EVQ4321-D-00A

36V, 1A, Low-I_Q, Synchronous Step-Down Converter in a QFN-12 Package Evaluation Board, AEC-Q100 Qualified

DESCRIPTION

The EVQ4321-D-00A evaluation board is designed to demonstrate the capabilities of the MPQ4321, a 350kHz to 2.5MHz configurable-frequency, synchronous, step-down switching regulator with integrated, internal high-side MOSFETs (HS-FETs) and low-side MOSFETs (LS-FETs).

The MPQ4321 provides 1A of highly efficient output current (I_{OUT}) with peak current control mode. The wide 3.3V to 36V input voltage (V_{IN}) 42V load dump range and tolerance accommodates а variety of step-down applications in automotive input environments. A 1µA quiescent current (IQ) in shutdown mode allows the device to be used in battery-powered applications.

High power conversion efficiency across a wide load range is achieved by scaling down the

switching frequency (f_{SW}) under light-load conditions, which reduces the switching and gate driver losses.

An open-drain power good (PG) signal indicates whether the output is within 94.5% to 105.5% of its nominal voltage.

Frequency foldback helps prevent inductor current (I_L) runaway during start-up. Thermal shutdown provides reliable, fault-tolerant operation. A high duty cycle and low-dropout (LDO) mode are provided for automotive coldcrank conditions.

The EVQ4321-D-00A is fully assembled and tested. The MPQ4321 is available in a QFN-12 (2mmx3mm) package with wettable flanks. It is available in AEC-Q100 Grade 1.

PERFORMANCE SUMMARY

Specifications are at $T_A = 25$ °C, unless otherwise noted.

Parameters	Conditions	Value
Input voltage (V _{IN}) range		3.3V to 36V
Output voltage (V _{OUT})	V_{IN} = 6V to 36V, I_{OUT} = 0A to 1A	V _{OUT} = 5V
Maximum output current (Iout)	V _{IN} = 3.3V to 36V	1A
Typical efficiency	V _{IN} = 12V, V _{OUT} = 5V, I _{OUT} = 1A	92.6%
Peak efficiency	$V_{IN} = 8V, V_{OUT} = 5V, I_{OUT} = 1A$	94.4%
Switching frequency (fsw)		2.2MHz

EVQ4321-D-00A EVALUATION BOARD

LxWxH (8.3cmx8.3cmx0.58cm)

Board Number	MPS IC Number	
EVQ4321-D-00A	MPQ4321GDE-AEC1	

QUICK START GUIDE

The EVQ4321-D-00A evaluation board is easy to set up and use to evaluate the MPQ4321's performance. For proper measurement equipment set-up, refer to Figure 2 on page 4 and follow the steps below:

- 1. Preset the power supply between 6V and 36V, then turn off the power supply.
- 2. Set the load current between 0A and 1A. Electronic loads represent a negative impedance to the regulator, and setting a current too high may trigger hiccup mode.
- 3. If longer cables are used between the source and the evaluation board (>0.5m total), place a damping capacitor at the input terminals, especially when $V_{IN} \ge 24V$.
- 4. Connect the power supply terminals to:
 - a. Positive (+): VEMI
 - b. Negative (-): GND
- 5. Connect the load terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND
- 6. After making the connections, turn on the power supply.
- 7. To use the enable function, apply a digital input to the EN pin. Drive EN above 1.02V to turn the regulator on; drive EN below 0.85V to turn the regulator off. If the enable function is not used, EN can be connected directly to VIN.
- 8. Connect a resistor between the FREQ and GND pins to set the internal switching frequency (f_{SW}), which ranges between 350kHz and 2.5MHz.
- 9. The external resistor divider sets the output voltage (V_{OUT}) (see Figure 1).

Figure 1: Feedback Divider Network with Adjustable Output

R5 is selected to be $100k\Omega$. R6 can then be calculated using Equation (1):

$$R6 = \frac{R5}{\frac{V_{\text{OUT}}}{0.8V} - 1} \tag{1}$$

Refer to the Application Information section in the MPQ4321 datasheet to calculate the inductance and output capacitance for different V_{OUT} values.

Figure 2: Measurement Equipment Set-Up

EVALUATION BOARD SCHEMATIC

Figure 3: Evaluation Board Schematic

PACKAGE REFERENCE

EVQ4321-D-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
1	CIN1	1nF	Ceramic capacitor, 50V, X7R	0603	Murata	GRM216R71H102KA01
1	CIN2	10nF	Ceramic capacitor, 50V, X7R	0603	Murata	GRM188R71H103KA01D
2	CIN3, CIN4	2.2µF	Ceramic capacitor, 50V, X7R	0805	TDK	CGA4J3X7R1H225KT000N
1	CIN5	22µF	Aluminum polymer capacitor, 50V	SMD	Panasonic	EEHZC1H220P
2	C1A, C1B	4.7µF	Ceramic capacitor, 50V, X7S	1206	Murata	GRM31CR71H475KA12L
3	C1C, C1D, C3	100nF	Ceramic capacitor, 50V, X7R	0603	Murata	GRM188R71H104KA93D
2	C2A, C2B	22µF	Ceramic capacitor, 25V, X7R	1210	Murata	GRM32ER71E226KE15L
1	C5	10pF	Ceramic capacitor, 50V, NP0	0603	Wurth	885012006051
1	C4	1µF	Ceramic capacitor, 25V, X7R	0603	Murata	GCM188R71E105KA64D
1	FB1	1A	Magnetic bead	0805	Wurth	742792097
1	L1	1µH	Inductor, 14.6mΩ, 9.6A	SMD	Coilcraft	XEL4020-102MEB
1	L2	5.6µH	Inductor, 25.8mΩ, 5.3A	SMD	Coilcraft	XAL5050-562MEC
4	R1, R5, R7, R2	100kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-07100KL
1	R6	19.1kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0719K1L
1	R3	15kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0715KL
1	R4	0Ω	Film resistor, 5%	0603	Yageo	RC0603JR-070RL
4	VEMI, GND, GND, VOUT	2mm	Golden pin	DIP	Custom (1)	
3	PG, EN, GND	1mm	Golden pin	DIP	Custom (1)	
1	U1	MPQ4321	36V, 1A, low-I _Q , synchronous step-down converter, AEC-Q100	QFN-12 (2mmx 3mm)	MPS	MPQ4321GDE-AEC1

Note:

1) Contact an MPS FAE for more information on MPS custom pins.

EVB TEST RESULTS

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 5V, T_A = 25°C, unless otherwise noted.

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 5V, T_A = 25°C, unless otherwise noted.

Thermal Performance

I_{OUT} = 0.5A, no forced airflow, T_{CASE} = 31.2°C

Thermal Performance

I_{OUT} = 1A, no forced airflow, T_{CASE} = 34.2°C

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 5V, T_A = 25°C, unless otherwise noted.

CISPR25 Class 5 Peak Conducted Emissions

150kHz to 108MHz

CISPR25 Class 5 Average Conducted Emissions

150kHz to 108MHz

CISPR25 Class 5 Peak Radiated Emissions

150kHz to 30MHz

CISPR25 Class 5 Average Radiated Emissions

150kHz to 30MHz

CISPR25 Class 5 Peak Radiated Emissions

Horizontal, 30MHz to 1GHz

CISPR25 Class 5 Average Radiated Emissions

Horizontal, 30MHz to 1GHz

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 5V, T_A = 25°C, unless otherwise noted.

CISPR25 Class 5 Peak Radiated Emissions

Vertical, 30MHz to 1GHz

CISPR25 Class 5 Average Radiated Emissions

Vertical, 30MHz to 1GHz

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 5V, T_A = 25°C, unless otherwise noted.

Performance curves and waveforms are tested on the evaluation board. V_{IN} = 12V, V_{OUT} = 5V, T_A = 25°C, unless otherwise noted.

PCB LAYOUT (2)

Figure 4: Top Silk and Top Layer

Figure 5: Mid-Layer 1

Figure 6: Mid-Layer 2

Figure 7: Bottom Layer and Bottom Silk

Note:

2) The copper thickness is 2oz.

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	8/8/2022	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Monolithic Power Systems (MPS):

EVQ4321-D-00A