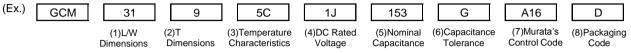
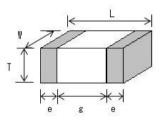


Chip Monolithic Ceramic Capacitor for Automotive GCM3195C1J153GA16_ (1206, C0G, 15000pF, DC63V)


_: packaging code

Reference Sheet


1.Scope

This product specification is applied to Chip Monolithic Ceramic Capacitor used for Automotive Electronic equipment.

2.MURATA Part NO. System

3. Type & Dimensions

				(Unit:mm)
(1)-1 L	(1)-2 W	(2) T	e	g
3.2±0.15	1.6±0.15	0.85±0.1	0.3 to 0.8	1.5 min.

4.Rated value

	Characteristics ode):C0G(EIA)	(4) DC Rated	(5) Nominal	(6) Capacitance	Specifications and Test Methods
Temp. coeff or Cap. Change	Temp. Range (Ref.Temp.)	Voltage	Capacitance	Tolerance	(Operating Temp. Range)
0±30 ppm/°C	25 to 125 °C (25 °C)	63 Vdc	15000 pF	±2 %	-55 to 125 °C

5.Package

mark	(8) Packaging	Packaging Unit
D	∳180mm Reel PAPER W8P4	4000 pcs./Reel
J	∳330mm Reel PAPER W8P4	10000 pcs./Reel

Product specifications in this catalog are as of May.24,2014,and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering. Please read rating and !Cautions first.

■AEC-Q200 Murata Standard Specification and Test Methods

emperature Cy	ress re Ige) Appearance Capacitance Change Q/D.F.	Temperature Compensating Type The measured and observed charact specifications in the following table. No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F	Fication. High Dielectric Type teristics should satisfy the R7/L8/R9: Within ±10.0% R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max. R9 : 0.075max.		citor for 1000±	LEC-Q200 Test Methor 12 hours at 150±3°C. rature, then measure.	
ectrical Test gh Temperatu (posure (Stora (((((((((((((((((((re lige) Appearance Capacitance Change Q/D.F.	Compensating Type The measured and observed charac specifications in the following table. No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F	R7/L8/R9: Within ±10.0% R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max.				Set for
ectrical Test gh Temperatu (posure (Stora (((((((((((((((((((re lige) Appearance Capacitance Change Q/D.F.	The measured and observed charac specifications in the following table. No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F	R7/L8/R9: Within ±10.0% R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max.				Set for
gh Temperatu (posure (Stora (((((((((((((((((((ige) Appearance Capacitance Change Q/D.F.	specifications in the following table. No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F	R7/L8/R9: Within ±10.0% R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max.				Set for
emperature Cy	ige) Appearance Capacitance Change Q/D.F.	specifications in the following table. No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F	R7/L8/R9: Within ±10.0% R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max.				Set for
emperature Cy	Appearance Capacitance Change Q/D.F.	No marking defects Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω • F	R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max.	24±2 hours a	it room tempe	rature, then measure.	
emperature Cy	Capacitance Change Q/D.F.	Within ±2.5% or ±0.25pF (Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F	R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max.				
emperature Cy	Q/D.F.	(Whichever is larger) 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F	R7/L8 W.V.: 25Vmin.: 0.03 max. W.V.: 16V/10V : 0.05 max.				
emperature Cy	Q/D.F.	30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F	W.V.: 16V/10V : 0.05 max.	-			
emperature Cy	I.R.	30pFmax.: Q ≧400+20C C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω · F	W.V.: 16V/10V : 0.05 max.				
emperature Cy		C: Nominal Capacitance(pF) More than 10,000MΩ or 500Ω •F					
emperature Cy		More than 10,000M Ω or 500 Ω ·F	R9 : 0.075max.				
emperature Cy		,					
· · ·	voling			4			
· · ·	oling	(Whichever is smaller)					
· · ·	oling	R9 : More than 150Ω •F					
Ţ.	cing	The measured and observed charac	teristics should satisfy the	Fix the capac	tor to the sup	porting jig in the same	manner and under
L		specifications in the following table.). Perform cycle test a	
	Appearance	No marking defects		-1		e following table. Set fo	-
-	Capacitance	Within ±2.5% or ±0.25pF	R7/L8/R9: Within ±10.0%	-	ature, then me	-	
	Change	(Whichever is larger)		tompor			
		, ,	R7/L8 W.V.: 25Vmin : 0.03 max	01	Time /m :)	Cyc	les
				Step	iine (min)	1000(for ∆C/R7)	300(for 5G/L8/R9)
				1	15±3	-55°C+0/-3	-55°C+0/-3
		O. Normal Capacitance(pr)	10.00max.	2	1	Room	Room
-	ID	Mana than 40 000MO an 5000		3	15±3	125°C+3/-0	150°C+3/-0
	I.K.	,		4	1	Room	Room
		(Whichever is smaller)					
						-	
							hour and then set
						•	
				Perform the i	nitial measure	ment.	
4 4				D EIA 400			
		No defects or abnormalities		Per EIA-469.			
				Arrely the O.4	h a h a .at. (05	4- (5°0)	(00 to 00%)
oisture Resista	ance		tenstics should satisfy the				(80 10 98%)
г				-			
-	••	-		Set 101 24±2	. nours at roor		
			R7/L8/R9: Within ±12.5%	Temperature	Humidity	Humidity H 80~98% Humidity 8	Humidity 80~98% Humidity
-					90~98%	90~98%	90~98%
	Q/D.F.	•		65			
				55			
			R9 : 0.075max.				
		•		40		╷┼┼╲┼╱┼┼┼┼	
_		C: Nominal Capacitance(pF)		30	<u>_</u> ////		
I	I.R.	More than 10,000M Ω or 500 $\Omega \cdot F$		25 20			
		(Whichever is smaller)		15	┶╋┼┼┼┼╡	2 °C	++++++++
		R9 : More than 150Ω •F		5 Initi	al measuremt	┟┼┼┼┼┼┼┼	
				0 -5			
				-10		One cycle 24bours	
					2 3 4 5 6 7	/ 8 9 10 11 12 13 14 15 16	i 17 18 19 20 21 22 23 24
ased Humidity	<i>,</i>	The measured and observed charac	teristics should satisfy the	Apply the rate	ed voltage and	d 1.3+0.2/-0vdc (add 6	.8kΩ resister)
		specifications in the following table.		at 85±3°C an	d 80 to 85% h	umidity for 1000±12 h	ours.
	Appearance	No marking defects		Remove and	set for 24±2 h	nours at room tempera	ture, then measure.
,	rippediantee			The charge/c	lischarge curre	ent is less than 50mA.	
-	Capacitance	Within ±3.0% or ±0.30pF	R7/L8/R9: Within ±12.5%				
(Capacitance		K1/L8/R9: Within ±12.5%		-		
0	Capacitance Change	(Whichever is larger)		-	2		
0	Capacitance	(Whichever is larger) 30pF and over: Q≧200	R7/L8 W.V.: 25Vmin.: 0.035 max.	-	-		
0	Capacitance Change	(Whichever is larger) 30pF and over: Q≧200 30pF and below: Q≧100+10C/3	R7/L8 W.V.: 25Vmin.: 0.035 max. W.V.: 16V/10V : 0.05 max.		-		
(Capacitance Change Q/D.F.	(Whichever is larger) 30pF and over: Q≧200 30pF and below: Q≧100+10C/3 C: Nominal Capacitance(pF)	R7/L8 W.V.: 25Vmin.: 0.035 max.		-		
(Capacitance Change	(Whichever is larger) 30pF and over: Q≧200 30pF and below: Q≧100+10C/3	R7/L8 W.V.: 25Vmin.: 0.035 max. W.V.: 16V/10V : 0.05 max.	-	-		
h	estructive hysical Analysi disture Resista	Q/D.F. Q/D.F. I.R. I.R. Appearance Capacitance Change Q/D.F. I.R. I.R.	$\begin{tabular}{ c c c c } \hline & $30pFmax.: Q $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$\begin{tabular}{ c $	$\begin{array}{ c c c c c c } \hline & 30pFmax:: Q \ge 400+20C \\ \hline C: Nominal Capacitance(pF) \\ \hline I.R. \\ \hline I.R. \\ \hline I.R. \\ \hline More than 10,000M\Omega or 500\Omega \cdot F \\ \hline (Whichever is smaller) \\ \hline I.R. \\ \hline No defects or abnormalities \\ \hline otherwise \\ \hline ot$	$\begin{array}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $	

AEC-Q200 Murata Standard Specification and Test Methods

		Spec	ification.		
AEC-Q200	0 Test Item	Temperature	High Dielectric Type	AEC-Q200 Test Method	
		Compensating Type	C		
rational Lif	e	The measured and observed characteristics should satisfy the specifications in the following table.		Apply 200% of the rated voltage for 1000 ± 12 hours at $125\pm3^{\circ}$ C(for	
	Appearance	No marking defects	ð.	Δ C/R7), 150±3°C(for 5G/L8/R9). Set for 24±2 hours at room temperature, then measure.	
	Capacitance	Within ±3.0% or ±0.30pF	R7/L8/R9: Within ±12.5%	The charge/discharge current is less than 50mA.	
	Change	(Whichever is larger)			
	Q/D.F.	30pFmin. : Q≧350	R7/L8 : W.V.: 25Vmin.: 0.035 max.	 Initial measurement for high dielectric constant type. 	
		10pF and over, 30pF and below:	(GCM155R71H 562-223: 0.05max)	Apply 200% of the rated DC voltage for one hour at the maximum	
		Q≧275+5C/2	W.V.: 16V/10V : 0.05 max.	operating temperature $\pm 3^{\circ}$ C. Remove and set for 24 ± 2 hours at	
		10pFmax.: Q ≧200+10C	R9 : 0.075max.	room temperature. Perform initial measurement.	
		C: Nominal Capacitance(pF)			
	I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$			
		(Whichever is smaller)			
ernal Visua	 	No defects or abnormalities		Visual inspection	
sical Dimer	nsion	Within the specified dimensions		Using calipers	
	1				
istance to vents	Appearance	No marking defects		Per MIL-STD-202 Method 215	
0110	Capacitance	Within the specified tolerance		Solvent 1 : 1 part (by volume) of isopropyl alcohol	
	Change	<u> </u>	1	3 parts (by volume) of mineral spirits	
	Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	Solvent 2 : Terpene defluxer	
		30pFmax.: Q ≧400+20C	W.V.: 16V/10V : 0.035 max.	Solvent 3 : 42 parts (by volume) of water	
		C: Nominal Capacitance(pF)	R9 : 0.05max.	1part (by volume) of propylene glycol monomethyl ether	
				1 part (by volume) of monoethanolamine	
	I.R.	More than 10,000MΩ or 500Ω ·F			
		(Whichever is smaller)			
hanical	Appearance	No marking defects		Three shocks in each direction should be applied along 3 mutually	
Shock	Capacitance	Within the specified tolerance		perpendicular axes of the test specimen (18 shocks).	
	Change			The specified test pulse should be Half-sine and should have a	
	Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	duration :0.5ms, peak value:1500g and velocity change: 4.7m/s.	
		30pFmax.: Q ≧400+20C	W.V.: 16V/10V : 0.035 max.		
		C: Nominal Capacitance(pF)	R9 : 0.05max.		
	I.R.	More than 10,000MΩ or 500Ω ·F		_	
		(Whichever is smaller)			
ation	Appearance	No defects or abnormalities		Solder the capacitor to the test jig (glass epoxy board) in the same	
	Capacitance	Within the specified tolerance		manner and under the same conditions as (19). The capacitor	
	Change			should be subjected to a simple harmonic motion having a total	
	Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	amplitude of 1.5mm, the frequency being varied uniformly between	
		30pFmax.: Q ≧400+20C	W.V.: 16V/10V : 0.035 max.	the approximate limits of 10 and 2000Hz. The frequency range, from	
		C: Nominal Capacitance(pF)	R9 : 0.05max.	10 to 2000Hz and return to 10Hz, should be traversed in	
				approximately 20 minutes. This motion should be applied for 12	
	I.R.	More than 10,000MΩ or 500Ω ·F	1	items in each 3 mutually perpendicular directions (total of 36 times).	
		(Whichever is smaller)			
istance to		The measured and observed char	acteristics should satisfy the	Immerse the capacitor in a eutectic solder solution at $260\pm5^{\circ}$ C for	
lering Heat		specifications in the following table	9	10 ± 1 seconds. Set at room temperature for 24 ± 2 hours, then	
	Appearance	No marking defects		measure.	
	Capacitance	Within the specified tolerance			
	Change		I	Initial measurement for high dielectric constant type	
	Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	Perform a heat treatment at 150+0/-10 °C for one hour and then set	
		30pFmax.: Q ≧400+20C C: Nominal Capacitance(pF)	W.V.: 16V/10V : 0.035 max. R9 : 0.05max.	for 24±2 hours at room temperature. Perform the initial measurement.	
		,			
	1.0	Mara than 10 000140		-	
	I.R.	More than 10,000MΩ or 500Ω •F (Whichever is smaller)		-	
		_	Q/D.F. 30pFmin. : Q≧1000 30pFmax.: Q ≧400+20C	Q/D.F. 30pFmin. : Q≧1000 R7/L8 : W.V.: 25Vmin.: 0.025 max. 30pFmax.: Q≧400+20C W.V.: 16V/10V : 0.035 max.	

■AEC-Q200 Murata Standard Specification and Test Methods

			Spec	ification.					
No	AEC-Q2	200 Test Item	Temperature	High Dielectric Type		AEC-Q200 Test Method			
14	Thermal Sh	Compensating Type Tight 2000 nock The measured and observed characteristics should satisfy t		eristics should satisfy the	Fix the capacitor to the supporting jig in the same manner and under				
			specifications in the following table.					e 300 cycles according to	
		Appearance	No marking defects		-			wing table(Maximum	
		Capacitance	Within ±2.5% or ±0.25pF	R7/L8/R9: Within ±10.0%			conds). Set for 24±	•	
		Change	(Whichever is larger)			ature, then me			
		Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.*				2	
		0.5	30pFmax.: Q ≧400+20C	*0.05max:GCM188R71E/1H563 to 104		Step	1		
				W.V.: 16V/10V : 0.035 max.		Temp.(°C)	-55+0/-3	125+3/-0(for∆C/R7) 150+3/-0 (for 5G/L8/R9)	
			C: Nominal Capacitance(pF)			Time			
				R9 : 0.05max	-	(min.)	15±3	15±3	
		I.R.	More than 10,000MΩ or 500Ω · F						
			(Whichever is smaller)		Perforn for 24±	n a heat treatn	m temperature.	constant type C for one hour and then set	
5	ESD	Appearance	No marking defects		Per AE	C-Q200-002			
		Capacitance	Within the specified tolerance		1				
		Change							
		Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	1				
			30pFmax.: Q ≧400+20C	W.V.: 16V/10V :0.035 max.					
			C: Nominal Capacitance(pF)	R9 : 0.05max.					
		I.R.	More than 10,000MΩ or 500Ω • F	1	1				
+	Solderabilit	l	(Whichever is smaller) 95% of the terminations is to be solde	() =	^		eheating, immerse the		
					eute (b) sho Afte etha prop	uld be placed i r preheating, ir	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde	r 8 hours±15 minutes.	
					Afte etha prop	r preheating, ir anol(JIS-K-810 portion). Immer	mmerse the capacit 1) and rosin (JIS-K- se in eutectic solde	8 hours±15 minutes. or in a solution of -5902) (25% rosin in weight er solution for 120±5	
7	Electrical	Apperent	No defeate or observativing		Afte etha prop seco	r preheating, ir anol(JIS-K-810 portion). Immer ands at 260±5%	mmerse the capacit 1) and rosin (JIS-K- se in eutectic solde	or in a solution of 5902) (25% rosin in weight	
	Electrical	Appearance	No defects or abnormalities		Afte etha prop seco Visual i	r preheating, ir anol(JIS-K-810 portion). Immer ands at 260±5°	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C.	or in a solution of -5902) (25% rosin in weight er solution for 120±5	
	Chatacteri-	Capacitance	No defects or abnormalities Within the specified tolerance		Afte etha prop seco Visual i The ca	r preheating, ir anol(JIS-K-810 portion). Immer ands at 260±5° inspection. pacitance/Q/D	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. 	or in a solution of -5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the	
		Capacitance Change	Within the specified tolerance	R7/1 8 · W V · 25\/min · 0.025 may	Afte etha prop seco Visual i The ca	r preheating, ir nol(JIS-K-810 vortion). Immer nds at 260±5° inspection. pacitance/Q/D ncy and voltage	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C.	or in a solution of -5902) (25% rosin in weight rr solution for 120±5 ured at 25°C at the	
	Chatacteri-	Capacitance	Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C	R7/L8 : W.V.: 25Vmin.: 0.025 max. W.V.: 16V/10V : 0.035 max.	Afte etha prop seco Visual i The ca	r preheating, ir nnol(JIS-K-810 portion). Immer nnds at 260±5° inspection. pacitance/Q/D ncy and voltage Char.	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. 	or in a solution of -5902) (25% rosin in weight or solution for 120 ± 5 ured at 25°C at the $\Delta C,5G$ (more than $1000pF$)	
	Chatacteri-	Capacitance Change	Within the specified tolerance 30pFmin. : Q≧1000		Afte etha prop seco Visual i The ca frequer	r preheating, in nnol(JIS-K-810 portion). Immer inspection. pacitance/Q/D ncy and voltage Char. Item	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. .F. should be measure e shown in the table $\Delta C,5G$ (1000 pF and belo	or in a solution of 4-5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the a. $\Delta C,5G$ (more than 1000pF) $R7,R9,L8(C \leq 10 \mu F)$	
	Chatacteri-	Capacitance Change	Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C	W.V.: 16V/10V : 0.035 max.	Afte etha prop seco Visual i The cal frequer	r preheating, ir nnol(JIS-K-810 portion). Immer nnds at 260±5° inspection. pacitance/Q/D ncy and voltage Char.	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. .F. should be meas e shown in the table Δ C,5G	or in a solution of -5902) (25% rosin in weight or solution for 120 ± 5 ured at 25°C at the $\Delta C,5G$ (more than $1000pF$)	
	Chatacteri-	Capacitance Change Q/D.F.	Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF)	W.V.: 16V/10V : 0.035 max. R9 : 0.05max.	Afte etha prop seco Visual i The cal frequer	r preheating, in nol(JIS-K-810 portion). Immer inds at 260±5° inspection. pacitance/Q/D ncy and voltage Char. Item requency foltage	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. F. should be measure e shown in the table $\Delta C,5G$ (1000 pF and belo 1±0.1MHz 0.5 to 5Vrms	or in a solution of 4-5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the a. w) $\Delta C,5G$ (more than 1000pF) R7,R9,L8(C≤10 μ F) 1±0.1kHz 1±0.2Vrms	
	Chatacteri-	Capacitance Change	Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C	W.V.: 16V/10V : 0.035 max.	Afte etha prop seco Visual i The cal frequer F V	r preheating, in nol(JIS-K-810 portion). Immer inds at 260±5° inspection. pacitance/Q/D ncy and voltage Char. Item requency foltage	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. F. should be measured a C,5G (1000 pF and belov 1 ± 0.1 MHz 0.5 to 5Vrms nce should be measured	or in a solution of 4-5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the a. w) $\Delta C.5G$ (more than 1000pF) R7,R9,L8(C≤10 μ F) 1±0.1kHz 1±0.2Vrms sured with a DC voltage not 125°C (for Δ C/R7)/ 150°C	
	Chatacteri-	Capacitance Change Q/D.F.	Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 100,000MΩ or 1000Ω • F (Whichever is smaller) More than 10,000MΩ or 100Ω • F	W.V.: 16V/10V : 0.035 max. R9 : 0.05max. More than 10,000MΩ or 500Ω+F (Whichever is smaller) More than 1,000MΩ or 10Ω+F	Afte etha prop seco Visual i The cal frequer F V	r preheating, in nol(JIS-K-810 portion). Immer inds at 260±5° inspection. pacitance/Q/D ncy and voltage Char. Item requency foltage	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. F. should be measured a C,5G (1000 pF and belov 1 ± 0.1 MHz 0.5 to 5Vrms nce should be measured 125°C and	or in a solution of 4-5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the a. w) $\Delta C.5G$ (more than 1000pF) R7,R9,L8(C≤10 μ F) 1±0.1kHz 1±0.2Vrms sured with a DC voltage not 125°C (for Δ C/R7)/ 150°C	
	Chatacteri-	Capacitance Change Q/D.F. I.R. 25°C	Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 100,000MΩ or 1000Ω+F (Whichever is smaller)	W.V.: 16V/10V : 0.035 max. R9 : 0.05max. More than 10,000MΩ or 500Ω+F (Whichever is smaller)	Afte etha prop seco Visual i The cal frequer F V	r preheating, in nol(JIS-K-810 portion). Immer inds at 260±5° inspection. pacitance/Q/D ncy and voltage Char. Item requency foltage	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. F. should be measured a C,5G (1000 pF and belov 1 ± 0.1 MHz 0.5 to 5Vrms nce should be measured 125°C and	or in a solution of 4-5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the a. w) $\Delta C.5G$ (more than 1000pF) R7,R9,L8(C≤10 μ F) 1±0.1kHz 1±0.2Vrms sured with a DC voltage not 125°C (for Δ C/R7)/ 150°C	
	Chatacteri-	Capacitance Change Q/D.F. I.R. 25°C	Within the specified tolerance 30pFmin. : Q≧1000 30pFmax.: Q≧400+20C C: Nominal Capacitance(pF) More than 100,000MΩ or 1000Ω • F (Whichever is smaller) More than 10,000MΩ or 100Ω • F	W.V.: 16V/10V : 0.035 max. R9 : 0.05max. More than 10,000MΩ or 500Ω+F (Whichever is smaller) More than 1,000MΩ or 10Ω+F	Afte etha prop seco Visual i The cal frequer F V	r preheating, in nol(JIS-K-810 portion). Immer inds at 260±5° inspection. pacitance/Q/D ncy and voltage Char. Item requency foltage	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. F. should be measured a C,5G (1000 pF and belov 1 ± 0.1 MHz 0.5 to 5Vrms nce should be measured 125°C and	or in a solution of 4-5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the a. w) $\Delta C.5G$ (more than 1000pF) R7,R9,L8(C≤10 μ F) 1±0.1kHz 1±0.2Vrms sured with a DC voltage not 125°C (for Δ C/R7)/ 150°C	
	Chatacteri-	Capacitance Change Q/D.F. I.R. 25°C I.R. 125°C	Within the specified tolerance $30pFmin. : Q \ge 1000$ $30pFmax.: Q \ge 400+20C$ C: Nominal Capacitance(pF)More than 100,000MΩ or 1000Ω·F(Whichever is smaller)More than 10,000MΩ or 100Ω·F(Whichever is smaller)More than 10,000MΩ or 100Ω·F(Whichever is smaller)	W.V.: 16V/10V : 0.035 max. R9 : 0.05max. More than 10,000MΩ or 500Ω • F (Whichever is smaller) More than 1,000MΩ or 10Ω • F (Whichever is smaller) More than 1,000MΩ or 1Ω • F	Afte etha prop seco Visual i The cal frequer F V The ins exceed (for 50	r preheating, ir nol(JIS-K-810 portion). Immer- inds at 260±5° inspection. pacitance/Q/D ncy and voltage Char. Item requency foltage sulation resista ing the rated v S/L8/R9) within	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. .F. should be measive a shown in the table $\Delta C,5G$ (1000 pF and below 1±0.1MHz 0.5 to 5Vms Ince should be measive roltage at 25°C and a 2 minutes of charge	or in a solution of 4-5902) (25% rosin in weight or solution for 120±5 ured at 25°C at the a. w) $\Delta C.5G$ (more than 1000pF) R7,R9,L8(C≤10 μ F) 1±0.1kHz 1±0.2Vrms sured with a DC voltage not 125°C (for Δ C/R7)/ 150°C	
	Chatacteri-	Capacitance Change Q/D.F. I.R. 25°C I.R. 125°C I.R. 150°C	Within the specified tolerance $30pFmin. : Q \ge 1000$ $30pFmax.: Q \ge 400+20C$ C: Nominal Capacitance(pF)More than 100,000MΩ or 1000Ω·F(Whichever is smaller)More than 10,000MΩ or 100Ω·F(Whichever is smaller)More than 10,000MΩ or 100Ω·F(Whichever is smaller)	W.V.: 16V/10V : 0.035 max. R9 : 0.05max. More than 10,000MΩ or 500Ω • F (Whichever is smaller) More than 1,000MΩ or 10Ω • F (Whichever is smaller) More than 1,000MΩ or 1Ω • F	Afte etha prop seco Visual ii The cal frequer F V The ins exceed (for 50 No failu	r preheating, ir nol(JIS-K-810 portion). Immer- inds at 260±5° inspection. pacitance/Q/D ncy and voltage Char. Item requency foltage sulation resistating the rated v S/L8/R9) within	mmerse the capacit 1) and rosin (JIS-K- rse in eutectic solde C. F. should be measive a shown in the table $\Delta C,5G$ (1000 pF and below 1±0.1MHz 0.5 to 5Vms Ince should be measive roltage at 25°C and a 2 minutes of charge beserved when 250	or in a solution of 4-5902) (25% rosin in weight r solution for 120±5 ured at 25°C at the a. $\Delta C,5G$ (more than 1000pF) R7,R9,L8(C ≤ 10 μ F) 1±0.1kHz 1±0.2Vrms sured with a DC voltage not 125°C (for Δ C/R7)/ 150°C ing.	

AEC-Q200 Murata Standard Specification and Test Methods

_			0-	ecification.				
No	AEC-Q200	Test Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method			
18	Board Flex Appearance		No marking defects		Solder the capacitor on the test jig (glass epoxy board) shown in Fig1 using a eutectic solder. Then apply a force in the direction shown in Fig 2 for 5 ± 1 sec. The soldering should be done by the reflow method and should be conducted with care so that the			
		Capacitance	Within ±5.0% or ±0.5pF	R7/L8/R9: Within ±10.0%	soldering is uniform and free of defects such as heat shock.			
		Change	(Whichever is larger)		Type a b c			
		Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	GCM03 0.3 0.9 0.3			
			30pFmax.: Q ≧400+20C	W.V.: 16V/10V : 0.035max.	GCM15 0.5 1.5 0.6 GCM18 0.6 2.2 0.9			
			C: Nominal Capacitance(pF)	R9 : 0.05max.	GCM21 0.8 3.0 1.3			
					GCM31 2.0 4.4 1.7 GCM32 2.0 4.4 2.6			
		I.R.	More than 10,000MΩ or 500	Ω·F	(in mm)			
			(Whichever is smaller)					
			i i i i i i i i i i i i i i i i i i i		$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline \\ \\ \\ \\$			
				t : 1.6mm (GCM03/15:0.8mm	Fig.2			
19	Terminal	Appearance	No marking defects	,	Solder the capacitor to the test jig (glass epoxy board) shown in			
	Strength	Conseitor			Fig.3 using a eutectic solder. Then apply *18N force in parallel with			
		Capacitance Change	Within specified tolerance		the test jig for 60sec. The soldering should be done either with an iron or using the reflow			
		Q/D.F.	30pFmin. : Q≧1000	R7/L8 : W.V.: 25Vmin.: 0.025 max.	method and should be conducted with care so that the soldering is			
			30pFmax.: Q ≧400+20C	W.V.: 16V/10V : 0.035max.	uniform and free of defects such as heat shock			
			C: Nominal Capacitance(pF)	R9 : 0.05max.	*2N(GCM03/15)			
		I.R.	More than 10,000MΩ or 500 (Whichever is smaller)	Ω ·F	Type a b c GGM03 0.3 0.9 0.3 GGM15 0.4 1.5 0.5 GGM18 1.0 3.0 1.2 GGM31 2.2 5.0 2.0 GGM32 2.2 5.0 2.9 (in mm) C C (GCM03/15: 0.8mm) Solder resist Baked electrode or Copper foil Fig. 3			
20	Beam Load Test		Destruction value should be	-	Place the capacitor in the beam load fixture as Fig 4.			
			< Chip L dimension : 2.5mm	max. > ss > 0.5mm rank : 20N	Apply a force. < Chip Length : 2.5mm max. >			
				ss ≤ 0.5 mm rank : 20N				
			< Chip L dimension : 3.2mm		↓ ∧			
			Chip thicknes	ss < 1.25mm rank : 15N ≧1.25mm rank : 54.5N	I ron Board			
					< Chip Length : 3.2mm min. >			
					Fig.4			
					Speed supplied the Stress Load : *0.5mm / sec. *GCM03: 0.1mm/sec.			

■AEC-Q200 Murata Standard Specification and Test Methods

			Specif	lication.			
No	AEC-Q2	00 Test Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method		
21	Capacitance Temperature Characteristics	Capacitance Capacitance Within the specified tolerance. R7 : Within ±15% remperature Change (Table A) (-55°C to +125°C)	The capacitance change should be measured after 5 min. at each specified temperature stage. (1)Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5 (Δ C: +25°C to +125°C, 5G:+25°C to +150°C other temp. coefficient.:+25°C to +85°C) the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A-1. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the step				
		Temperature Coefficient	Within the specified tolerance. (Table A)		1,3 and 5 by the cap value in step 3. Step Temperature.(°C) 1 25±2 2 -55±3(for ΔC to R7) 3 25±2 4 125±3(for ΔC/R7), 150±3(for 5G/R9/L8),85±3(for other TC)		
		Capacitance Drift	Within ±0.2% or ±0.05 pF (Whichever is larger.)		5 25±2 (2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. Initial measurement for high dielectric constant type. Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.		

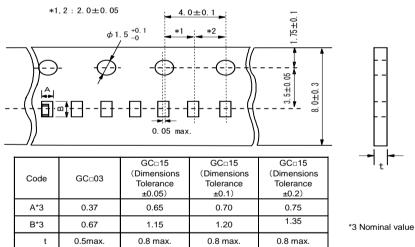
Table A

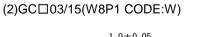
Capacitance Change from 25°C (%)						
	-55		-30		-10	
(ppm/°C)	Max.	Min.	Max.	Min.	Max.	Min.
0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11
	Nominal Values (ppm/°C) 0± 30	(ppm/°C) -5 Max.	Nominal Values-55(ppm/°C)Max.Min.	Nominal Values (ppm/°C) -55 -3 Max. Min. Max.	Nominal Values (ppm/°C) -55 -30 Max. Min. Max. Min.	Nominal Values (ppm/°C)-55-30-Max.Min.Max.Min.Max.

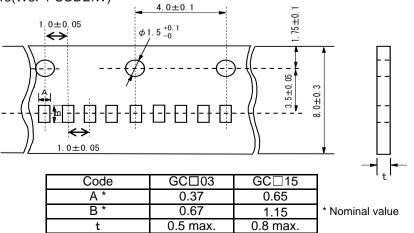
Note 1: Nominal values denote the temperature coefficient within a range of 25° C to 125° C(for Δ C)/ 150° C(for 5G)/85^{\circ}C(for other TC).

muRata

Package GC□ Tvpe


1.Tape Carrier Packaging(Packaging Code:D/E/W/F/L/J/K) 1.1 Minimum Quantity(pcs./reel)


Туре			φ180mm reel	φ330mm reel		
		Paper	⁻ Tape	Plastic Tape	Paper Tape	Plastic Tape
		Code:D/E	Code:W	Code:L	Code:J/ F	Code:K
GC□03		15000(W8P2)	30000(W8P1)		50000(W8P2)	
GC□15	5 (Dimensions Tolerance:±0.05)	10000(W8P2)	20000(W8P1)		50000(W8P2)	
00013	5 (Dimensions Tolerance:±0.1min.)	10000			40000	
GC□18		4000			10000	
	6	4000			10000	
GC□21	9	4000			10000	
	В			3000		10000
	6	4000			10000	
00001	9	4000			10000	
GC□31	Μ			3000		10000
	С			2000		6000
	9	4000			10000	
00000	Μ			3000		10000
GC□32	N			2000		8000
	R/D/E			1000		4000
	Μ			1000		5000
GC□43	N/R			1000		4000
	E			500		2000
	М			1000		5000
GC□55	N/R			1000		4000


1.2 Dimensions of Tape

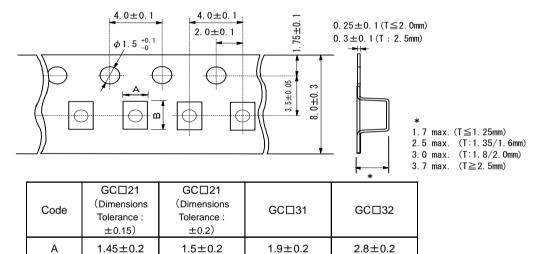
(1)GC 03/15(W8P2 CODE:D/E/J/F)

(in:mm)

(in:mm)

JEMCGP-01894D

maRata

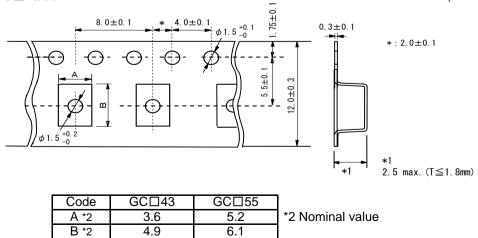

Package <u>GC□</u>Type

(4)GC□21/31/32

T:1.15 rank min.

(in:mm)

 3.5 ± 0.2

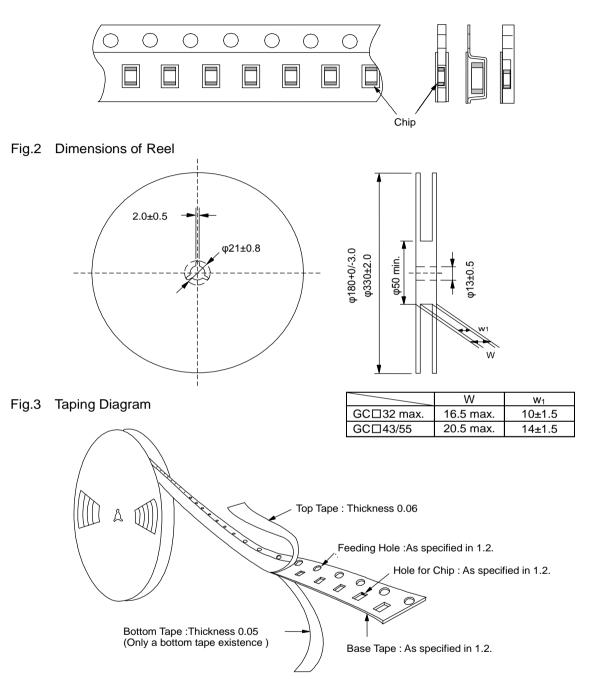

 3.5 ± 0.2

(5)GC□4	43/55
---------	-------

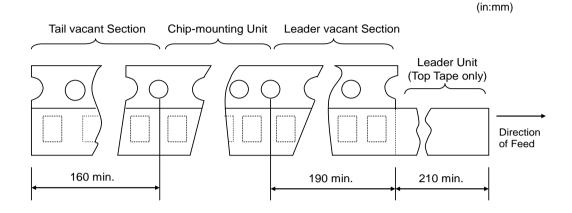
В

 2.25 ± 0.2

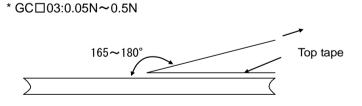
(in:mm)


 2.3 ± 0.2

Package GC Type


Fig.1 Package Chips

(in:mm)



- 1.3 Tapes for capacitors are wound clockwise shown in Fig.3.
 - (The sprocket holes are to the right as the tape is pulled toward the user.)
- 1.4 Part of the leader and part of the vacant section are attached as follows.

- 1.5 Accumulate pitch : 10 of sprocket holes pitch = 40 ± 0.3 mm
- 1.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1.
- 1.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- 1.8 There are no jointing for top tape and bottom tape.
- 1.9 There are no fuzz in the cavity.
- 1.10 Break down force of top tape : 5N min. Break down force of bottom tape : 5N min. (Only a bottom tape existence)
- 1.11 Reel is made by resin and appeaser and dimension is shown in Fig 2. There are possibly to change the material and dimension due to some impairment.
- 1.12 Peeling off force : 0.1N to $0.6N^*$ in the direction as shown below.

1.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel.

Limitation of use

Please contact our sales representatives or product engineers before using our products for the applications listed below which require of our products for other applications than specified in this product.
①Aircraft equipment ②Aerospace equipment ③Undersea equipment ④Power plant control equipment ⑤Medical equipment ⑥Transportation equipment(vehicles,trains,ships,etc.) ⑦Traffic signal equipment ⑧Data-processing equipment
①Application of similar complexity and/or requirements to the applications listed in the above

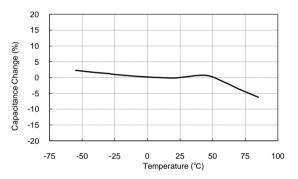
Fail-safe

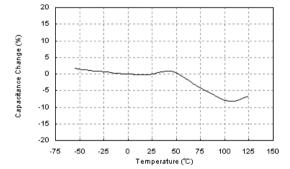
Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

Storage and Operation condition

- 1. The performance of chip monolithic ceramic capacitors may be affected by the storage conditions.
- 1-1. Store capacitors in the following conditions: Temperature of +5°C to +40°C and a Relative Humidity of 20% to 70%.
- (1) Sunlight, dust, rapid temperature changes, corrosive gas atmosphere or high temperature and humidity conditions during storage may affect the solderability and the packaging performance. Please use product within six months of receipt.
- (2) Please confirm solderability before using after six months.Store the capacitors without opening the original bag.Even if the storage period is short, do not exceed the specified atmospheric conditions.
- 1-2. Corrosive gas can react with the termination (external) electrodes or lead wires of capacitors, and result in poor solderability. Do not store the capacitors in an atmosphere consisting of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.).
- 1-3. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high huimidity conditions

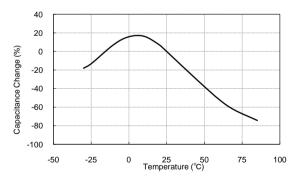
Rating


1.Temperature Dependent Characteristics


- 1. The electrical characteristics of the capacitor can change with temperature.
- 1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes. The following actions are recommended in order to insure suitable capacitance values.
- (1) Select a suitable capacitance for the operating temperature range.
- (2) The capacitance may change within the rated temperature. When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance.

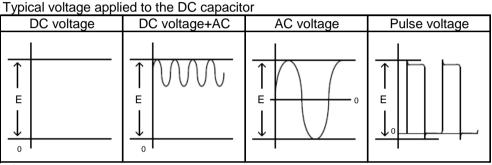
Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics.

And check capacitors using your actual appliances at the intended environment and operating conditions.


□ Typical temperature characteristics Char.R6 (X5R)

□ Typical temperature characteristics Char.R7 (X7R)

□ Typical temperature characteristics Char.F5 (Y5V)


2.Measurement of Capacitance

- 1. Measure capacitance with the voltage and the frequency specified in the product specifications.
- 1-1. The output voltage of the measuring equipment may decrease when capacitance is high occasionally. Please confirm whether a prescribed measured voltage is impressed to the capacitor.
- 1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.

3.Applied Voltage

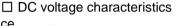
- 1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called-out in the specifications.
- 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
- (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
- (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

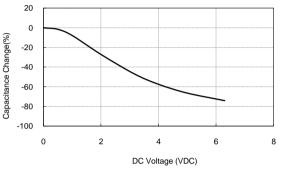
(E : Maximum possible applied voltage.)

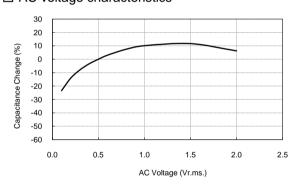
1-2. Influence of overvoltage

Overvoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers .

The time duration until breakdown depends on the applied voltage and the ambient temperature.

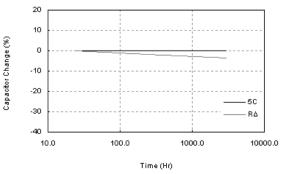

4. Applied Voltage and Self-heating Temperature


- 1. When the capacitor is used in a high-frequency voltage, pulse voltage, application, be sure to take into account self-heating may be caused by resistant factors of the capacitor.
- 1-1. The load should be contained to the level such that when measuring at atomospheric temperature of 25°C, the product's self-heating remains below 20°C and surface temperature of the capacitor in the actual circuit remains within the maximum operating temperature.



5. DC Voltage and AC Voltage Characteristic

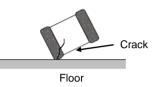
- 1. The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied. Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit.
- 1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage. (See figure) Please confirm the following in order to secure the capacitance.
- (1) Whether the capacitance change caused by the applied voltage is within the range allowed or not.
- (2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases.
 Even if the applied voltage is below the rated voltage.
 When a high dielectric constant type capacitor is in a circuit that needs a tight (narrow) capacitance tolerance.
 Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics.
 And check capacitors using your actual appliances at the intended environment and operating conditions.

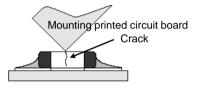


6. Capacitance Aging

1. The high dielectric constant type capacitors have the characteristic in which the capacitance value decreases with the passage of time.

When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics.


And check capacitors using your actual appliances at the intended environment and operating conditions.



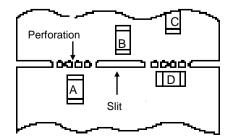
7.Vibration and Shock

- The capacitors mechanical actress (vibration and shock) shall be specified for the use environment. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance. Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals.
- 2. Mechanical shock due to falling may cause damage or a crack in the dielectric material of the capacitor. Do not use a fallen capacitor because the quality and reliability may be deteriorated.

3. When printed circuit boards are piled up or handled, the corners of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor.

Soldering and Mounting

1.Mounting Position

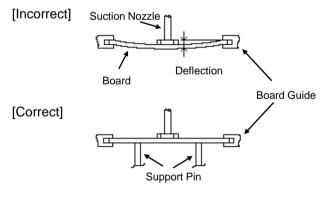

- 1. Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing or bending the printed circuit board.
- 1-1. Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component Direction]

Locate chip horizontal to the direction in which stress acts

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A-C-(B~D) Best



2.Information before mounting

- 1. Do Not re-use capacitors that were removed from the equipment.
- 2. Confirm capacitance characteristics under actual applied voltage.
- 3. Confirm the mechanical stress under actual process and equipment use.
- 4. Confirm the rated capacitance, rated voltage and other electrical characteristics before assembly.
- 5. Prior to use, confirm the Solderability for the capacitors that were in long-term storage.
- 6. Prior to measuring capacitance, carry out a heat treatment for capacitors that were in long-term storage.
- 7. The use of Sn-Zn based solder will deteriorate the reliability of the MLCC. Please contact our sales representative or product engineers on the use of Sn-Zn based solder in advance.

3.Maintenance of the Mounting (pick and place) Machine

- 1. Make sure that the following excessive forces are not applied to the capacitors.
- 1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum to prevent them from any bending damage or cracking. Please take into account the following precautions and recommendations for use in your process.
- (1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board.
- (2) Adjust the nozzle pressure within a static load of 1N to 3N during mounting.

2.Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

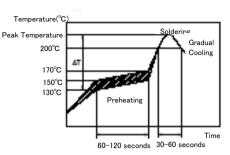
4-1.Reflow Soldering

- 1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep the temperature differential between the solder and the components surface (ΔT) as small as possible.
- 2. Solderability of Tin plating termination chips might be deteriorated when a low temperature soldering profile where the peak solder temperature is below the melting point of Tin is used. Please confirm the Solderability of Tin plated termination chips before use.
- 3. When components are immersed in solvent after mounting be sure to maintain the temperature difference (ΔT) between the component and the solvent within the range shown in the table 1.

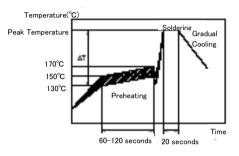
Table 1

Part Number	Temperature Differential
GC□03/15/18/21/31	ΔT≦190°C
GC□32	ΔT≦130°C

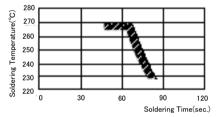
Recommended Conditions


	Pb-Sn	Lead Free Solder	
	Infrared Reflow	Vapor Reflow	Lead Tree Solder
Peak Temperature	230~250°C	230~240°C	240~260°C
Atmosphere	Air	Air	Air or N2
Pb-Sn Solder: Sn-37Pb		Lead Free Solde	er: Sn-3.0Ag-0.5Cu

4. Optimum Solder Amount for Reflow Soldering


- 4-1. Overly thick application of solder paste results in a excessive solder fillet height. This makes the chip more susceptible to mechanical and thermal stress on the board and may cause the chips to crack.
- 4-2. Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- 4-3. Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm* min.

[Standard Conditions for Reflow Soldering]


Infrared Reflow

[Allowable Soldering Temperature and Time]

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

* GC 03: 1/3 of Chip Thickness min.

in section

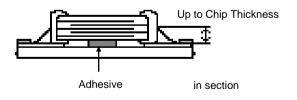
Inverting the PCB Make sure not to impose any abnormal mechanical shocks to the PCB. JEMCGC-2702N 17

4-2.Flow Soldering

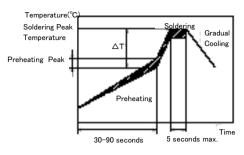
- 1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 2. It is required to keep temperature differential between the solder and the components surface (ΔT) as small as possible.
- Excessively long soldering time or high soldering temperature can result in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- 3. When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the table 2.
- 4. Do not apply flow soldering to chips not listed in Table 2.

Table 2

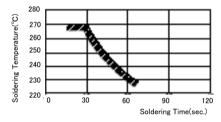
Part Number	Temperature Differential
GC□18/21/31	ΔT≦150°C


Recommended Conditions

Pb-Sn Solder	Lead Free Solder
90~110°C	100~120°C
240~250°C	250~260°C
Air	N ₂
	90~110°C 240~250°C

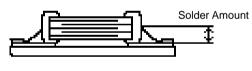

Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu

5. Optimum Solder Amount for Flow Soldering


5-1. The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessive, the risk of cracking is higher during board bending or any other stressful condition.

[Standard Conditions for Flow Soldering]

In case of repeated soldering, the accumulated soldering time must be within the range shown above.


4-3.Correction with a Soldering Iron

- When sudden heat is applied to the components when using a soldering iron, the mechanical strength of the components will decrease because the extreme temperature change can cause deformations inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions, (The "Temperature of the Soldering Iron tip", "Preheating Temperature", "Temperature Differential" between the iron tip and the components and the PCB), should be within the conditions of table 3. It is required to keep the temperature differential between the soldering Iron and the component surfaces (ΔT) as small as possible.
- 2. After soldering, do not allow the component/PCB to rapidly cool down.
- 3. The operating time for the re-working should be as short as possible. When re-working time is too long, it may cause solder leaching, and that will cause a reduction in the adhesive strength of the terminations.

Table 3				
Part Number	Temperature of Soldering Iron tip	Preheating Temperature	Temperature Differential (ΔT)	Atmosphere
GC□03/15/18/21/31	350°C max.	150°C min.	ΔT≦190°C	Air
GC□32	280°C max.	150°C min.	ΔT≦130℃	Air

*Applicable for both Pb-Sn and Lead Free Solder Pb-Sn Solder: Sn-37Pb

- 4. Optimum Solder amount when re-working with a Soldering Iron
- 4-1. In case of sizes smaller than 0603, (GC□03/15/18), the top of the solder fillet should be lower than 2/3's of the thickness of the component or 0.5mm whichever is smaller. In case of 0805 and larger sizes, (GC□21/31/32), the top of the solder fillet should be lower than 2/3's of the thickness of the component. If the solder amount is excessive, the risk of cracking is higher during board bending or under any other stressful condition.

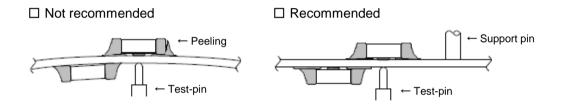
in section

- 4-2. A Soldering iron with a tip of ø3mm or smaller should be used. It is also necessary to keep the soldering iron from touching the components during the re-work.
- 4-3. Solder wire with Ø0.5mm or smaller is required for soldering.

4-4.Leaded Component Insertion

 If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.
 Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

Lead Free Solder: Sn-3.0Ag-0.5Cu

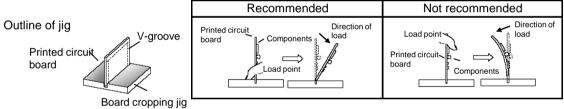


5.Washing

Excessive ultrasonic oscillation during cleaning can cause the PCBs to resonate, resulting in cracked chips or broken solder joints. Take note not to vibrate PCBs.

6.Electrical Test on Printed Circuit Board

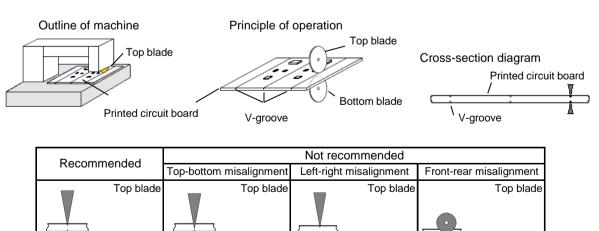
- 1. Confirm position of the support pin or specific jig, when inspecting the electrical performance of a capacitor after mounting on the printed circuit board.
- 1-1. Avoid bending printed circuit board by the pressure of a test pin, etc. The thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.
- 1-2. Avoid vibration of the board by shock when a test pin contacts a printed circuit board.


7.Printed Circuit Board Cropping

- 1. After mounting a capacitor on a printed circuit board, do not apply any stress to the capacitor that is caused by bending or twisting the board.
- 1-1. In cropping the board, the stress as shown right may cause the capacitor to crack. Try not to apply this type of stress to a capacitor.

- 2. Check of the cropping method for the printed circuit board in advance.
- 2-1. Printed circuit board cropping shall be carried out by using a jig or an apparatus to prevent the mechanical stress which can occur to the board.
 - (1) Example of a suitable jig

Recommended example: the board should be pushed as close to the near the cropping jig as possible and from the back side of board in order to minimize the compressive stress applied to capacitor. Not recommended example* when the board is pushed at a point far from the cropping jig and from the front side of board as below, the capacitor may form a crack caused by the tensile stress applied to capacitor.



(2) Example of a suitable machine

Bottom blade

An outline of a printed circuit board cropping machine is shown as follows. Along the lines with the V-grooves on printed circuit board, the top and bottom blades are aligned to one another when cropping the board.

The misalignment of the position between top and bottom blades may cause the capacitor to crack.

Bottom blade

Bottom blade

Bottom blade

Others

1. Under Operation of Equipment

- 1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of a electric shock.
- 1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not expose a capacitor to a conductive liquid, inducing any acid or alkali solutions.
- 1-3. Confirm the environment in which the equipment will operation is under the specified conditions. Do not use the equipment under the following environment.
 - (1) Being spattered with water or oil.
 - (2) Being exposed to direct sunlight.
 - (3) Being exposed to Ozone, ultraviolet rays or radiation.
 - (4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.)
 - (5) Any vibrations or mechanical shocks exceeding the specified limits.
 - (6) Moisture condensing environments.

1-4. Use damp proof countermeasures if using under any conditions that can cause condensation.

2. Others

- 2-1. In an Emergency
- (1) If the equipment should generate smoke, fire or smell, immediately turn off or unplug the equipment. If the equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power.
- (2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitors high temperature.

2-2. Disposal of waste

When capacitors are disposed, they must be burned or buried by the industrial waste vender with the appropriate licenses.

2-3. Circuit Design

GC Series capacitors in this specification are not safety recognized products.

2-4. Remarks

Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is used. The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions.

Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

Rating

1.Operating Temperature

- 1. The operating temperature limit depends on the capacitor.
- 1-1.Do not apply temperatures exceeding the upper operating temperature.It is necessary to select a capacitor with a suitable rated temperature which will cover the operating temperature range.

Also it is necessary to consider the temperature distribution in equipment and the seasonal temperature variable factor.

1-2.Consider the self-heating of the capacitor The surface temperature of the capacitor shall be the upper operating temperature or less when including the self-heating factors.

2.Atmosphere surroundings (gaseous and liquid)

- 1. Restriction on the operating environment of capacitors.
- 1-1. The capacitor, when used in the above, unsuitable, operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor.
- 1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation.
- 1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of terminal electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents for long periods of time.

3.Piezo-electric Phenomenon

 When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur.

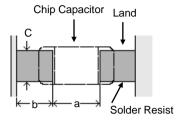
Soldering and Mounting

1.PCB Design

- 1. Notice for Pattern Forms
- 1-1. Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components. Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

1-2. It is possible for the chip to crack by the expansion and shrinkage of a metal board. Please contact us if you want to use our ceramic capacitors on a metal board such as Aluminum.


Pattern Forms

	Prohibited	Correct
Placing Close to Chassis	Chassis Solder (ground) Electrode Pattern	Solder Resist
Placing of Chip Components and Leaded Components	Lead Wire	Solder Resist
Placing of Leaded Components after Chip Component	Soldering Iron Lead Wire	Solder Resist
Lateral Mounting		Solder Resist

2. Land Dimensions

2-1. Chip capacitor can be cracked due to the stress of PCB bending / etc if the land area is larger than needed and has an excess amount of solder.Please refer to the land dimensions in table 1 for flow soldering, table 2 for reflow soldering.

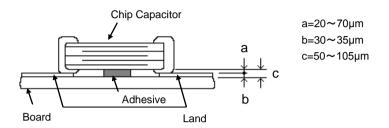
Please confirm the suitable land dimension by evaluating of the actual SET / PCB.

Dimensions Part Number	Chip(L×W)	а	b	С
GC□18	1.6×0.8	0.6~1.0	0.8~0.9	0.6~0.8
GC□21	2.0×1.25	1.0~1.2	0.9~1.0	0.8~1.1
GC□31	3.2×1.6	2.2~2.6	1.0~1.1	1.0~1.4
				(*)

Table 1 Flow Soldering Method

(in mm)

Dimensions Part Number	Chip (L×W)	а	b	С
GC□03	0.6×0.3	0.2~0.3	0.2~0.35	0.2~0.4
GC□15	1.0×0.5	0.3~0.5	0.35~0.45	0.4~0.6
GC□18	1.6×0.8	0.6~0.8	0.6~0.7	0.6~0.8
GC□21	2.0×1.25	1.0~1.2	0.6~0.7	0.8~1.1
GC□31	3.2×1.6	2.2~2.4	0.8~0.9	1.0~1.4
GC□32	3.2×2.5	2.0~2.4	1.0~1.2	1.8~2.3
				(:


Table 2 Reflow Soldering Method

(in mm)

2.Adhesive Application

 Thin or insufficient adhesive can cause the chips to loosen or become disconnected during flow soldering. The amount of adhesive must be more than dimension c, shown in the drawing at right, to obtain the correct bonding strength.

The chip's electrode thickness and land thickness must also be taken into consideration.

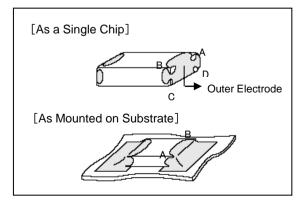
- 2. Low viscosity adhesive can cause chips to slip after mounting. The adhesive must have a viscosity of 5000Pa s (500ps) min. (at 25°C)
- 3.Adhesive Coverage

Part Number	Adhesive Coverage*
GC□18	0.05mg min.
GC□21	0.1mg min.
GC□31	0.15mg min.
	*Nominal Value

3.Adhesive Curing

1. Insufficient curing of the adhesive can cause chips to disconnect during flow soldering and causes deterioration in the insulation resistance between the outer electrodes due to moisture absorption. Control curing temperature and time in order to prevent insufficient hardening.

4.Flux Application


1. An excessive amount of flux generates a large quantity of flux gas, which can cause a deterioration of Solderability.

So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).

- 2. Flux containing too a high percentage of halide may cause corrosion of the outer electrodes unless there is sufficient cleaning. Use flux with a halide content of 0.2% max.
- 3. Do not use strong acidic flux.
- 4. Do not use water-soluble flux.
 (*Water-soluble flux can be defined as non rosin type flux including wash-type flux and non-wash-type flux.)

5.Flow Soldering

Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown right) and 25% of the length A-B shown below as mounted on substrate.

6.Washing

- 1. Please evaluate a capacitor by actual cleaning equipment and condition surely for confirming the quality and select the applicable solvent.
- 2. Unsuitable cleaning solvent may leave residual flux, other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors.
- 3. Select the proper cleaning conditions.
- 3-1. Improper cleaning conditions (excessive or insufficient) may result in the deterioration of the performance of the capacitors.

7.Coating

1. A crack may be caused in the capacitor due to the stress of the thermal contraction of the resin during curing process.

The stress is affected by the amount of resin and curing contraction.

Select a resin with small curing contraction.

The difference in the thermal expansion coefficient between a coating resin or a molding resin and capacitor may cause the destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation resistance or dielectric breakdown.

Select a resin for which the thermal expansion coefficient is as close to that of capacitor as possible. A silicone resin can be used as an under-coating to buffer against the stress.

2. Select a resin that is less hygroscopic.

Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor.

An epoxy resin can be used as a less hygroscopic resin.

Others

1.Transportation

1. The performance of a capacitor may be affected by the conditions during transportation.

- 1-1. The capacitors shall be protected against excessive temperature, humidity and mechanical force during transportation.
- (1) Climatic condition
 - low air temperature : -40°C
 - change of temperature air/air : -25°C/+25°C
- low air pressure : 30 kPa
- change of air pressure : 6 kPa/min
- (2) Mechanical condition

Transportation shall be done in such a way that the boxes are not deformed and forces are not directly passed on to the inner packaging.

- 1-2. Do not apply excessive vibration, shock, and pressure to the capacitor.
- (1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur in the ceramic body of the capacitor.
- (2) When a sharp edge of an air driver, a soldering iron, tweezers, a chassis, etc. impacts strongly on the surface of capacitor, the capacitor may crack and short-circuit.
- 1-3. Do not use a capacitor to which excessive shock was applied by dropping etc. The capacitor dropped accidentally during processing may be damaged.

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. Your are requested not to use our product deviating from this product specification.
- 3.We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

GCM3195C1J153GA16J GCM3195C1J153GA16D