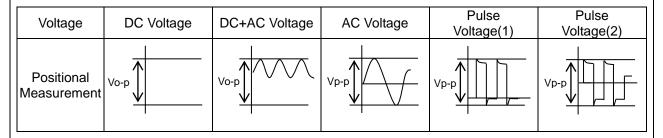


Type RA Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

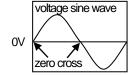
3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD


When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

$oldsymbol{\Lambda}$ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RA used for General Electric equipment.

Type RA is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL/cUL	UL60384-14	E37921	
ENEC (VDE)	EN60384-14	40043033	X1:440
CQC	IEC60384-14	CQC16001138225	Y1:250
KTC	KC60384-14	HU03008-17008	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2	Dotino
_	Ratino

2-1. Operating temperature range $-40 \sim +125$ °C

2-2. Rated Voltage X1:AC440V(r.m.s.) Y1:AC250V(r.m.s.)

2-3. Part number configuration

ex.) <u>DE1</u> 471 B3 RA N01F Product Temperature Type Capacitance Capacitance Lead Packing Individual code characteristic tolerance style code specification name code

• Product code

DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type RA.

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style	
A*	Vertical crimp long type	
J*	Vertical crimp short type	
N*	Vertical crimp taping type	

^{*} Please refer to [Part number list]

• Packing style code

Code	Packing type			
В	Bulk type			
Α	Ammo pack taping type			

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

Code	Specification
	Rated voltage : X1:AC440V(r.m.s.)
	Y1:AC250V(r.m.s.)
N01F	 Halogen free (Br ≤ 900ppm, Cl ≤ 900ppm) (Br + Cl ≤ 1500ppm)
	CP wire

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(RA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name : RA

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

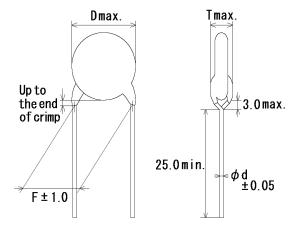
Capacitance tolerance : Code Class code and Rated voltage mark : **X1 440~**

Y1 250~

Manufacturing year : Letter code(The last digit of A.D. year.)

Manufacturing month : Code

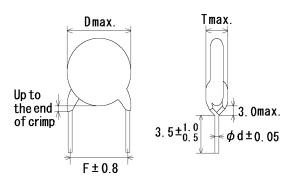
Feb./Mar. \rightarrow 2 Aug./Sep. \rightarrow 8 Apr./May \rightarrow 4 Oct./Nov. \rightarrow O Dec./Jan. \rightarrow D


Company name code : (Made in Thailand)

(Example)

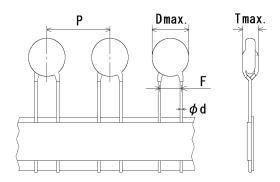
RA 471K X1 440~ Y1 250~ 5D (M15

4. Part number list


·Vertical crimp long type (Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

									<u> </u>		
T.C.	Сар.	Сар.	Customer Part Number	Murata Part Number		mer Part Number Murata Part Number Dimension (on (m	m)	Lead	Pack
1.0.	(pF)	tol.	Customer Part Number	Widiala Fait Number	D	Т	F	d	code	qty. (pcs)	
SL	10	±10%		DE11XRA100KA4BN01F	7.0	4.0	10.0	0.6	A4	250	
SL	15	±10%		DE11XRA150KA4BN01F	6.0	5.0	10.0	0.6	A4	500	
SL	22	±10%		DE11XRA220KA4BN01F	6.0	4.0	10.0	0.6	A4	500	
SL	33	±10%		DE11XRA330KA4BN01F	7.0	4.0	10.0	0.6	A4	250	
SL	47	±10%		DE11XRA470KA4BN01F	7.0	4.0	10.0	0.6	A4	250	
SL	68	±10%		DE11XRA680KA4BN01F	8.0	4.0	10.0	0.6	A4	250	
В	100	±10%		DE1B3RA101KA4BN01F	6.0	4.0	10.0	0.6	A4	500	
В	150	±10%		DE1B3RA151KA4BN01F	7.0	4.0	10.0	0.6	A4	250	
В	220	±10%		DE1B3RA221KA4BN01F	6.0	5.0	10.0	0.6	A4	500	
В	330	±10%		DE1B3RA331KA4BN01F	6.0	5.0	10.0	0.6	A4	500	
В	470	±10%		DE1B3RA471KA4BN01F	7.0	5.0	10.0	0.6	A4	250	
В	680	±10%		DE1B3RA681KA4BN01F	8.0	5.0	10.0	0.6	A4	250	
Е	1000	±20%		DE1E3RA102MA4BN01F	7.0	4.0	10.0	0.6	A4	250	
E	1500	±20%		DE1E3RA152MA4BN01F	8.0	4.0	10.0	0.6	A4	250	
E	2200	±20%		DE1E3RA222MA4BN01F	9.0	4.0	10.0	0.6	A4	250	
E	3300	±20%		DE1E3RA332MA4BN01F	10.0	5.0	10.0	0.6	A4	250	
Е	4700	±20%		DE1E3RA472MA4BN01F	12.0	5.0	10.0	0.6	A4	200	


·Vertical crimp short type
(Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

			Offit.							
Сар.	Сар.	Customer Part Number	Customer Port Number		Dimension (m		m)	Lead	Pack	
(pF)	tol.	Customer Fait Number	Mulata Fait Nullibel	D	Т	F	d	code	qty. (pcs)	
10	±10%		DE11XRA100KJ4BN01F	7.0	4.0	10.0	0.6	J4	500	
15	\pm 10%		DE11XRA150KJ4BN01F	6.0	5.0	10.0	0.6	J4	500	
22	\pm 10%		DE11XRA220KJ4BN01F	6.0	4.0	10.0	0.6	J4	500	
33	\pm 10%		DE11XRA330KJ4BN01F	7.0	4.0	10.0	0.6	J4	500	
47	\pm 10%		DE11XRA470KJ4BN01F	7.0	4.0	10.0	0.6	J4	500	
68	$\pm 10\%$		DE11XRA680KJ4BN01F	8.0	4.0	10.0	0.6	J4	500	
100	±10%		DE1B3RA101KJ4BN01F	6.0	4.0	10.0	0.6	J4	500	
150	±10%		DE1B3RA151KJ4BN01F	7.0	4.0	10.0	0.6	J4	500	
220	±10%		DE1B3RA221KJ4BN01F	6.0	5.0	10.0	0.6	J4	500	
330	\pm 10%		DE1B3RA331KJ4BN01F	6.0	5.0	10.0	0.6	J4	500	
470	\pm 10%		DE1B3RA471KJ4BN01F	7.0	5.0	10.0	0.6	J4	500	
680	\pm 10%		DE1B3RA681KJ4BN01F	8.0	5.0	10.0	0.6	J4	500	
1000	$\pm 20\%$		DE1E3RA102MJ4BN01F	7.0	4.0	10.0	0.6	J4	500	
1500	±20%		DE1E3RA152MJ4BN01F	8.0	4.0	10.0	0.6	J4	500	
2200	±20%		DE1E3RA222MJ4BN01F	9.0	4.0	10.0	0.6	J4	500	
3300	±20%		DE1E3RA332MJ4BN01F	10.0	5.0	10.0	0.6	J4	500	
4700	±20%		DE1E3RA472MJ4BN01F	12.0	5.0	10.0	0.6	J4	250	
	(pF) 10 15 22 33 47 68 100 150 220 330 470 680 1000 1500 2200 3300	(pF) tol. 10 ±10% 15 ±10% 22 ±10% 33 ±10% 47 ±10% 68 ±10% 100 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fart Number 10 ±10% 15 ±10% 22 ±10% 33 ±10% 47 ±10% 68 ±10% 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer Fart Number Invalidat Fart Number 10 ±10% DE11XRA100KJ4BN01F 15 ±10% DE11XRA150KJ4BN01F 22 ±10% DE11XRA220KJ4BN01F 33 ±10% DE11XRA330KJ4BN01F 47 ±10% DE11XRA680KJ4BN01F 68 ±10% DE11XRA680KJ4BN01F 100 ±10% DE1B3RA101KJ4BN01F 220 ±10% DE1B3RA221KJ4BN01F 330 ±10% DE1B3RA331KJ4BN01F 470 ±10% DE1B3RA471KJ4BN01F 680 ±10% DE1B3RA681KJ4BN01F 1000 ±20% DE1E3RA102MJ4BN01F 1500 ±20% DE1E3RA152MJ4BN01F 2200 ±20% DE1E3RA322MJ4BN01F 3300 ±20% DE1E3RA332MJ4BN01F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D 10 ±10% DE11XRA100KJ4BN01F 7.0 15 ±10% DE11XRA150KJ4BN01F 6.0 22 ±10% DE11XRA220KJ4BN01F 6.0 33 ±10% DE11XRA330KJ4BN01F 7.0 47 ±10% DE11XRA680KJ4BN01F 8.0 100 ±10% DE1B3RA101KJ4BN01F 6.0 150 ±10% DE1B3RA151KJ4BN01F 7.0 220 ±10% DE1B3RA331KJ4BN01F 6.0 330 ±10% DE1B3RA681KJ4BN01F 7.0 680 ±10% DE1B3RA681KJ4BN01F 7.0 680 ±10% DE1B3RA681KJ4BN01F 8.0 1000 ±20% DE1E3RA152MJ4BN01F 8.0 2200 ±20% DE1E3RA322MJ4BN01F 9.0 3300 ±20% DE1E3RA322MJ4BN01F 10.0	Cap. (pF) tol. Customer Part Number	Customer Part Number D T F	(pF) tol. Designation at Number Designation at Number	Cap. (pF) Customer Part Number Murata Part Number D T F d Code code code code 10 ±10% DE11XRA100KJ4BN01F 7.0 4.0 10.0 0.6 J4 15 ±10% DE11XRA150KJ4BN01F 6.0 5.0 10.0 0.6 J4 22 ±10% DE11XRA220KJ4BN01F 6.0 4.0 10.0 0.6 J4 33 ±10% DE11XRA330KJ4BN01F 7.0 4.0 10.0 0.6 J4 47 ±10% DE11XRA470KJ4BN01F 7.0 4.0 10.0 0.6 J4 100 ±10% DE1B3RA101KJ4BN01F 8.0 4.0 10.0 0.6 J4 150 ±10% DE1B3RA151KJ4BN01F 6.0 4.0 10.0 0.6 J4 220 ±10% DE1B3RA331KJ4BN01F 6.0 5.0 10.0 0.6 J4 470 ±10% DE1B3RA681KJ4BN01F 7.0 5.0 10.0 0.6 J4	

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

										Unit :	mm
T.C.	Сар.	Сар.	Customer Part Number	Customer Deut Number		Dimension (mm))	Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Murata Part Number	D	Т	F	d	Р	code	qty. (pcs)
SL	10	±10%		DE11XRA100KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
SL	15	±10%		DE11XRA150KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
SL	22	±10%		DE11XRA220KN4AN01F	6.0	4.0	10.0	0.6	25.4	N4	600
SL	33	±10%		DE11XRA330KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
SL	47	±10%		DE11XRA470KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
SL	68	±10%		DE11XRA680KN4AN01F	8.0	4.0	10.0	0.6	25.4	N4	600
В	100	±10%		DE1B3RA101KN4AN01F	6.0	4.0	10.0	0.6	25.4	N4	600
В	150	±10%		DE1B3RA151KN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
В	220	±10%		DE1B3RA221KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
В	330	±10%		DE1B3RA331KN4AN01F	6.0	5.0	10.0	0.6	25.4	N4	600
В	470	±10%		DE1B3RA471KN4AN01F	7.0	5.0	10.0	0.6	25.4	N4	600
В	680	±10%		DE1B3RA681KN4AN01F	8.0	5.0	10.0	0.6	25.4	N4	600
Е	1000	±20%		DE1E3RA102MN4AN01F	7.0	4.0	10.0	0.6	25.4	N4	600
Е	1500	±20%		DE1E3RA152MN4AN01F	8.0	4.0	10.0	0.6	25.4	N4	600
Е	2200	±20%		DE1E3RA222MN4AN01F	9.0	4.0	10.0	0.6	25.4	N4	600
Е	3300	±20%		DE1E3RA332MN4AN01F	10.0	5.0	10.0	0.6	25.4	N4	600
Е	4700	±20%		DE1E3RA472MN4AN01F	12.0	5.0	10.0	0.6	25.4	N4	600
	•				•						

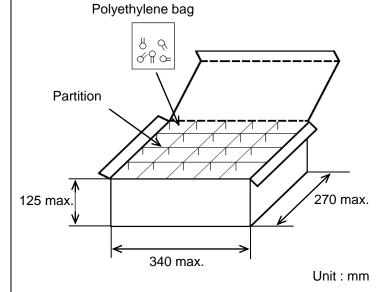
				eterence oni	<u>, </u>					
	Specification and			161						
<u>No.</u> 1	Appearance and dimensions			cification fect on appearanc		Test method The capacitor should be inspected by naked eyes for visible evidence of defect.				
						mensions should be measured with slide calipers.				
2	Marking		To be easily le			The capacitor should be inspected by naked eyes.				
3	Dielectric strength	Between lead wires	No failure.			e capacitor should not be damaged when C4000V(r.m.s.)<50/60Hz> is applied between the ad wires for 60 s.				
		Body insulation	No failure.		First correction to the close t	st, the terminals of the capacitor should be nnected together. en, a metal foil should be osely wrapped around the distance of				
4	Insulation Resista	ance (I.R.)	10 000MΩ min		dia Fin 60 bal The	e insulation resistance should be measured with				
					The	C500 \pm 50V within 60 \pm 5 s of charging. se voltage should be applied to the capacitor rough a resistor of 1M Ω .				
5	Capacitance		Within specifie	d tolerance.	The 1±0	e capacitance should be measured at 20°C with 0.1kHz and AC1±0.2V(r.m.s.) max				
6	Dissipation Facto	r (D.F.)	2.5% max.			e dissipation factor should be measured 20°C with 1±0.1kHz and AC1±0.2V(r.m.s.) max				
7	Temperature char	racteristic	(Temp. range: Char. B: With Char. E: With			e capacitance measurement should be made at ch step specified in Table. 2 3 4 5 -25±2 20±2 85±2 20±2				
8	Active flammabilit	ty	The cheese-cl on fire.	oth should not be	lea che to 2 disk ma	to L4 : $1.5\text{mH}\pm20\%$ 16A Rod core choke : $100\Omega\pm2\%$, Ct : $3\mu\text{F}\pm5\%$ 10kV Ac : UR $\pm5\%$ UR : Rated voltage : Capacitor under test : Fuse, Rated 10A				

			Reference only	
No.	Iten	า	Specification	Test method
9	Robustness of	Tensile	Lead wire should not cut off.	Fix the body of capacitor, a tensile weight
	terminations		Capacitor should not be broken.	gradually to each lead wire in the radial direction of
				capacitor up to 10N and keep it for 10±1 s.
		Bending	1	With the termination in its normal position, the
				capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass
				applying a force of 5N is then suspended from the
				end of the termination.
				The body of the capacitor is then inclined,
				within a period of 2 to 3 s, through an angle of
				approximately 90° in the vertical plane and then
				returned to its initial position over the same period
				of time; this operation constitutes one bend.
				One bend immediately followed by a second bend
				in the opposite direction.
0	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
•	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
	10313141100	D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in
		D.F.	2.5% IIIdX.	total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to
				10Hz is applied for a total of 6 h; 2 h each in
1	Coldorability of L		Lood wire objected by a state of	3 mutually perpendicular directions.
1	Solderability of lead	us	Lead wire should be soldered	The lead wire of a capacitor should be dipped into
			With uniformly coated on the	ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the	molten solder for 2±0.5 s. In both cases the depth
			circumferential direction.	dipping is up to about 1.5 to 2.0mm from the root of
				lead wires.
				Temp. of solder:
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
2	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change		(In case of 260±5°C : 10±1 s)
		I.R.	1 000MΩ min.	The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		
		3.		Thermal
				insulating ()
				_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				- =
				solder
				Pre-treatment: Capacitor should be stored at
				125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed
				*¹room condition for 24±2 h
				before initial measurements.
				(Do not apply to Char. SL)
				Post-treatment: Capacitor should be stored for 1
				2 h at *1room condition.
3	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.
		change		Then, as in figure, the lead wires should be
		I.R.	1000M Ω min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.
		strength		
				Thermal Capacitor insulating
				1.0 2.0mm
				- - Molten
				wolten solder
				Pre-treatment : Capacitor should be stored at
				125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed
				*1room condition for 24±2 h
				before initial measurements.
				(Do not apply to Char. SL)
				Post-treatment : Capacitor should be stored for 1
				2 h at *1 room condition.
"ro	om condition" Tomas	ratura: 15 to 25°	L C, Relative humidity: 45 to 75%, Atm	
100	an condition tempe	iaiuie: 15 10 35°	o, relative numicity: 45 to 75%, Atm	оэрпено ргеззите, оо го тоокма

			Reference only	
No.	Item	1	Specification	Test method
14	Flame test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.
15	Passive flammabilit	у	The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm About 8mm About 95mm About 10mm thick board
16	Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to
17	Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within ±5% Char. B: Within ±10% Char. E: Within ±15% Char. SL: 2.5% max. Char. B, E: 5.0% max. 3 000MΩ min. Per item 3 C, Relative humidity: 45 to 75%, Atm	2 h at *¹room condition. Apply AC440V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *¹room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *¹room condition.

Nο	Item	1	Reference on Specification	ıy	Toot =	nethod			
No. 18	Life	Appearance	No marked defect.	Impuls	e voltage	netnoa			
	Liic	Capacitance	Within ±20%	Each in	Each individual capacitor should be subjected to a 8kV impulses for three times. Then the capacitors				
		change							
		I.R.	3000M $Ω$ min.						
		Dielectric	Per item 3	. (%)		4.7 4.07			
		strength		Front time (T1) = 1.7 μ s=1.67T Time to half-value (T2) = 50 μ s					
				50					
				0 30 T					
				T2					
				The ca	pacitors are placed	in a circula	ting air oven		
				for a period of 1000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max					
								Throughout the test, the capacitors are subjected to a AC550V(r.m.s.)<50/60Hz> alternating voltage	
					of mains frequency, except that once each hour				
				the voltage is increased to AC1000V(r.m.s.) for 0.1 s					
				Pre-tre	Pre-treatment : Capacitor should be stored at				
				125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed a					
					*1room condition for 24±2 h before initial measurements.				
				(Do not apply to Char. SL)					
					Post-tr	eatment : Capacito			
19		Temperature and		Appearance	No marked defect.	The co	pacitor should be s	t *1room co	
10	immersion cycle	Capacitance	Char. SL : Within ±5% Char. B : Within ±10%	cycles	then consecutively	to 2 immer	sion cycles.		
		change							
			Char. E: Within ±20%		erature cycle>				
		D.F.	Char. SL : 2.5% max.		Step Tempera		Time		
			Char. B, E : 5.0% max.			-0/-3	30 min		
		I.R.	3000MΩ min.		2 Room 3 +125	+3/-0	3 min 30 min		
		Dielectric strength	Per item 3		4 Room		3 min		
					•		e:5 cycles		
				<lmme< td=""><td>rsion cycle></td><td>-,</td><td>,</td></lmme<>	rsion cycle>	-,	,		
				Step	Temperature(°C)	Time	Immersion		
				Отор	remperature(0)	111110	water		
				1	+65+5/-0	15 min	Clean water		
							Salt		
				2	0 <u>±</u> 3	15 min	water		
				<u>-</u>		Cycle tim	e:2 cycles		
				Pre-treatment : Capacitor should be stored at					
					125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed a				
				*¹room condition for 24±2 h before initial measurements. (Do not apply to Char. SL)					
				Post-treatment: Capacitor should be stored for 24±2 h at *1room condition.					
*1 "roo	om condition" Tempe	rature: 15 to 35°	C, Relative humidity: 45 to 75%, A	Atmospheric			matton.		
	o ooa			шпоортин	p. 000 a. 0. 00 to 100				

6.Packing specification

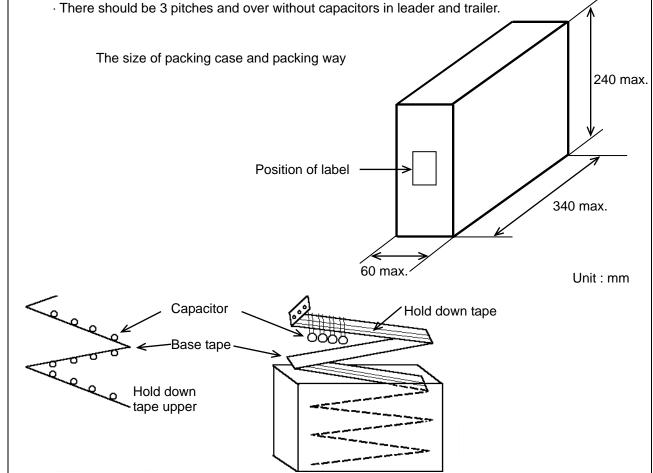

•Bulk type (Packing style code : B)

*1 *2 The number of packing = Packing quantity \times n

The size of packing case and packing way

*1 : Please refer to [Part number list].

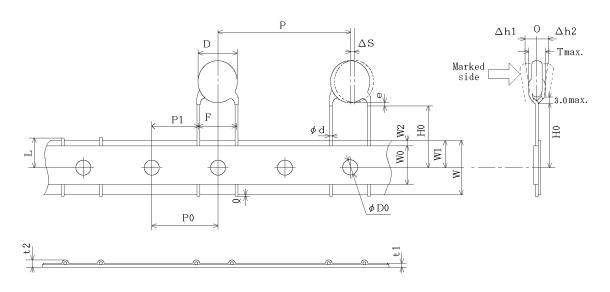
*2 : Standard n = 20 (bag)



Note)

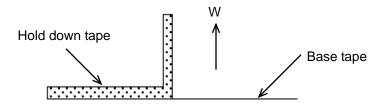
The outer package and the number of outer packing be changed by the order getting amount.

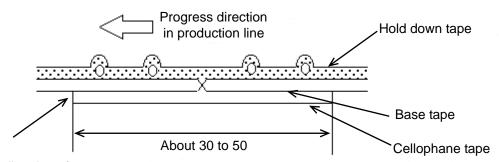
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- \cdot When body of the capacitor is piled on other body under it.

7. Taping specification

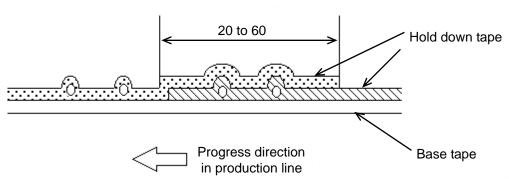
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead code : N4 > Pitch of component 25.4mm / Lead spacing 10.0mm


Item	Code	Dimensions	Remarks	
Pitch of component	Р	25.4±2.0		
Pitch of sprocket hole	P0	12.7±0.3		
Lead spacing	F	10.0±1.0		
Length from hole center to lead	P1	7.7±1.5		
Body diameter	D	Please refer to [Part number list].		
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and	HO	18.0± ₀ ^{2.0}		
bottom planes	по			
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φD0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation across tape, front	∆h1	2.0 max.		
Deviation across tape, rear	∆h2	2.0 max.		
Portion to cut in case of defect	L	11.0± _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead	е	Up to the end of crimp		
Body thickness	T	Please refer to [Part number list].		

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

```
        DE11XRA220KN4AN01F
        DE1E3RA152MJ4BN01F
        DE1E3RA152MA4BN01F
        DE1B3RA151KA4BN01F

        DE1E3RA222MA4BN01F
        DE1B3RA151KN4AN01F
        DE1E3RA102MJ4BN01F
        DE11XRA470KA4BN01F

        DE1E3RA222MJ4BN01F
        DE1E3RA152MN4AN01F
        DE11XRA150KN4AN01F
        DE11XRA680KJ4BN01F

        DE1E3RA222MN4AN01F
        DE11XRA150KA4BN01F
        DE1B3RA331KJ4BN01F
        DE1B3RA101KN4AN01F

        DE11XRA220KJ4BN01F
        DE11XRA100KJ4BN01F
        DE1B3RA681KA4BN01F
        DE11XRA330KJ4BN01F

        DE1B3RA331KA4BN01F
        DE11XRA100KA4BN01F
        DE1B3RA151KJ4BN01F
        DE1E3RA102MA4BN01F

        DE1B3RA471KA4BN01F
        DE11XRA330KN4AN01F
        DE1B3RA471KN4AN01F
        DE11XRA100KN4AN01F

        DE1B3RA681KN4AN01F
        DE11XRA330KA4BN01F
        DE1B3RA221KN4AN01F
        DE1B3RA681KN4AN01F
        DE1B3RA681KN4AN01F

        DE1B3RA331KN4AN01F
        DE11XRA470KJ4BN01F
        DE1B3RA681KJ4BN01F
        DE11XRA150KJ4BN01F
        DE11XRA150KJ4BN01F

        DE1B3RA471KJ4BN01F
        DE1E3RA332MJ4BN01F
        DE1E3RA332MN4AN01F
        DE1E3RA332MN4AN01F
        DE1E3RA332MN4AN01F

        DE1B3RA472MA4BN01F
        DE1E3RA472MJ4BN01F
        DE1E3RA472MN4AN01F
        DE1E3RA332MN4AN01F
```