation" spec.             |  |
| 20.Dec.2017 | Ver.1.2  | Added conformity with AEC-Q100 to FEATURES section                                     |  |
| 2.Sep.2021  | Ver.1.3  | Deleted duplicate information of PIN CONFIGURATION Added STATUS in OUTPUT VOLTAGE RANK |  |
| 31.May.2024 | Ver.1.4  | Updated for 1.8V output version release. Updated Packing Spec                          |  |



- The products and the product specifications described in this document are subject to change or discontinuation of production without
  notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the
  latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for automotive applications. Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
  - · Aerospace Equipment
  - Equipment Used in the Deep Sea
  - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
  - Life Maintenance Medical Equipment
  - Fire Alarms / Intruder Detectors
  - · Vehicle Control Equipment (airplane, railroad, ship, etc.)
  - Various Safety Devices
  - Traffic control system
  - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
  - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.

8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.



Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

**Purchase information** 

https://www.nisshinbo-microdevices.co.jp/en/buy/

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nisshinbo Micro Devices:

NJM2879F33H-TE1