

# Reference Specification

200°C Operation Leaded MLCC for Automotive with AEC-Q200 RHS Series

Product specifications in this catalog are as of Mar. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

#### ⚠ CAUTION

#### 1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

| Voltage                   | DC Voltage | DC+AC Voltage | AC Voltage | Pulse Voltage(1) | Pulse Voltage(2) |
|---------------------------|------------|---------------|------------|------------------|------------------|
| Positional<br>Measurement | Vo-p       | Vo-p          | Vp-p       | Vp-p             | Vp-p             |

#### 2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

#### 3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

#### 4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

#### 5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

#### 6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

#### 7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

#### 8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

#### 9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

#### **NOTICE**

#### 1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

#### 2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

#### 3. CAPACITANCE CHANGE OF CAPACITORS

Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

#### **⚠** NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

### 1. Application

This specification is applied to 200°C Operation Leaded MLCC RHS series iin accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

#### 2. Rating

• Applied maximum temperature up to 200°C

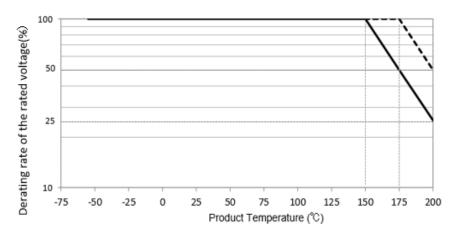
Note: Maximum accumulative time to 200°C is within 2000 hours.

• Part Number Configuration

| ex.) | RHS    | 7G              | 2A      | 101         | J           | 0         | A2    | H01           | В       |
|------|--------|-----------------|---------|-------------|-------------|-----------|-------|---------------|---------|
|      | Series | Temperature     | Rated   | Capacitance | Capacitance | Dimension | Lead  | Individual    | Package |
|      |        | Characteristics | Voltage |             | Tolerance   | (LxW)     | Style | Specification |         |

#### Series

| Code | Content                  |
|------|--------------------------|
| RHS  | Epoxy coated, 200°C max. |


• Temperature Characteristics

| Code | Temp. Char.   | Temp. Range | Temp.coef.     | Standard<br>Temp. | Operating<br>Temp. Range |
|------|---------------|-------------|----------------|-------------------|--------------------------|
|      | CCG           | -55∼25°C    | 0+30/-72ppm/°C |                   |                          |
| 7G   |               | 25∼125°C    | 0+/-30ppm/°C   | 25°C              | -55∼200°C                |
|      | (Murata code) | 125∼200°C   | 0+72/-30ppm/°C |                   |                          |

#### Rated Voltage

| Code | Rated voltage |
|------|---------------|
| 2A   | DC100V        |

When the product temperature exceeds  $150^{\circ}\,$  C, please use this product within the voltage and temperature derated conditions in the figure below.



----- Temp. Char. : CCG, Rated Voltage : 100V, Capacitance : 100pF-1000pF

Temp. Char.: CCG, Rated Voltage: 100V, Capacitance: 1200pF-3300pF

#### Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 101

$$10 \times 10^1 = 100 pF$$

#### • Capacitance Tolerance

| Code | Capacitance Tolerance |
|------|-----------------------|
| J    | +/-5%                 |

#### • Dimension (LxW)

Please refer to [ Part number list ].

\*Lead wire is "solder coated CP wire".

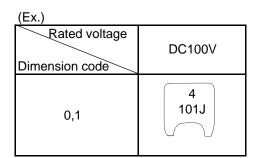
| Code | Lead Style               | Lead spacing (mm) |
|------|--------------------------|-------------------|
| A2   | Straight type            | 2.5+/-0.8         |
| DG   | Straight taping type     | 2.5+0.4/-0.2      |
| K1   | Inside crimp type        | 5.0+/-0.8         |
| M2   | Inside crimp taping type | 5.0+0.6/-0.2      |

#### • Individual Specification

Murata's control code.

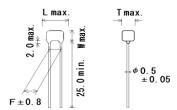
Please refer to [ Part number list ].

#### Package

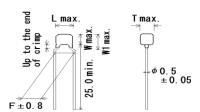

| Code | Package             |
|------|---------------------|
| Α    | Taping type of Ammo |
| В    | Bulk type           |

#### 3. Marking

Temp. char. : Letter code : 4 (CCG char.)


Capacitance : 3 digit numbers

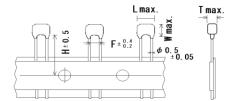
Capacitance tolerance : Code



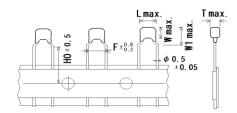

#### 4. Part number list

 Straight Long (Lead Style: A2)




 Inside Crimp (Lead Style:K\*)




Unit: mm

|             |                    |      |              |        |      | _   |      |          |      | Unit : mm |                    |              |
|-------------|--------------------|------|--------------|--------|------|-----|------|----------|------|-----------|--------------------|--------------|
| Customer    | Murata Part Number | T.C. | DC<br>Rated  | Cap.   | Сар. |     | Dime | ension ( | (mm) |           | Dimension<br>(LxW) | Pack<br>qty. |
| Part Number | Warata Fart Namber | 1.0. | Volt.<br>(V) | оцр.   | Tol. | L   | W    | W1       | F    | Т         | Lead Style         |              |
|             | RHS7G2A101J0A2H01B | CCG  | 100          | 100pF  | ±5%  | 3.9 | 3.5  | -        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A121J0A2H01B | CCG  | 100          | 120pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A151J0A2H01B | CCG  | 100          | 150pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A181J0A2H01B | CCG  | 100          | 180pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A221J0A2H01B | CCG  | 100          | 220pF  | ±5%  | 3.9 | 3.5  | -        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A271J0A2H01B | CCG  | 100          | 270pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A331J0A2H01B | CCG  | 100          | 330pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A391J0A2H01B | CCG  | 100          | 390pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A471J0A2H01B | CCG  | 100          | 470pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A561J0A2H01B | CCG  | 100          | 560pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A681J0A2H01B | CCG  | 100          | 680pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A821J0A2H01B | CCG  | 100          | 820pF  | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A102J0A2H01B | CCG  | 100          | 1000pF | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A122J0A2H01B | CCG  | 100          | 1200pF | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A152J0A2H01B | CCG  | 100          | 1500pF | ±5%  | 3.9 | 3.5  | •        | 2.5  | 2.6       | 0A2                | 500          |
|             | RHS7G2A182J1A2H01B | CCG  | 100          | 1800pF | ±5%  | 4.2 | 3.5  | •        | 2.5  | 2.8       | 1A2                | 500          |
|             | RHS7G2A222J1A2H01B | CCG  | 100          | 2200pF | ±5%  | 4.2 | 3.5  | •        | 2.5  | 2.8       | 1A2                | 500          |
|             | RHS7G2A272J1A2H01B | CCG  | 100          | 2700pF | ±5%  | 4.2 | 3.5  | -        | 2.5  | 2.8       | 1A2                | 500          |
|             | RHS7G2A332J1A2H01B | CCG  | 100          | 3300pF | ±5%  | 4.2 | 3.5  | -        | 2.5  | 2.8       | 1A2                | 500          |
|             | RHS7G2A101J0K1H01B | CCG  | 100          | 100pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A121J0K1H01B | CCG  | 100          | 120pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A151J0K1H01B | CCG  | 100          | 150pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A181J0K1H01B | CCG  | 100          | 180pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A221J0K1H01B | CCG  | 100          | 220pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A271J0K1H01B | CCG  | 100          | 270pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A331J0K1H01B | CCG  | 100          | 330pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A391J0K1H01B | CCG  | 100          | 390pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A471J0K1H01B | CCG  | 100          | 470pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A561J0K1H01B | CCG  | 100          | 560pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A681J0K1H01B | CCG  | 100          | 680pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A821J0K1H01B | CCG  | 100          | 820pF  | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A102J0K1H01B | CCG  | 100          | 1000pF | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A122J0K1H01B | CCG  | 100          | 1200pF | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A152J0K1H01B | CCG  | 100          | 1500pF | ±5%  | 3.9 | 3.5  | 6.0      | 5.0  | 2.6       | 0K1                | 500          |
|             | RHS7G2A182J1K1H01B | CCG  | 100          | 1800pF | ±5%  | 4.2 | 3.5  | 5.0      | 5.0  | 2.8       | 1K1                | 500          |
|             | RHS7G2A222J1K1H01B | CCG  | 100          | 2200pF | ±5%  | 4.2 | 3.5  | 5.0      | 5.0  | 2.8       | 1K1                | 500          |
|             | RHS7G2A272J1K1H01B | CCG  | 100          | 2700pF | ±5%  | 4.2 | 3.5  | 5.0      | 5.0  | 2.8       | 1K1                | 500          |
|             | RHS7G2A332J1K1H01B | CCG  | 100          | 3300pF | ±5%  | 4.2 | 3.5  | 5.0      | 5.0  | 2.8       | 1K1                | 500          |

 Straight Taping (Lead Style:DG)



 Inside Crimp Taping (Lead Style: M2)



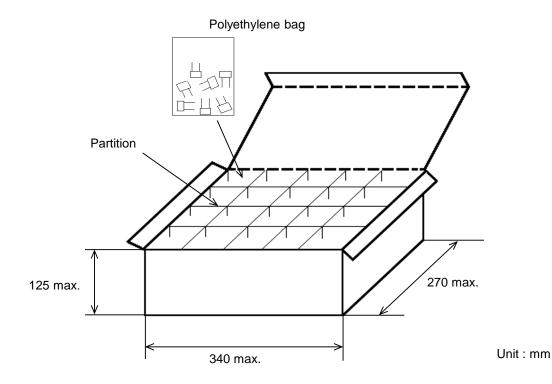
Unit : mm

|             |                    |      |              |        |      |                |     |     |     |     | Unit : mm |                    |     |
|-------------|--------------------|------|--------------|--------|------|----------------|-----|-----|-----|-----|-----------|--------------------|-----|
| Customer    | Murata Part Number | T.C. | DC<br>Rated  | Cap.   | Cap. | Dimension (mm) |     |     |     |     | T         | Dimension<br>(LxW) | Pad |
| Part Number |                    |      | Volt.<br>(V) |        | Tol. | L              | W   | W1  | F   | Т   | H/H0      | Lead Style         |     |
|             | RHS7G2A101J0DGH01A | CCG  | 100          | 100pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 200 |
|             | RHS7G2A121J0DGH01A | CCG  | 100          | 120pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A151J0DGH01A | CCG  | 100          | 150pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A181J0DGH01A | CCG  | 100          | 180pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A221J0DGH01A | CCG  | 100          | 220pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A271J0DGH01A | CCG  | 100          | 270pF  | ±5%  | 3.9            | 3.5 |     | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A331J0DGH01A | CCG  | 100          | 330pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A391J0DGH01A | CCG  | 100          | 390pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A471J0DGH01A | CCG  | 100          | 470pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A561J0DGH01A | CCG  | 100          | 560pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A681J0DGH01A | CCG  | 100          | 680pF  | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 20  |
|             | RHS7G2A821J0DGH01A | CCG  | 100          | 820pF  | ±5%  | 3.9            | 3.5 |     | 2.5 | 2.6 | 20.0      | 0DG                | 2   |
|             | RHS7G2A102J0DGH01A | CCG  | 100          | 1000pF | ±5%  | 3.9            | 3.5 |     | 2.5 | 2.6 | 20.0      | 0DG                | 2   |
|             | RHS7G2A122J0DGH01A | CCG  | 100          | 1200pF | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 2   |
|             | RHS7G2A152J0DGH01A | CCG  | 100          | 1500pF | ±5%  | 3.9            | 3.5 | -   | 2.5 | 2.6 | 20.0      | 0DG                | 2   |
|             | RHS7G2A182J1DGH01A | CCG  | 100          | 1800pF | ±5%  | 4.2            | 3.5 | -   | 2.5 | 2.8 | 20.0      | 1DG                | 2   |
|             | RHS7G2A222J1DGH01A | CCG  | 100          | 2200pF | ±5%  | 4.2            | 3.5 | -   | 2.5 | 2.8 | 20.0      | 1DG                | 2   |
|             | RHS7G2A272J1DGH01A | CCG  | 100          | 2700pF | ±5%  | 4.2            | 3.5 | -   | 2.5 | 2.8 | 20.0      | 1DG                | 2   |
|             | RHS7G2A332J1DGH01A | CCG  | 100          | 3300pF | ±5%  | 4.2            | 3.5 | -   | 2.5 | 2.8 | 20.0      | 1DG                | 2   |
|             | RHS7G2A101J0M2H01A | CCG  | 100          | 100pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A121J0M2H01A | CCG  | 100          | 120pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A151J0M2H01A | CCG  | 100          | 150pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A181J0M2H01A | CCG  | 100          | 180pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A221J0M2H01A | CCG  | 100          | 220pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A271J0M2H01A | CCG  | 100          | 270pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A331J0M2H01A | CCG  | 100          | 330pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A391J0M2H01A | CCG  | 100          | 390pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A471J0M2H01A | CCG  | 100          | 470pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A561J0M2H01A | CCG  | 100          | 560pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A681J0M2H01A | CCG  | 100          | 680pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A821J0M2H01A | CCG  | 100          | 820pF  | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A102J0M2H01A | CCG  | 100          | 1000pF | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A122J0M2H01A | CCG  | 100          | 1200pF | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A152J0M2H01A | CCG  | 100          | 1500pF | ±5%  | 3.9            | 3.5 | 6.0 | 5.0 | 2.6 | 20.0      | 0M2                | 2   |
|             | RHS7G2A182J1M2H01A | CCG  | 100          | 1800pF | ±5%  | 4.2            | 3.5 | 5.0 | 5.0 | 2.8 | 20.0      | 1M2                | 2   |
|             | RHS7G2A222J1M2H01A | CCG  | 100          | 2200pF | ±5%  | 4.2            | 3.5 | 5.0 | 5.0 | 2.8 | 20.0      | 1M2                | 2   |
|             | RHS7G2A272J1M2H01A | CCG  | 100          | 2700pF | ±5%  | 4.2            | 3.5 | 5.0 | 5.0 | 2.8 | 20.0      | 1M2                | 2   |
|             | RHS7G2A332J1M2H01A | CCG  | 100          | 3300pF | ±5%  | 4.2            | 3.5 | 5.0 | 5.0 | 2.8 | 20.0      | 1M2                | 2   |

#### Reference only

| 5. AE | C-Q200 Murata       | Standard Spec     | ifications and Test Methods                                       |                                                                                                          |
|-------|---------------------|-------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| No.   |                     | c-Q200<br>st Item | Specification                                                     | AEC-Q200 Test Method                                                                                     |
| 1     | Pre-and Post-S      |                   |                                                                   | -                                                                                                        |
| 2     | High<br>Temperature | Appearance        | No defects or abnormalities except color change of outer coating. | Sit the capacitor for 1000±12 hours at 200±5°C. Let sit for 24±2 hours at *room condition, then measure. |
|       | Exposure            | Capacitance       | Within ±3% or ±0.3pF                                              | 7                                                                                                        |
|       | (Storage)           | Change            | (Whichever is larger)                                             |                                                                                                          |
|       |                     | Q                 | Q ≧ 350                                                           |                                                                                                          |
|       |                     | I.R.              | 1,000MΩ min.                                                      |                                                                                                          |
| 3     | Temperature         | Appearance        | No defects or abnormalities except color                          | Perform the 1000 cycles according to the four heat treatments listed in                                  |
|       | Cycling             |                   | change of outer coating                                           | the following table. Let sit for 24±2 hours at *room condition, then measure.                            |
|       |                     | Capacitance       | Within ±5% or ±0.5pF                                              | Step 1 2 3 4                                                                                             |
|       |                     | Change            | (Whichever is larger)                                             | Temp. FF.0/0 Room 000.F/0 Room                                                                           |
|       |                     | Q                 | Q ≧ 350                                                           | (°C) -55+0/-3 Temp. 200+5/-0 Temp.                                                                       |
|       |                     | I.R.              | 1,000MΩ min.                                                      | Time (min.) 15±3 1 15±3 1                                                                                |
| 4     | Moisture            | Appearance        | No defects or abnormalities.                                      | Apply the 24 hours heat (25 to 65°C) and humidity (80 to 98%)                                            |
|       | Resistance          | Capacitance       | Within ±5% or ± 0.5pF                                             | treatment shown below, 10 consecutive times.                                                             |
|       |                     | Change            | (Whichever is larger)                                             | Let sit for 24±2 hours at *room condition, then measure.                                                 |
|       |                     | Q                 | Q ≧ 200                                                           | Liveridity Liveridity                                                                                    |
|       |                     | I.R.              | 500MΩ min.                                                        | (°C) Humidity 80~98% Humidity 80~98% Humidity                                                            |
|       |                     |                   |                                                                   | 70<br>90-98% <b>V</b> 90-98%<br>65                                                                       |
|       |                     |                   |                                                                   | 60                                                                                                       |
|       |                     |                   |                                                                   | 55                                                                                                       |
|       |                     |                   |                                                                   | ©50<br>045<br>040<br>035                                                                                 |
|       |                     |                   |                                                                   | 840 / / / / / / / / / / / / / / / / / / /                                                                |
|       |                     |                   |                                                                   | E <sup>35</sup>                                                                                          |
|       |                     |                   |                                                                   | 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                   |
|       |                     |                   |                                                                   | 20 +10 -2 °C                                                                                             |
|       |                     |                   |                                                                   | 15 2 3 10 Initial measurement                                                                            |
|       |                     |                   |                                                                   | 5 Initial measurement 5                                                                                  |
|       |                     |                   |                                                                   |                                                                                                          |
|       |                     |                   |                                                                   | -5                                                                                                       |
|       |                     |                   |                                                                   | One cycle 24 hours  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24                     |
|       |                     |                   |                                                                   | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24<br>Hours                                |
| 5     | Biased              | Appearance        | No defects or abnormalities.                                      | Apply the rated voltage and DC1.3+0.2/-0V (add 100kΩ resistor)                                           |
|       | Humidity            | Capacitance       | Within ±5% or ± 0.5pF                                             | at 85±3°C and 80 to 85% humidity for 1000±12 hours.                                                      |
|       |                     | Change            | (Whichever is larger)                                             | Remove and let sit for 24±2 hours at *room condition, then measure.                                      |
|       |                     | Q                 | Q ≧ 200                                                           | The charge/discharge current is less than 50mA.                                                          |
|       |                     | I.R.              | 500MΩ min.                                                        |                                                                                                          |
| 6     | Operational         | Appearance        | No defects or abnormalities except color                          | Apply voltage in Table for 1,000±12h at 200±5°C.                                                         |
|       | Life                | 0 - 11            | change of outer coating.                                          | Let sit for 24±2 hours at *room condition, then measure.                                                 |
|       |                     | Capacitance       | Within ±3% or ±0.3pF                                              | The charge/discharge current is less than 50mA.                                                          |
|       |                     | Change            | (Whichever is larger)                                             | Capacitance Test Voltage                                                                                 |
|       |                     | Q                 | Q ≥ 350                                                           | 100pF-1000pF 50% of the rated voltage                                                                    |
|       |                     | I.R.              | 1,000M $\Omega$ min.                                              | 1200pF-3300pF 25% of the rated voltage                                                                   |
| 7     | External Visua      |                   | No defects or abnormalities.                                      | Visual inspection.                                                                                       |
| 8     | Physical Dime       | nsion             | Within the specified dimensions.                                  | Using calipers and micrometers.                                                                          |
| 9     | Marking             | Ta                | To be easily legible.                                             | Visual inspection.                                                                                       |
| 10    | Resistance          | Appearance        | No defects or abnormalities.                                      | Per MIL-STD-202 Method 215                                                                               |
|       | to Solvents         | Capacitance       | Within the specified tolerance.                                   | Solvent 1 : 1 part (by volume) of isopropyl alcohol                                                      |
|       |                     | Q                 | Q ≧ 1,000                                                         | 3 parts (by volume) of mineral spirits                                                                   |
|       |                     | I.R.              | 10,000MΩ min.                                                     | Solvent 2 : Terpene defluxer                                                                             |
|       |                     |                   |                                                                   | Solvent 3: 42 parts (by volume) of water                                                                 |
|       |                     |                   |                                                                   | 1part (by volume) of propylene glycol monomethyl ether                                                   |
|       |                     |                   | 1                                                                 | 1 part (by volume) of monoethanolamine                                                                   |
| roo"  | m condition" T      | emperature : 15   | 5 to 35°C, Relative humidity : 45 to 75%, Atmo                    | osphere pressure : 86 to 106kPa                                                                          |
|       |                     |                   |                                                                   |                                                                                                          |
|       |                     |                   |                                                                   |                                                                                                          |
| i     |                     |                   |                                                                   |                                                                                                          |

Reference only


|         |                                                    |                 | Referen                                       | ce only                                                           |                  |                  |                 |                    |  |  |
|---------|----------------------------------------------------|-----------------|-----------------------------------------------|-------------------------------------------------------------------|------------------|------------------|-----------------|--------------------|--|--|
| No.     |                                                    | -Q200<br>t Item | AEC-Q200 Test Method                          |                                                                   |                  |                  |                 |                    |  |  |
| 11      | Mechanical Appearance No defects or abnormalities. |                 |                                               | Three shocks in each direction should be applied along 3          |                  |                  |                 |                    |  |  |
|         | Shock                                              | Capacitance     | Within the specified tolerance.               | mutually perper                                                   | ndicular axes    | of the test spe  | cimen (18 sho   | cks).              |  |  |
|         |                                                    | Q               | Q ≧ 1,000                                     | The specified te                                                  | est pulse shou   | uld be Half-sine | e and should h  | ave a              |  |  |
|         |                                                    |                 | . = 1,111                                     | duration : 0.5ms                                                  |                  |                  |                 |                    |  |  |
| 12      | Vibration                                          | Appearance      | No defects or abnormalities.                  | The capacitor s                                                   |                  |                  | , ,             |                    |  |  |
| 12      | VIDIALION                                          |                 |                                               | <del>-</del>   '                                                  |                  | •                | •               |                    |  |  |
|         |                                                    | Capacitance     | Within the specified tolerance.               | having a total a                                                  |                  |                  |                 |                    |  |  |
|         |                                                    | Q               | Q ≧ 1,000                                     | uniformly betwe                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               | The frequency i                                                   | range, from 1    | 0 to 2000Hz a    | nd return to 10 | )Hz,               |  |  |
|         |                                                    |                 |                                               | should be trave                                                   | rsed in appro    | ximately 20 m    | in. This motion | l                  |  |  |
|         |                                                    |                 |                                               | should be applie                                                  | ed for 12 item   | is in each 3 mi  | utually perpen  | dicular            |  |  |
|         |                                                    |                 |                                               | directions (total                                                 | of 36 times).    |                  |                 |                    |  |  |
| 13-1    | Resistance to                                      | Appearance      | No defects or abnormalities.                  | The lead wires                                                    | should be imr    | mersed in the r  | melted solder   | 1.5 to 2.0mm       |  |  |
|         | Soldering                                          | Capacitance     | Within ±2.5% or ±0.25pF                       | from the root of                                                  | terminal at 2    | 60±5°C for 10:   | ±1 seconds.     |                    |  |  |
|         | Heat                                               | Change          | (Whichever is larger)                         |                                                                   |                  |                  |                 |                    |  |  |
|         | (Non-                                              | Dielectric      | No defects.                                   | Post-treatmen                                                     | ıt               |                  |                 |                    |  |  |
|         | Preheat)                                           |                 | The delecte.                                  | Capacitor shoul                                                   |                  | or 24+2 hours    | at *room con    | dition             |  |  |
|         | Fielleat)                                          | Strength        |                                               | Capacitor Sriour                                                  | ia be storea it  | 01 24±2 110u15   | at 100111 con   | altion.            |  |  |
|         |                                                    | (Between        |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    | terminals)      |                                               | <u> </u>                                                          |                  |                  |                 |                    |  |  |
| 13-2    | Resistance to                                      | Appearance      | No defects or abnormalities.                  | First the capacit                                                 |                  |                  |                 |                    |  |  |
|         | Soldering                                          | Capacitance     | Within ±2.5% or ±0.25pF                       | Then, the lead v                                                  | wires should l   | be immersed in   | n the melted s  | older              |  |  |
|         | Heat                                               | Change          | (Whichever is larger)                         | 1.5 to 2.0mm fro                                                  | om the root o    | f terminal at 26 | 60±5°C for 7.5  | +0/-1 seconds.     |  |  |
|         | (On-                                               | Dielectric      | No defects.                                   |                                                                   |                  |                  |                 |                    |  |  |
|         | Preheat)                                           | Strength        |                                               | Post-treatmen                                                     | ıt               |                  |                 |                    |  |  |
|         |                                                    | (Between        |                                               | Capacitor shoul                                                   | ld be stored for | or 24±2 hours    | at *room cond   | dition.            |  |  |
|         |                                                    | terminals)      |                                               |                                                                   |                  |                  |                 |                    |  |  |
| 13-3    | Resistance to                                      | Appearance      | No defects or abnormalities.                  | Test condition                                                    |                  |                  |                 |                    |  |  |
| 10 0    | Soldering                                          | Capacitance     | Within ±2.5% or ±0.25pF                       | -                                                                 | of iron tin : 25 | 0+10°C           |                 |                    |  |  |
|         | ŭ                                                  | 1               | · ·                                           | Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds |                  |                  |                 |                    |  |  |
|         | Heat                                               | Change          | (Whichever is larger)                         | _                                                                 |                  | conas            |                 |                    |  |  |
|         | (soldering                                         | Dielectric      | No defects.                                   | Soldering position                                                |                  |                  |                 |                    |  |  |
|         | iron method)                                       | Strength        |                                               | Straight Lead: 1.5 to 2.0mm from the root of terminal.            |                  |                  |                 |                    |  |  |
|         |                                                    | (Between        |                                               | Crimp Lead : 1                                                    | 1.5 to 2.0mm     | from the end of  | of lead bend.   |                    |  |  |
|         |                                                    | terminals)      |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               | <ul> <li>Post-treatmen</li> </ul>                                 | it               |                  |                 |                    |  |  |
|         |                                                    |                 |                                               | Capacitor shoul                                                   | ld be stored for | or 24±2 hours    | at *room cond   | dition.            |  |  |
| 14      | Thermal                                            | Appearance      | No defects or abnormalities.                  | Perform the 300                                                   | 0 cycles acco    | rding to the tw  | o heat treatme  | ents listed in the |  |  |
|         | Shock                                              | Capacitance     | Within ±5% or ±0.5pF                          | following table (                                                 |                  |                  |                 |                    |  |  |
|         |                                                    | Change          | (Whichever is larger)                         | Let sit for 24±2                                                  |                  |                  |                 |                    |  |  |
|         |                                                    | _               | ->                                            | -                                                                 |                  |                  |                 | -                  |  |  |
|         |                                                    | Q<br>I.R.       | Q ≥ 350                                       | -                                                                 | Step             | 1                | 2               |                    |  |  |
|         |                                                    | I.K.            | 1,000MΩ min.                                  |                                                                   | Temp.            | 55.0/0           | 000.5/0         |                    |  |  |
|         |                                                    |                 |                                               |                                                                   | (°C)             | -55+0/-3         | 200+5/-0        |                    |  |  |
|         |                                                    |                 |                                               |                                                                   | Time             |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   | (min.)           | 15±3             | 15±3            |                    |  |  |
|         |                                                    |                 |                                               | ļ '                                                               |                  | I.               | 1               | 1                  |  |  |
| 15      | ESD                                                | Appearance      | No defects or abnormalities.                  | Per AEC-Q200-                                                     | -002             |                  |                 |                    |  |  |
|         |                                                    | Capacitance     | Within the specified tolerance.               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    | Q               | Q ≧ 1,000                                     |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    | I.R.            | 10,000MΩ min.                                 | 1                                                                 |                  |                  |                 |                    |  |  |
| 16      | Solderability                                      | 1               | Lead wire should be soldered with             | The terminal of                                                   | a capacitor is   | dipped into a    | solution of eth | anol               |  |  |
|         | Coldorability                                      |                 | uniform coating on the axial direction over   | (JIS-K-8101) ar                                                   | · ·              |                  |                 |                    |  |  |
|         |                                                    |                 | 95% of the circumferential direction.         |                                                                   |                  |                  | -               |                    |  |  |
|         |                                                    |                 | 95% of the circumerential direction.          | then into molter                                                  |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               | the depth of dip                                                  | ping is up to    | about 1.5 to 21  | nm from the te  | erminai body.      |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               | Temp. of solder                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               | 245±5°C Lead                                                      | d Free Solder    | (Sn-3.0Ag-0.5    | 5Cu)            |                    |  |  |
|         |                                                    |                 |                                               | 235±5°C H60                                                       | A or H63A E      | utectic Solder   |                 |                    |  |  |
| * "rooi | m condition" Te                                    | emperature : 15 | to 35°C, Relative humidity : 45 to 75%, Atmos | sphere pressure :                                                 | 86 to 106kPa     | 1                |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |
|         |                                                    |                 |                                               |                                                                   |                  |                  |                 |                    |  |  |

|          | Reference only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                                                           |                                  |                                                                                                    |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| No.      | AEC-Q200<br>Test Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | Specifications                                                                            |                                  | AEC-Q200 Test Method                                                                               |  |  |  |
| 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | No defects or abnormalities.                                                              |                                  | Visual inspection.                                                                                 |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Within the specified tolerance.                                                           |                                  | The capacitance, Q should be measured at 25°C at the frequency                                     |  |  |  |
|          | rization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                          | Q ≧ 1,000                                                                                 |                                  | and voltage shown in the table.                                                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | Nominal Cap. Frequency Voltage                                                                     |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | $C \le 1000pF  1 \pm 0.1MHz  AC0.5 \text{ to 5V(r.m.s.)}$                                          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | C > 1000pF                                                                                         |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | C > 1000pi   1±0.1Kt2   AC1±0.2V(1.III.S.)                                                         |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Insulation                 | Room                                                                                      | 10,000MΩ min.                    | The insulation resistance should be measured at 25±3 °C with a                                     |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resistance                 | Temperature                                                                               |                                  | DC voltage not exceeding the rated voltage at normal temperature                                   |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (I.R.)                     |                                                                                           |                                  | and humidity and within 2 min. of charging.  (Charge/Discharge current ≦ 50mA.)                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  |                                                                                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | High<br>Temperature                                                                       | 20MΩ min.                        | The insulation resistance should be measured at 200±5°C with a                                     |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | DC voltage not exceeding voltage in Table and within 2 min. of                                     |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | charging.                                                                                          |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | (Charge/Discharge current ≤ 50mA.)                                                                 |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | Capacitance Test Voltage                                                                           |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | 100pF-1000pF 50% of the rated voltage                                                              |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | 1200pF-3300pF 25% of the rated voltage                                                             |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dielectric                 | Between                                                                                   | No defects or abnormalities.     | The capacitor should not be damaged when voltage in Table is                                       |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strength                   | Terminals                                                                                 |                                  | applied between the terminations for 1 to 5 seconds.                                               |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | (Charge/Discharge current ≤ 50mA.)                                                                 |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | Rated Voltage Test Voltage                                                                         |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | DC100V 300% of the rated voltage                                                                   |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  |                                                                                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Body                                                                                      | No defects or abnormalities.     | The capacitor is placed in a container with                                                        |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Insulation                                                                                |                                  | metal balls of 1mm diameter so that each                                                           |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | terminal, short-circuit, is kept approximately  Approx.  2mm from the halls as shown in the figure |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | Ziliin nom the balls as shown in the lighter,                                                      |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | and voltage in table is impressed for 1 to 5                                                       |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | seconds between capacitor terminals and  Metal                                                     |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | metal balls.  (Charge/Discharge current < 50mA)                                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | (Charge/Discharge current ≤ 50mA.)                                                                 |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | Rated Voltage Test Voltage                                                                         |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | DC100V 250% of the rated voltage                                                                   |  |  |  |
| 18       | Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tensile                    | Termination no                                                                            | It to be broken or loosened.     | As in the figure, fix the capacitor body, apply the force gradually                                |  |  |  |
|          | Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Strength                   |                                                                                           |                                  | to each lead in the radial direction of the capacitor until reaching                               |  |  |  |
|          | , and the second |                            |                                                                                           |                                  | 10N and then keep the force applied for 10±1 seconds.                                              |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  |                                                                                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | 1 1 T                                                                                              |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | F D                                                                                                |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | <b>1</b>                                                                                           |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bending                    | Termination no                                                                            | t to be broken or loosened.      | Each lead wire should be subjected to a force of 2.5N and then                                     |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strength                   |                                                                                           |                                  | be bent 90° at the point of egress in one direction. Each wire is                                  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | then returned to the original position and bent 90° in the opposite                                |  |  |  |
| <u> </u> | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                           |                                  | direction at the rate of one bend per 2 to 3 seconds.                                              |  |  |  |
| 19       | Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Within the specified Toler |                                                                                           |                                  | The capacitance change should be measured after 5min. at                                           |  |  |  |
|          | Temperature<br>Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 0+30/-72ppm/°C (-55 to 25°C)<br>0±30ppm/°C (25 to 125°C)<br>0+72/-30ppm/°C (125 to 200°C) |                                  | each specified temperature step.                                                                   |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | Step Temperature(°C)                                                                               |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | υ+12/-3υpp                                                                                | 7111/ U (123 tU 200 U)           | 1 25±2                                                                                             |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | 2 -55±3                                                                                            |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | 3 25±2                                                                                             |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | 4 200±5                                                                                            |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | 5 25±2                                                                                             |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | The temperature coefficient is determined using the capacitance                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | measured in step 3 as a reference. When cycling the temperature                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | sequentially from step 1 through 5 (-55°C to 150°C)                                                |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | the capacitance should be within the specified tolerance for the                                   |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | temperature coefficient and capacitance change as Table A.                                         |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | The capacitance drift is calculated by dividing the differences                                    |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | between the maximum and minimum measured values in the                                             |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                           |                                  | step 1, 3 and 5 by the capacitance value in step 3.                                                |  |  |  |
| * "roor  | n condition" Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | emperature : 15            | to 35°C, Relativ                                                                          | re humidity: 45 to 75%, Atmosphe | re pressure : 86 to 106kPa                                                                         |  |  |  |
| ESRH     | OEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                           |                                  |                                                                                                    |  |  |  |

#### 6. Packing specification

•Bulk type (Packing style code : B)

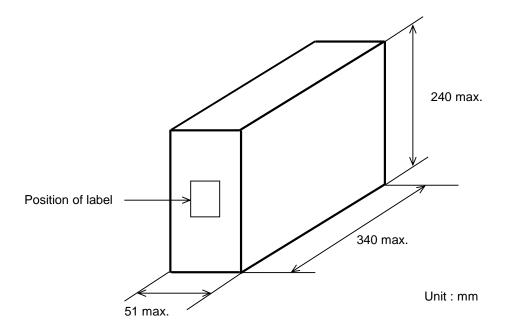
The size of packing case and packing way

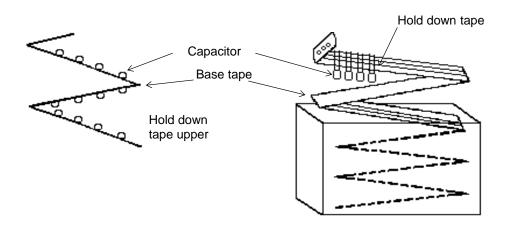


The number of packing =  $^{*1}$  Packing quantity ×  $^{*2}$  n

\*1 : Please refer to [Part number list].

\*2 : Standard n = 20 (bag)


#### Note)

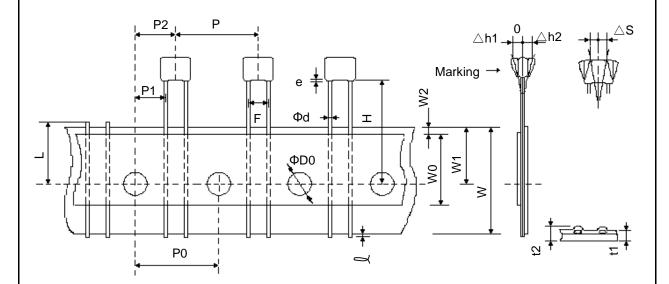

The outer package and the number of outer packing be changed by the order getting amount.

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way

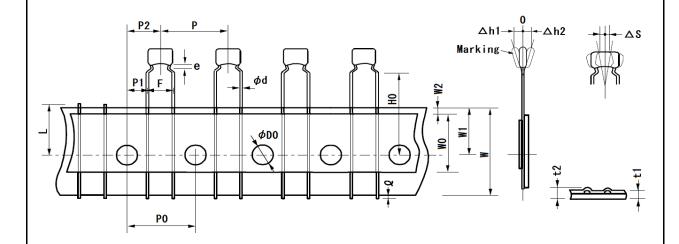





#### 7. Taping specification

#### 7-1. Dimension of capacitors on tape

Straight taping type < Lead Style : DG >

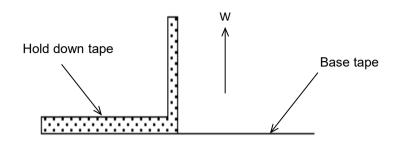

Pitch of component 12.7mm / Lead spacing 2.5mm



 $\mathsf{Unit}:\mathsf{mm}$ 

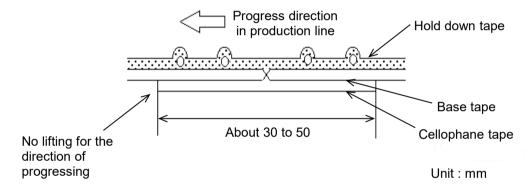
| Item                                             |      | Dimensions   | Remarks                               |  |
|--------------------------------------------------|------|--------------|---------------------------------------|--|
| Pitch of component                               |      | 12.7+/-1.0   |                                       |  |
| Pitch of sprocket hole                           |      | 12.7+/-0.2   |                                       |  |
| Lead spacing                                     |      | 2.5+0.4/-0.2 |                                       |  |
| Length from hole center to component center      |      | 6.35+/-1.3   | Deviation of progress direction       |  |
| Length from hole center to lead                  | P1   | 5.1+/-0.7    |                                       |  |
| Deviation along tape, left or right defect       |      | 0+/-2.0      | They include deviation by lead bend   |  |
| Carrier tape width                               |      | 18.0+/-0.5   |                                       |  |
| Position of sprocket hole                        |      | 9.0+0/-0.5   | Deviation of tape width direction     |  |
| Lead distance between reference and bottom plane | Н    | 20.0+/-0.5   |                                       |  |
| Protrusion length                                | L    | 0.5 max.     |                                       |  |
| Diameter of sprocket hole                        | ФD0  | 4.0+/-0.1    |                                       |  |
| Lead diameter                                    | Фd   | 0.5+/-0.05   |                                       |  |
| Total tape thickness                             | t1   | 0.6+/-0.3    | They include hold down tape thickness |  |
| Total thickness of tape and lead wire            | t2   | 1.5 max.     |                                       |  |
| Deviation agrees tone                            | ∆ h1 | 1.0 max.     |                                       |  |
| Deviation across tape                            |      | 1.0 IIIax.   |                                       |  |
| Portion to cut in case of defect                 | L    | 11.0+0/-1.0  |                                       |  |
| Hold down tape width                             | W0   | 9.5 min.     |                                       |  |
| Hold down tape position                          | W2   | 1.5+/-1.5    |                                       |  |
| Coating extension on lead                        | е    | 2.0 max.     |                                       |  |

Inside crimp taping type < Lead Style : M2 > Pitch of component 12.7mm / Lead spacing 5.0mm

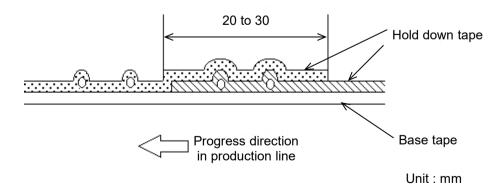



Unit: mm

| Item                                             |      | Dimensions                    | Remarks                               |  |
|--------------------------------------------------|------|-------------------------------|---------------------------------------|--|
| Pitch of component                               |      | 12.7+/-1.0                    |                                       |  |
| Pitch of sprocket hole                           |      | 12.7+/-0.2                    |                                       |  |
| Lead spacing                                     |      | 5.0+0.6/-0.2                  |                                       |  |
| Length from hole center to component center      |      | 6.35+/-1.3                    | Deviation of progress direction       |  |
| Length from hole center to lead                  | P1   | 3.85+/-0.7                    |                                       |  |
| Deviation along tape, left or right defect       | ΔS   | 0+/-2.0                       | They include deviation by lead bend   |  |
| Carrier tape width                               | W    | 18.0+/-0.5                    |                                       |  |
| Position of sprocket hole                        | W1   | 9.0+0/-0.5                    | Deviation of tape width direction     |  |
| Lead distance between reference and bottom plane | H0   | 20.0+/-0.5                    |                                       |  |
| Protrusion length                                | l    | 0.5 max.                      |                                       |  |
| Diameter of sprocket hole                        | ФD0  | 4.0+/-0.1                     |                                       |  |
| Lead diameter                                    | Фd   | 0.5+/-0.05                    |                                       |  |
| Total tape thickness                             | t1   | 0.6+/-0.3                     | They include hold down tape thickness |  |
| Total thickness of tape and lead wire            | t2   | 1.5 max.                      |                                       |  |
| Deviation across tape                            | ∆ h1 | 2.0 max. (Dimension code : W) |                                       |  |
| Deviation across tape                            | Δh2  | 1.0 max. (except as above)    |                                       |  |
| Portion to cut in case of defect                 | L    | 11.0+0/-1.0                   |                                       |  |
| Hold down tape width                             | W0   | 9.5 min.                      |                                       |  |
| Hold down tape position                          | W2   | 1.5+/-1.5                     |                                       |  |
| Coating extension on lead                        |      | Up to the end of crimp        |                                       |  |


#### 7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.




#### 2) Splicing of tape

- a) When base tape is spliced
  - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)



- b) When hold down tape is spliced
  - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)



- c) When both tape are spliced
  - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## Murata:

| RHS7G2A271J0M2H01A | A RHS7G2A102J0K1H01E | RHS7G2A121J0K1H01E | RHS7G2A102J0M2H01A |
|--------------------|----------------------|--------------------|--------------------|
| RHS7G2A391J0K1H01B | RHS7G2A332J1M2H01A   | RHS7G2A182J1A2H01B | RHS7G2A102J0A2H01B |
| RHS7G2A681J0K1H01B | RHS7G2A222J1K1H01B   | RHS7G2A391J0A2H01B | RHS7G2A152J0A2H01B |
| RHS7G2A101J0A2H01B | RHS7G2A561J0DGH01A   | RHS7G2A152J0K1H01B | RHS7G2A221J0K1H01B |
| RHS7G2A122J0K1H01B | RHS7G2A471J0DGH01A   | RHS7G2A271J0DGH01A | RHS7G2A271J0K1H01B |
| RHS7G2A471J0A2H01B | RHS7G2A391J0DGH01A   | RHS7G2A821J0K1H01B | RHS7G2A331J0A2H01B |
| RHS7G2A152J0DGH01A | RHS7G2A331J0K1H01B   | RHS7G2A151J0K1H01B | RHS7G2A331J0M2H01A |
| RHS7G2A272J1M2H01A | RHS7G2A151J0DGH01A   | RHS7G2A101J0K1H01B | RHS7G2A151J0A2H01B |
| RHS7G2A221J0DGH01A | RHS7G2A222J1DGH01A   | RHS7G2A681J0M2H01A | RHS7G2A471J0K1H01B |
| RHS7G2A102J0DGH01A | RHS7G2A222J1M2H01A   | RHS7G2A182J1DGH01A | RHS7G2A121J0M2H01A |
| RHS7G2A121J0DGH01A | RHS7G2A121J0A2H01B   | RHS7G2A122J0A2H01B | RHS7G2A221J0A2H01B |
| RHS7G2A221J0M2H01A | RHS7G2A561J0M2H01A   | RHS7G2A332J1DGH01A | RHS7G2A821J0A2H01B |
| RHS7G2A332J1A2H01B | RHS7G2A122J0M2H01A   | RHS7G2A681J0DGH01A | RHS7G2A561J0K1H01B |
| RHS7G2A391J0M2H01A | RHS7G2A471J0M2H01A   | RHS7G2A332J1K1H01B | RHS7G2A182J1M2H01A |
| RHS7G2A181J0M2H01A | RHS7G2A272J1A2H01B   | RHS7G2A181J0A2H01B | RHS7G2A151J0M2H01A |
| RHS7G2A681J0A2H01B | RHS7G2A182J1K1H01B   | RHS7G2A561J0A2H01B | RHS7G2A222J1A2H01B |
| RHS7G2A271J0A2H01B | RHS7G2A821J0DGH01A   | RHS7G2A821J0M2H01A | RHS7G2A181J0K1H01B |
| RHS7G2A181J0DGH01A | RHS7G2A101J0DGH01A   | RHS7G2A152J0M2H01A | RHS7G2A272J1K1H01B |
| RHS7G2A331J0DGH01A | RHS7G2A272J1DGH01A   | RHS7G2A122J0DGH01A | RHS7G2A101J0M2H01A |