TL082

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

Literature Number: SNOSBW5B
TL082
Wide Bandwidth Dual JFET Input Operational Amplifier

General Description
These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II™ technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL082 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and most LM358 designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features
- Internally trimmed offset voltage: 15 mV
- Low input bias current: 50 pA
- Low input noise voltage: 16 nV/√Hz
- Low input noise current: 0.01 pA/√Hz
- Wide gain bandwidth: 4 MHz
- High slew rate: 13 V/µs
- Low supply current: 3.6 mA
- High input impedance: 10^{12} Ω
- Low total harmonic distortion: ≤0.02%
- Low 1/f noise corner: 50 Hz
- Fast settling time to 0.01%: 2 µs

Typical Connection

Connection Diagram

Order Number TL082CM or TL082CP
See NS Package Number M08A or N08E

Simplified Schematic

Bi-FET II™ is a trademark of National Semiconductor Corp.
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage ±18V
Power Dissipation (Note 2)
Operating Temperature Range 0˚C to +70˚C
Tj(MAX) 150˚C
Differential Input Voltage ±30V

Input Voltage Range (Note 3) ±15V
Output Short Circuit Duration Continuous
Storage Temperature Range −65˚C to +150˚C
Lead Temp. (Soldering, 10 seconds) 260˚C
ESD rating to be determined.

Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

DC Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOS</td>
<td>Input Offset Voltage</td>
<td>Rₛ = 10 kΩ, T_A = 25˚C Over Temperature</td>
<td>5</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td>ΔVOS/ΔT</td>
<td>Average TC of Input Offset Voltage</td>
<td>Rₛ = 10 kΩ</td>
<td>10</td>
<td>μV/˚C</td>
<td></td>
</tr>
<tr>
<td>IOS</td>
<td>Input Offset Current</td>
<td>T_J = 25˚C, (Notes 5, 6) T_J ≤ 70˚C</td>
<td>25</td>
<td>200</td>
<td>pA</td>
</tr>
<tr>
<td>IB</td>
<td>Input Bias Current</td>
<td>T_J = 25˚C, (Notes 5, 6) T_J ≤ 70˚C</td>
<td>50</td>
<td>400</td>
<td>pA</td>
</tr>
<tr>
<td>RIN</td>
<td>Input Resistance</td>
<td>T_J = 25˚C</td>
<td>10^12</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>AVOL</td>
<td>Large Signal Voltage Gain</td>
<td>V_S = ±15V, T_A = 25˚C V_O = ±10V, R_L = 2 kΩ Over Temperature</td>
<td>25</td>
<td>100</td>
<td>V/mV</td>
</tr>
<tr>
<td>VO</td>
<td>Output Voltage Swing</td>
<td>V_S = ±15V, R_L = 10 kΩ</td>
<td>±12</td>
<td>±13.5</td>
<td>V</td>
</tr>
<tr>
<td>VCM</td>
<td>Input Common-Mode Voltage Range</td>
<td>V_S = ±15V</td>
<td>±11</td>
<td>+15</td>
<td>-12</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-Mode Rejection Ratio</td>
<td>Rₛ ≤ 10 kΩ</td>
<td>70</td>
<td>100</td>
<td>dB</td>
</tr>
<tr>
<td>PSRR</td>
<td>Supply Voltage Rejection Ratio (Note 7)</td>
<td>70</td>
<td>100</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>Supply Current</td>
<td></td>
<td>3.6</td>
<td>5.6</td>
<td>mA</td>
</tr>
</tbody>
</table>
AC Electrical Characteristics (Note 5)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>TL082C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amplifier to Amplifier Coupling</td>
<td>$T_A = 25,^\circ C$, $f = 1,Hz$ - $20,kHz$ (Input Referred)</td>
<td></td>
<td>-120</td>
</tr>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>$V_S = \pm 15,V$, $T_A = 25,^\circ C$</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>GBW</td>
<td>Gain Bandwidth Product</td>
<td>$V_S = \pm 15,V$, $T_A = 25,^\circ C$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>e_{in}</td>
<td>Equivalent Input Noise Voltage</td>
<td>$T_A = 25,^\circ C$, $R_S = 100,\Omega$, $f = 1000,Hz$</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>i_{in}</td>
<td>Equivalent Input Noise Current</td>
<td>$T_I = 25,^\circ C$, $f = 1000,Hz$</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>THD</td>
<td>Total Harmonic Distortion</td>
<td>$A_V = +10$, $R_L = 10k$, $V_O = 20,Vp - p$, $BW = 20,Hz$ - $20,kHz$</td>
<td><0.02</td>
<td></td>
</tr>
</tbody>
</table>

Note 2: For operating at elevated temperature, the device must be derated based on a thermal resistance of $115\,^\circ C/W$ junction to ambient for the N package.

Note 3: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

Note 4: The power dissipation limit, however, cannot be exceeded.

Note 5: These specifications apply for $V_S = \pm 15\,V$ and $0\,^\circ C \leq T_A \leq +70\,^\circ C$. V_{OS}, I_B, and I_{DS} are measured at $V_{CM} = 0$.

Note 6: The input bias currents are junction leakage currents which approximately double for every $10\,^\circ C$ increase in the junction temperature, T_J. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P_D. $T_J = T_A + \theta_{JA} P_D$ where θ_{JA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. $V_S = \pm 6\,V$ to $\pm 15\,V$.

Typical Performance Characteristics

Input Bias Current

- $V_S = +15\,V$
- $T_A = 25\,^\circ C$

Input Bias Current

- $V_{CM} = 0$
- $V_S = \pm 15\,V$

![Graph](image-url)
Typical Performance Characteristics (Continued)

Supply Current

Positive Common-Mode Input Voltage Limit

Negative Common-Mode Input Voltage Limit

Positive Current Limit

Negative Current Limit

Voltage Swing
Typical Performance Characteristics (Continued)

Output Voltage Swing

Gain Bandwidth

Bode Plot

Slew Rate

Distortion vs Frequency

Undistorted Output Voltage Swing
Typical Performance Characteristics (Continued)

Open Loop Frequency Response

Common-Mode Rejection Ratio

Power Supply Rejection Ratio

Equivalent Input Noise Voltage

Open Loop Voltage Gain (V/V)

Output Impedance
Inverter Setting Time

Output Voltage Swing from BV (V)

Settling Time (s)

V_S = ±15V
T_A = 25°C

Pulse Response

Small Signal Inverting

Large Signal Inverting

Output Voltage Swing (50 mV/DIV)

Time (0.2 μs/DIV)

Large Signal Non-Inverting

Output Voltage Swing (50 mV/DIV)

Time (2 μs/DIV)
Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.

The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

Each amplifier is individually biased by a zener reference which allows normal circuit operation on ±6V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The amplifiers will drive a 2 kΩ load resistance to ±10V over the full temperature range of 0°C to +70°C. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Detailed Schematic

Typical Applications

Three-Band Active Tone Control

Boost → Cut

00835711

00835712
Typical Applications (Continued)

- All potentiometers are linear taper
- Use the LF347 Quad for stereo applications

Note 8: All controls flat.
Note 9: Bass and treble boost, mid flat.
Note 10: Bass and treble cut, mid flat.
Note 11: Mid boost, bass and treble flat.
Note 12: Mid cut, bass and treble flat.

Improved CMRR Instrumentation Amplifier

\[A_{\text{V}} = \left(\frac{2R_2}{R_1 + 1} \right) \frac{R_5}{R_4} \]

\(^* \) and are separate isolated grounds
Matching of R2’s, R4’s and R5’s control CMRR
With \(A_{\text{VT}} = 1400 \), resistor matching = 0.01%: CMRR = 136 dB

- Very high input impedance
- Super high CMRR

www.national.com 10
Typical Applications (Continued)

Fourth Order Low Pass Butterworth Filter

- Corner frequency \(f_0 = \frac{1}{2\pi \sqrt{R_1 R_2 C_1}} \)
- Passband gain \(H_0 = 1 + \frac{R_4}{R_3} \) \(1 + \frac{R_4'}{R_3'} \)
- First stage \(Q = 1.31 \)
- Second stage \(Q = 0.541 \)
- Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
- Offset nulling necessary for accurate DC performance

Fourth Order High Pass Butterworth Filter

- Corner frequency \(f_0 = \frac{1}{2\pi \sqrt{R_1 R_2 C_2}} \)
- Passband gain \(H_0 = 1 + \frac{R_4}{R_3} \) \(1 + \frac{R_4'}{R_3'} \)
- First stage \(Q = 1.31 \)
- Second stage \(Q = 0.541 \)
- Circuit shown uses closest 5% tolerance resistor values for a filter with a corner frequency of 1 kHz and a passband gain of 10
Typical Applications (Continued)

Ohms to Volts Converter

\[
V_O = \frac{1V}{R_{\text{LADDER}}} \times R_X
\]

Where \(R_{\text{LADDER}} \) is the resistance from switch S1 pole to pin 7 of the TL082CP.
Physical Dimensions inches (millimeters) unless otherwise noted

Order Number TL082CM
NS Package M08A

Order Number TL082CP
NS Package N08E
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of sale acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such non-designated products.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Mobile Processors</td>
<td></td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated
Texas Instruments:
TL082CM TL082CM/NOPB TL082CMX TL082CMX/NOPB TL082CP/NOPB TL082CP/PB