

Reference Specification

150°C Operation Leaded MLCC for Automotive with AEC-Q200 RH Series

Product specifications in this catalog are as of Mar. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to 150°C Operation Leaded MLCC RHE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

Applied maximum temperature up to 150°C

Note: Maximum accumulative time to 150°C is within 2000 hours.

• Part Number Configuration

ex.)	RHE	5G	<u>1H</u>	101	J	0	A2	H03	B
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

Series

Code	Content
RHE	Epoxy coated, 150°C max.

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Temp.coef.	Standard Temp.	Operating Temp. Range
5G	X8G (Murata code)	25∼150°C	0+/-30ppm/°C	25°C	-55 ∼ 150°C

Rated Voltage

Code	Rated voltage				
1H	DC50V				
2A	DC100V				

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 101

$$10 \times 10^1 = 100 pF$$

Capacitance Tolerance

Code	Capacitance Tolerance
J	+/-5%

• Dimension (LxW)

Please refer to [Part number list].

· Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
A2	Straight type	2.5+/-0.8
DB	Straight taping type	2.5+0.4/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

• Individual Specification

Murata's control code.

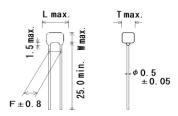
Please refer to [Part number list].

• Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

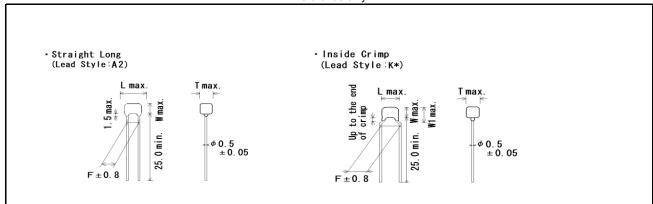
3. Marking

Temp. char. : Letter code : 8 (X8G char.)
Capacitance : 3 digit numbers
Capacitance tolerance : Code


(Ex.)

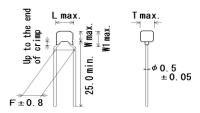
Dimension code	Ex.					
0,1	8 102J					

TEIKAKU


4. Part number list

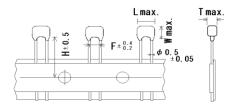
 Straight Long (Lead Style: A2)

Unit: mm


Customer			DC Rated		Cap.		Dime	ension (mm)		Dimension	
Part Number	Murata Part Number	T.C.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	(LxW) Lead Style	qty. (pcs)
	RHE5G1H101J0A2H03B	X8G	50	100pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H121J0A2H03B	X8G	50	120pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H151J0A2H03B	X8G	50	150pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H181J0A2H03B	X8G	50	180pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H221J0A2H03B	X8G	50	220pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H271J0A2H03B	X8G	50	270pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H331J0A2H03B	X8G	50	330pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H391J0A2H03B	X8G	50	390pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H471J0A2H03B	X8G	50	470pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H561J0A2H03B	X8G	50	560pF	±5%	3.6	3.5	-	2.5	2.5	0A2	500
	RHE5G1H681J0A2H03B	X8G	50	680pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H821J0A2H03B	X8G	50	820pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H102J0A2H03B	X8G	50	1000pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H122J0A2H03B	X8G	50	1200pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H152J0A2H03B	X8G	50	1500pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H182J0A2H03B	X8G	50	1800pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H222J0A2H03B	X8G	50	2200pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H272J0A2H03B	X8G	50	2700pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H332J0A2H03B	X8G	50	3300pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H392J0A2H03B	X8G	50	3900pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G1H472J1A2H03B	X8G	50	4700pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50
	RHE5G1H562J1A2H03B	X8G	50	5600pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50
	RHE5G1H682J1A2H03B	X8G	50	6800pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50
	RHE5G1H822J1A2H03B	X8G	50	8200pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50
	RHE5G1H103J1A2H03B	X8G	50	10000pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50
	RHE5G2A101J0A2H03B	X8G	100	100pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A121J0A2H03B	X8G	100	120pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A151J0A2H03B	X8G	100	150pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A181J0A2H03B	X8G	100	180pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A221J0A2H03B	X8G	100	220pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A271J0A2H03B	X8G	100	270pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A331J0A2H03B	X8G	100	330pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A391J0A2H03B	X8G	100	390pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A471J0A2H03B	X8G	100	470pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A561J0A2H03B	X8G	100	560pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A681J0A2H03B	X8G	100	680pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A821J0A2H03B	X8G	100	820pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A102J0A2H03B	X8G	100	1000pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A122J0A2H03B	X8G	100	1200pF	±5%	3.6	3.5	-	2.5	2.5	0A2	50
	RHE5G2A152J0A2H03B	X8G	100	1500pF	±5%	3.6	3.5	_	2.5	2.5	0A2	50

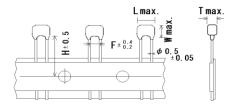
	Unit	:	mm
1			

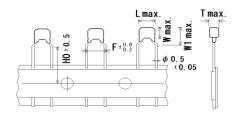
											Unit : mm		
Customer	Murata Part Number	Murata Part Number		DC Rated	Cap.	Сар.		Dime	ension (mm)		Dimension (LxW)	Pac qty
Part Number	Wurata Fait Number	T.C.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style		
	RHE5G2A182J1A2H03B	X8G	100	1800pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50	
	RHE5G2A222J1A2H03B	X8G	100	2200pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50	
	RHE5G2A272J1A2H03B	X8G	100	2700pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50	
	RHE5G2A332J1A2H03B	X8G	100	3300pF	±5%	4.0	3.5	-	2.5	2.5	1A2	50	
	RHE5G1H101J0K1H03B	X8G	50	100pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H121J0K1H03B	X8G	50	120pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H151J0K1H03B	X8G	50	150pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H181J0K1H03B	X8G	50	180pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H221J0K1H03B	X8G	50	220pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H271J0K1H03B	X8G	50	270pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H331J0K1H03B	X8G	50	330pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H391J0K1H03B	X8G	50	390pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H471J0K1H03B	X8G	50	470pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H561J0K1H03B	X8G	50	560pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H681J0K1H03B	X8G	50	680pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	50	
	RHE5G1H821J0K1H03B	X8G	50	820pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H102J0K1H03B	X8G	50	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H122J0K1H03B	X8G	50	1200pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H152J0K1H03B	X8G	50	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H182J0K1H03B	X8G	50	1800pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H222J0K1H03B	X8G	50	2200pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H272J0K1H03B	X8G	50	2700pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H332J0K1H03B	X8G	50	3300pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H392J0K1H03B	X8G	50	3900pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G1H472J1K1H03B	X8G	50	4700pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5	
	RHE5G1H562J1K1H03B	X8G	50	5600pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5	
	RHE5G1H682J1K1H03B	X8G	50	6800pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5	
	RHE5G1H822J1K1H03B	X8G	50	8200pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5	
	RHE5G1H103J1K1H03B	X8G	50	10000pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	5	
	RHE5G2A101J0K1H03B	X8G	100	100pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A121J0K1H03B	X8G	100	120pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A151J0K1H03B	X8G	100	150pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A181J0K1H03B	X8G	100	180pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A221J0K1H03B	X8G	100	220pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A271J0K1H03B	X8G	100	270pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A331J0K1H03B	X8G	100	330pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A391J0K1H03B	X8G	100	390pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A471J0K1H03B	X8G	100	470pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A561J0K1H03B	X8G	100	560pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	
	RHE5G2A681J0K1H03B	X8G	100	680pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	5	


Inside Crimp (Lead Style:K*)

Unit: mm

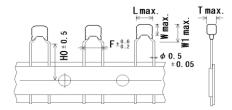
Customer Part Number	Murata Part Number	T.C.	DC Rated	ted olt. Cap.	Cap. Tol.		Dime	Dimension (LxW)	Pack			
		1.0.	Volt. (V)			L	W	W1	F	Т	` ,	qty. (pcs)
	RHE5G2A821J0K1H03B	X8G	100	820pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHE5G2A102J0K1H03B	X8G	100	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHE5G2A122J0K1H03B	X8G	100	1200pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHE5G2A152J0K1H03B	X8G	100	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHE5G2A182J1K1H03B	X8G	100	1800pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHE5G2A222J1K1H03B	X8G	100	2200pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHE5G2A272J1K1H03B	X8G	100	2700pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHE5G2A332J1K1H03B	X8G	100	3300pF	±5%	4.0	3.5	5.0	5.0	2.5	1K1	500


Straight Taping (Lead Style:D*)


Unit: mm

	T												
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		D	Dimension (LxW)	Pack qty.				
Part Number	iviulata Fait Nullibei	1.0.	Volt. (V)	VOIT.	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RHE5G1H101J0DBH03A	X8G	50	100pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H121J0DBH03A	X8G	50	120pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H151J0DBH03A	X8G	50	150pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H181J0DBH03A	X8G	50	180pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H221J0DBH03A	X8G	50	220pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H271J0DBH03A	X8G	50	270pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H331J0DBH03A	X8G	50	330pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H391J0DBH03A	X8G	50	390pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H471J0DBH03A	X8G	50	470pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H561J0DBH03A	X8G	50	560pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H681J0DBH03A	X8G	50	680pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H821J0DBH03A	X8G	50	820pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H102J0DBH03A	X8G	50	1000pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H122J0DBH03A	X8G	50	1200pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H152J0DBH03A	X8G	50	1500pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H182J0DBH03A	X8G	50	1800pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H222J0DBH03A	X8G	50	2200pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H272J0DBH03A	X8G	50	2700pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H332J0DBH03A	X8G	50	3300pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H392J0DBH03A	X8G	50	3900pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G1H472J1DBH03A	X8G	50	4700pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G1H562J1DBH03A	X8G	50	5600pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G1H682J1DBH03A	X8G	50	6800pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G1H822J1DBH03A	X8G	50	8200pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G1H103J1DBH03A	X8G	50	10000pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G2A101J0DBH03A	X8G	100	100pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A121J0DBH03A	X8G	100	120pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A151J0DBH03A	X8G	100	150pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A181J0DBH03A	X8G	100	180pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A221J0DBH03A	X8G	100	220pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A271J0DBH03A	X8G	100	270pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A331J0DBH03A	X8G	100	330pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A391J0DBH03A	X8G	100	390pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A471J0DBH03A	X8G	100	470pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A561J0DBH03A	X8G	100	560pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A681J0DBH03A	X8G	100	680pF	±5%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHE5G2A821J0DBH03A	X8G	100	820pF	±5%	3.6	3.5	-	2.5	2.5		0DB	2000
	RHE5G2A102J0DBH03A	X8G	100	1000pF	±5%	3.6	3.5	-	2.5	2.5		0DB	2000
	RHE5G2A122J0DBH03A	X8G	100	1200pF	±5%	3.6	3.5	-	2.5	2.5			2000
	RHE5G2A152J0DBH03A	X8G	100	1500pF	±5%	3.6	3.5		2.5	2.5			2000

 Straight Taping (Lead Style:D*)


 Inside Crimp Taping (Lead Style: M*)

Unit : mm

												Unit : mm	
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		D	imensi	on (mr	n)		Dimension (LxW)	Pack qty.
Part Number	Murata Fart Number	1.0.	Volt. (V)	VOIT.		L	W	W1	F	Т	H/H0	Lead Style	(pcs)
	RHE5G2A182J1DBH03A	X8G	100	1800pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G2A222J1DBH03A	X8G	100	2200pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G2A272J1DBH03A	X8G	100	2700pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G2A332J1DBH03A	X8G	100	3300pF	±5%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHE5G1H101J0M1H03A	X8G	50	100pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H121J0M1H03A	X8G	50	120pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H151J0M1H03A	X8G	50	150pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H181J0M1H03A	X8G	50	180pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H221J0M1H03A	X8G	50	220pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H271J0M1H03A	X8G	50	270pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H331J0M1H03A	X8G	50	330pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H391J0M1H03A	X8G	50	390pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H471J0M1H03A	X8G	50	470pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H561J0M1H03A	X8G	50	560pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H681J0M1H03A	X8G	50	680pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H821J0M1H03A	X8G	50	820pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H102J0M1H03A	X8G	50	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H122J0M1H03A	X8G	50	1200pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H152J0M1H03A	X8G	50	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H182J0M1H03A	X8G	50	1800pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H222J0M1H03A	X8G	50	2200pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H272J0M1H03A	X8G	50	2700pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H332J0M1H03A	X8G	50	3300pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H392J0M1H03A	X8G	50	3900pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G1H472J1M1H03A	X8G	50	4700pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G1H562J1M1H03A	X8G	50	5600pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G1H682J1M1H03A	X8G	50	6800pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G1H822J1M1H03A	X8G	50	8200pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G1H103J1M1H03A	X8G	50	10000pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G2A101J0M1H03A	X8G	100	100pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A121J0M1H03A	X8G	100	120pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A151J0M1H03A	X8G	100	150pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A181J0M1H03A	X8G	100	180pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A221J0M1H03A	X8G	100	220pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A271J0M1H03A	X8G	100	270pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A331J0M1H03A	X8G	100	330pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A391J0M1H03A	X8G	100	390pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A471J0M1H03A	X8G	100	470pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A561J0M1H03A	X8G	100	560pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A681J0M1H03A	X8G	100	680pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	-	-	-										

 Inside Crimp Taping (Lead Style: M*)

Unit : mm

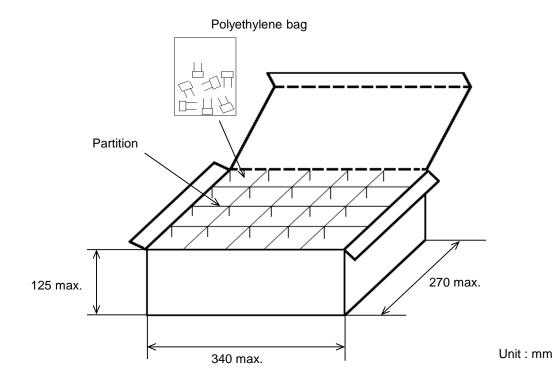
Customer	Murata Part Number	T.C.	DC Dimension (mm) Cap. Cap.							Dimension (LxW)	Pack		
Part Number		1.0.	Volt. (V)	Оар.	Tol.	٦	W	W1	F	Т	H/H0	` ,	qty. (pcs)
	RHE5G2A821J0M1H03A	X8G	100	820pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A102J0M1H03A	X8G	100	1000pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A122J0M1H03A	X8G	100	1200pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A152J0M1H03A	X8G	100	1500pF	±5%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHE5G2A182J1M1H03A	X8G	100	1800pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G2A222J1M1H03A	X8G	100	2200pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G2A272J1M1H03A	X8G	100	2700pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHE5G2A332J1M1H03A	X8G	100	3300pF	±5%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000

Reference only

5. AE0	C-Q200 Murata	Standard Specif	ications and Test Methods	
No.		-Q200 : Item	Specification	AEC-Q200 Test Method
1	Pre-and Post-S Electrical Test	Stress		-
2	High	Appearance	No defects or abnormalities.	Sit the capacitor for 1000±12h at 150±3°C. Let sit for 24±2h
	Temperature	Capacitance	Within ±3% or ±0.3pF	at *room condition, then measure.
	Exposure	Change	(Whichever is larger)	
	(Storage)	Q	Q ≧ 350	
		I.R.	1,000MΩ min.	
3	Temperature	Appearance	No defects or abnormalities except color	Perform the 1000 cycles according to the four heat treatments listed in
	Cycling		change of outer coating.	the following table. Let sit for 24±2 h at *room condition, then measure.
	,	Capacitance	Within ±5% or ±0.5pF	
		Change	(Whichever is larger)	Step 1 2 3 4
		Q	Q ≧ 350	Temp55+0/-3 Room 150+3/-0 Room
		I.R.	1,000MΩ min.	(°C) Temp. Temp.
				Time (min.) 15±3 1 15±3 1
4	Moisture	Appearance	No defects or abnormalities.	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%)
4	Resistance	Capacitance	Within ±5% or ± 0.5pF	treatment shown below, 10 consecutive times.
	Resistance	·	(Whichever is larger)	Let sit for 24±2 h at *room condition, then measure.
		Change	,	Let sit for 24±2 if at 100m condition, then measure.
		Q I.R.	Q ≧ 200	Temperature Humidity Humidity 80~98% Humidity 80~98% Humidity
		I.K.	500M Ω min.	(°C) Humidity 80~98% Humidity 80~98% Humidity 90-98% V 90-98% V 90-98%
				65
				60
				55
				950 845
				840
				§40 §35
				25 30
				20 +10
				15 - 2 °C
				10 Initial measurement
				5
				-5
				-10 One cycle 24 hours
				0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
				Hours
5	Biased	Appearance	No defects or abnormalities.	Apply the rated voltage and DC1.3+0.2/-0V (add 100kΩ resistor)
	Humidity	Capacitance	Within ±5% or ± 0.5pF	at 85±3°C and 80 to 85% humidity for 1000±12h.
		Change	(Whichever is larger)	Remove and let sit for 24±2 h at *room condition, then measure.
		Q	Q ≧ 200	The charge/discharge current is less than 50mA.
		I.R.	500MΩ min.	
6	Operational	Appearance	No defects or abnormalities except color	Apply 150% of the rated voltage for 1000±12h at 150±3°C.
	Life		change of outer coating.	Let sit for 24±2 h at *room condition, then measure.
		Capacitance	Within ±3% or ±0.3pF	The charge/discharge current is less than 50mA.
		Change	(Whichever is larger)	
		Q	Q ≧ 350	
		I.R.	1,000MΩ min.	
7	External Visual		No defects or abnormalities.	Visual inspection.
8	Physical Dimer	nsion	Within the specified dimensions.	Using calipers and micrometers.
9	Marking		To be easily legible.	Visual inspection.
10	Resistance	Appearance	No defects or abnormalities.	Per MIL-STD-202 Method 215
	to Solvents	Capacitance	Within the specified tolerance.	Solvent 1 : 1 part (by volume) of isopropyl alcohol
		Q	Q ≧ 1,000	3 parts (by volume) of mineral spirits
		I.R.	10,000MΩ min.	Solvent 2 : Terpene defluxer
				Solvent 3 : 42 parts (by volume) of water
				1part (by volume) of propylene glycol monomethyl ether
				1 part (by volume) of monoethanolamine
* "roor	n condition" Te	emperature : 15	to 35°C, Relative humidity : 45 to 75%, Atmos	sphere pressure : 86 to 106kPa

Reference only

	150		Referen	T Of the						
No.		c-Q200 st Item	Specification		AEC-Q200 Test M	lethod				
11	Mechanical	Appearance	No defects or abnormalities.	Three shock	in each direction should be appl	ied along 3				
-	Shock	Capacitance	Within the specified tolerance.	mutually per	endicular axes of the test specim	nen (18 shocks).				
ŀ		Q	Q ≧ 1,000	The specifie	test pulse should be Half-sine ar	nd should have a				
- 1				duration: 0.	ms, peak value : 1500G and velo	ocity change : 4.7m/s.				
12	Vibration	Appearance	No defects or abnormalities.	The capacit	should be subjected to a simple	harmonic motion				
ŀ		Capacitance	Within the specified tolerance.		amplitude of 1.5mm, the frequer					
		Q	Q ≧ 1,000	_	ween the approximate limits of 10	· ·				
		_		-	y range, from 10 to 2000Hz and r					
					versed in approximately 20 min.					
-					blied for 12 items in each 3 mutua					
ŀ					al of 36 times).	ally perpendicula.				
12-1	Resistance	Appearance	No defects or abnormalities.		s should be immersed in the mel	Itad colder 1.5 to 2.0mm				
				_	of terminal at 260±5°C for 10±1 s					
ł	to Soldering	Capacitance	Within ±2.5% or ±0.25pF	from the roo	or terminal at 260±5°C for 10±1 s	seconds.				
ŀ	•	Change	(Whichever is larger)	┨╻						
ŀ	Heat	Dielectric	No defects	 Post-treatment Capacitor should be stored for 24±2 hours at *room condition. 						
-	(Non-	Strength		Capacitor si	uld be stored for 24±2 hours at	*room condition.				
ŀ	Preheat)	(Between								
		terminals)	ļ	<u> </u>						
3-2	Resistance	Appearance	No defects or abnormalities.		citor should be stored at 120+0/-					
	to	Capacitance	Within ±2.5% or ±0.25pF		d wires should be immersed in th					
-	Soldering	Change	(Whichever is larger)	1.5 to 2.0mr	from the root of terminal at 260±	:5°C for 7.5+0/-1 seconds.				
-	Heat	Dielectric	No defects	7						
-	(On-	Strength		 Post-treatr 	ent					
ŀ	Preheat)	(Between		Capacitor sh	ould be stored for 24±2 hours at	*room condition.				
		terminals)								
3-3	Resistance	Appearance	No defects or abnormalities.	Test condition	1					
-	to	Capacitance	Within ±2.5% or ±0.25pF	Temperatu	e of iron-tip : 350±10°C					
-	Soldering	Change	(Whichever is larger)	Soldering t	ne : 3.5±0.5 seconds					
	Heat	Dielectric	No defects.	Soldering po	sition					
	(soldering	Strength		Straight Lead: 1.5 to 2.0mm from the root of terminal.						
ŀ	iron method)	(Between			Crimp Lead: 1.5 to 2.0mm from the end of lead bend					
ŀ		terminals)								
ŀ		,		Post-treatr	ent					
-					ould be stored for 24±2 hours at	*room condition.				
14	Thermal	Appearance	No defects or abnormalities.		00 cycles according to the two h					
.	Shock	Capacitance	Within ±5% or ±0.5pF		e(Maximum transfer time is 20 se					
	01.55.1	Change	(Whichever is larger)		2 h at *room condition, then mea	,				
		Q	Q ≧ 350	-		,				
ŀ		I.R.	$\alpha = 000$ 1,000MΩ min.	-	Step 1	2				
ŀ		1.13.	1,0001012 111111.		Temp55+0/-3	150+3/-0				
ł					(°C)	100 101				
-					Time 15±3	15±3				
					(min.)	1020				
4.5	ECD		No defects on above and lities	Der AEC 01	00.000					
15	ESD	Appearance	No defects or abnormalities.	Per AEC-Q2	0-002					
-		Capacitance	Within the specified tolerance.	_						
		Q	Q ≧ 1,000	_						
		I.R.	10,000MΩ min.	<u> </u>		 				
16	Solderability		Lead wire should be soldered with		The terminal of a capacitor is dipped into a solution of ethanol					
-			uniform coating on the axial direction	(JIS-K-8101	and rosin (JIS-K-5902) (25%rosi	n in weight propotion) and				
-			over 95% of the circumferential direction.	then into mo	en solder (JIS-Z-3282) for 2±0.5	seconds. In both cases				
-				the depth of	lipping is up to about 1.5 to 2mm	from the terminal body.				
				Temp. of so	ler:					
				245±5°C I	ead Free Solder (Sn-3.0Ag-0.5Cu	J)				
				235±5°C H	60A or H63A Eutectic Solder					


Reference only

	AFC	C-Q200			only I						
0.		Test Item Specifications			AEC-Q200 Test Method						
7	Electrical	Appearance	No defects or a	abnormalities.	Visual inspection.						
	Characte-	Capacitance	Within the spe	cified tolerance.	The capacitance, Q should be measured at 25°C at the frequency						
	rization	Q	Q ≧ 1,000		and voltage shown in the table.						
					Nominal Cap. Frequency Voltage						
					C ≤ 1000pF 1±0.1MHz AC0.5 to 5V(r.m.s.)						
					C > 1000pF 1±0.1kHz AC1±0.2V(r.m.s.)						
					0 > 1000pi 120.1Ki 2						
		Insulation	Room	10,000MΩ min.	The insulation resistance should be measured at 25±3 °C with a						
		Resistance	Temperature		DC voltage not exceeding the rated voltage at normal temperatu						
		(I.R.)			and humidity and within 2 min. of charging.						
					(Charge/Discharge current ≤ 50mA.)						
			High	100MΩ min.	The insulation resistance should be measured at 150±3 °C with						
			Temperature		DC voltage not exceeding the rated voltage at normal temperatu						
					and humidity and within 2 min. of charging.						
					(Charge/Discharge current ≤ 50mA.)						
		Dielectric	Between	No defects or abnormalities.	The capacitor should not be damaged when DC voltage of 300%						
		Strength	Terminals		of the rated voltage is applied between the terminations for						
					1 to 5 seconds.						
					(Charge/Discharge current ≤ 50mA.)						
			Body	No defects or abnormalities.	The capacitor is placed in a container with						
			Insulation		metal balls of 1mm diameter so that each						
					terminal, short-circuit is kept approximately App						
					2mm from the balls, and 250% of the rated						
					DC voltage is impressed for 1 to 5 seconds						
					between capacitor terminals and metal balls.						
					(Charge/Discharge current ≤ 50mA.)						
8	Terminal	Tensile	Termination no	t to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually						
	Strength	Strength			to each lead in the radial direction of the capacitor until reaching						
					10N and then keep the force applied for 10±1 seconds.						
					<u> </u>						
					↓						
		Bending	Termination no	ot to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then						
		Strength	remination	it to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction.						
		Strength			Each wire is then returned to the original position and bent 90°						
					in the opposite direction at the rate of one bend per 2 to 3 secon						
9	Capacitance	1	Within the spe	cified Tolerance.	The capacitance change should be measured after 5min. at						
	Temperature		•	: 0±30 ppm/°C	each specified temperature step.						
	Characteristic	S		: 0+30/-72 ppm/°C							
					Step Temperature(°C)						
					1 25±2						
					2 -55±3						
					3 25±2						
					4 150±3						
					5 25±2						
					The temperature coefficient is determined using the capacitance						
					measured in step 3 as a reference. When cycling the temperature						
					sequentially from step 1 through 5 (-55°C to 150°C)						
					the capacitance should be within the specified tolerance for the						
					temperature coefficient and capacitance change as Table A.						
					The capacitance drift is calculated by dividing the differences						
					between the maximum and minimum measured values in the						
					step 1, 3 and 5 by the capacitance value in step 3.						

6. Packing specification

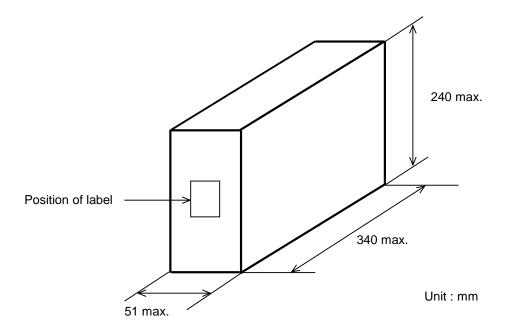
•Bulk type (Packing style code : B)

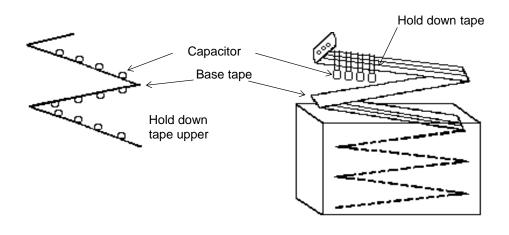
The size of packing case and packing way

The number of packing = *1 Packing quantity × *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

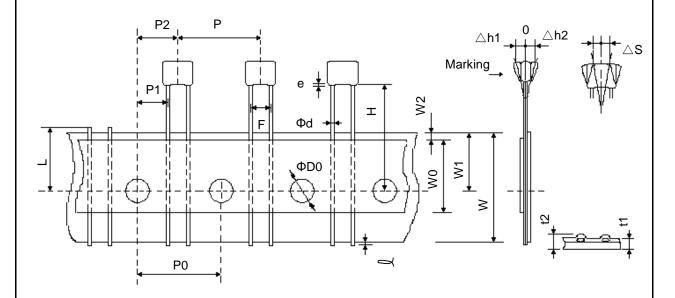

Note)


The outer package and the number of outer packing be changed by the order getting amount.

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

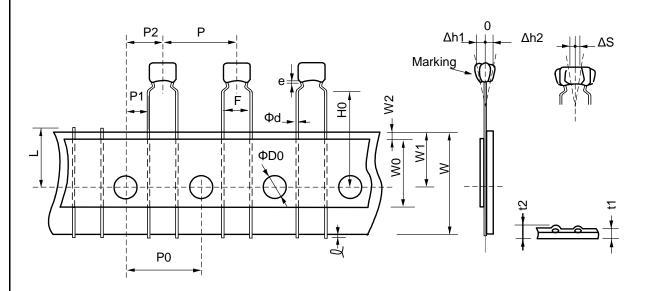
The size of packing case and packing way



7. Taping specification

7-1. Dimension of capacitors on tape

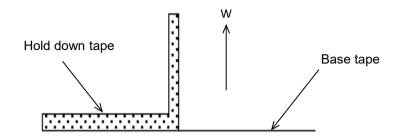
Straight taping type < Lead Style : DB >


Pitch of component 12.7mm / Lead spacing 2.5mm

Unit: mm

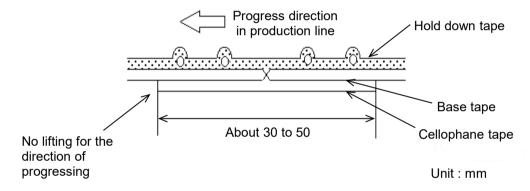
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	2.5+0.4/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	5.1+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	Н	16.0+/-0.5	
Protrusion length	L	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	∆ h1	1.0 max.	
Deviation across tape	Δh2	1.0 IIIax.	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	1.5 max.	

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm



Unit: mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	∆ h1	2.0 max. (Di	mension code : W)
Deviation across tape	∆ h2	1.0 max. (ex	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.

2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

RHE5G2A561J0A2H03E	RHE5G2A222J1M1H03A	RHE5G2A331J0M1H03A	RHE5G2A821J0A2H03B
RHE5G2A182J1M1H03A	RHE5G2A271J0K1H03B	RHE5G2A391J0M1H03A	RHE5G2A222J1K1H03B
RHE5G2A222J1A2H03B	RHE5G2A391J0A2H03B	RHE5G2A391J0DBH03A	RHE5G2A332J1A2H03B
RHE5G2A121J0DBH03A	RHE5G2A182J1A2H03B	RHE5G2A221J0K1H03B	RHE5G2A221J0M1H03A
RHE5G2A272J1A2H03B	RHE5G2A181J0A2H03B	RHE5G2A272J1K1H03B	RHE5G1H472J1K1H03B
RHE5G1H681J0A2H03B	RHE5G2A152J0A2H03B	RHE5G2A152J0M1H03A	RHE5G2A681J0A2H03B
RHE5G2A271J0M1H03A	RHE5G2A821J0DBH03A	RHE5G1H681J0M1H03A	RHE5G1H682J1A2H03B
RHE5G1H682J1DBH03A	RHE5G2A332J1DBH03A	RHE5G2A471J0A2H03B	RHE5G2A271J0DBH03A
RHE5G2A681J0DBH03A	RHE5G2A821J0K1H03B	RHE5G2A222J1DBH03A	RHE5G2A681J0M1H03A
RHE5G2A391J0K1H03B	RHE5G2A272J1M1H03A	RHE5G2A331J0K1H03B	RHE5G2A332J1K1H03B
RHE5G2A681J0K1H03B	RHE5G2A331J0A2H03B	RHE5G2A332J1M1H03A	RHE5G1H152J0M1H03A
RHE5G2A471J0M1H03A	RHE5G2A181J0M1H03A	RHE5G2A561J0K1H03B	RHE5G2A821J0M1H03A
RHE5G2A271J0A2H03B	RHE5G2A272J1DBH03A	RHE5G1H222J0A2H03B	RHE5G1H331J0M1H03A
RHE5G1H391J0M1H03A	RHE5G1H562J1M1H03A	RHE5G2A121J0A2H03B	RHE5G2A181J0K1H03B
RHE5G2A221J0A2H03B	RHE5G2A152J0K1H03B	RHE5G2A182J1K1H03B	RHE5G2A122J0A2H03B
RHE5G2A331J0DBH03A	RHE5G2A471J0K1H03B	RHE5G2A561J0DBH03A	RHE5G2A561J0M1H03A
RHE5G2A471J0DBH03A	RHE5G1H821J0K1H03B	RHE5G2A122J0K1H03B	RHE5G2A102J0M1H03A
RHE5G2A151J0A2H03B	RHE5G2A151J0M1H03A	RHE5G2A101J0K1H03B	RHE5G2A182J1DBH03A
RHE5G1H681J0K1H03B	RHE5G2A102J0DBH03A	RHE5G2A122J0DBH03A	RHE5G1H391J0A2H03B
RHE5G1H472J1DBH03A	RHE5G2A101J0DBH03A	RHE5G2A151J0K1H03B	RHE5G1H561J0DBH03A
RHE5G2A102J0K1H03B	RHE5G2A121J0M1H03A	RHE5G2A221J0DBH03A	RHE5G1H182J0K1H03B
RHE5G1H182J0DBH03A	RHE5G1H392J0M1H03A	RHE5G1H392J0DBH03A	RHE5G1H562J1DBH03A
RHE5G1H822J1K1H03B	RHE5G1H561J0A2H03B	RHE5G1H822J1DBH03A	RHE5G1H822J1M1H03A
RHE5G2A102J0A2H03B	RHE5G2A122J0M1H03A	RHE5G1H182J0A2H03B	RHE5G2A121J0K1H03B
RHE5G2A152J0DBH03A	RHE5G1H271J0K1H03B	RHE5G1H391J0DBH03A	RHE5G2A101J0M1H03A