

EVQ18021HN-A-00A 100V, High Frequency

Half-Bridge Gate Driver EV Board

DESCRIPTION

This is ΕV board documentation for MPQ18021HN-A. The MPQ18021HN-A is a high frequency, 100V half bridge N-channel power MOSFET driver. Its low side and high driver channels are independently side controlled and matched with a time delay of less than 5ns. Under-voltage lockout on both high side and low side supplies force their outputs low in case of insufficient supply. The integrated bootstrap diode reduces external component count.

This demo board is configured to a buck converter. INH and INL are independent signals of each other. For simplicity, the user only need to supply a PWM signal to this demo board and the on-board circuitry will generate INH and INL signals with proper dead time. In a real system, the controller will have to take care of dead time adjustment.

ELECTRICAL SPECIFICATION

Parameter	Symbol	Value	Units	
Driver Voltage	V _{DD}	9 – 18	V	
Input Power Voltage	wer Voltage V _{POWER} 0-1		V	
Duty		10	%	
Output Current	Іоит	2.5	А	
Frequency	Fsw	200	KHz	

FEATURES

- Drives N-Channel MOSFET Half Bridge
- 100V V_{BST} Voltage Range
- On-Chip Bootstrap Diode
- Typical 16ns Propagation Delay Time
- Less Than 5ns Gate Drive Matching
- Drives 1nF Load with 12ns/9ns Rise/Fall Times with 12V VDD
- TTL Compatible Input
- Less Than 160µA Quiescent Current
- UVLO for Both High Side and Low Side
- In SOIC8E Packages

APPLICATIONS

- Car DC/DC Power Systems
- Half Bridge Motor Driver

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology", are Registered Trademarks of Monolithic Power Systems, Inc.

EVQ18021HN-A-00A EVALUATION BOARD

(L x W x H) 6.4cm x 6.4cm x 3cm

Board Number	MPS IC Number		
EV18021A-N-00A	MPQ18021HN-A		

LOAD

/OUT

11 33uH LOADGND

C11 25V 1210 1210

C12 = 22uF

22UF 25V

22uF 25V = 1210

> C14 25V 1210

C4 330uF

F S

8

DRVL

8"≞ ∿∿

5 £

LNC C

C3 22uF AP1206 25V

Vdd=9-18V

ΔQΛ

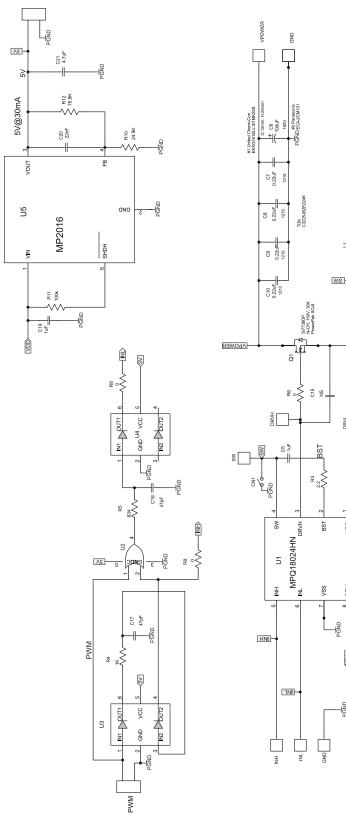
C16 NS

R7

DRVL

QQ/

DRVL


INAC

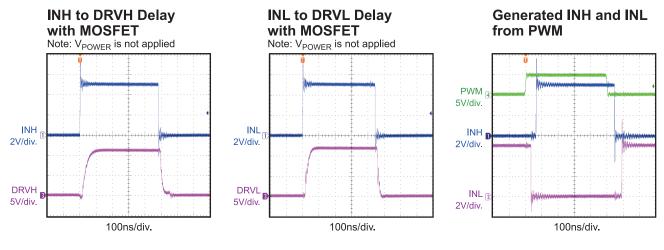
#1 United Cherr EMVA250ADA3 #2 Panasonic EEE-1EA331UF

C1 NS CAP080

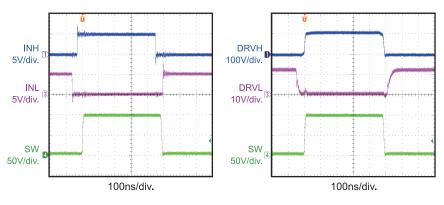
GND

EVALUATION BOARD SCHEMATIC

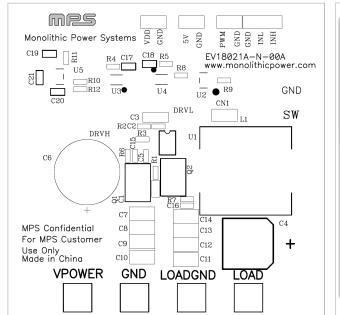
EVQ18021HN-A-00A BILL OF MATERIALS


Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer P/N
	C1, C15, C16	NS		0805		
3	C2, C5, C19	1.0µF	Ceramic Cap, 25V, X7R	0603	MuRata	GRM188R71E105KA12D
1	C3	22µF	Ceramic Cap, 25V, X5R	1206	MuRata	GRM31CR61E226KE15L
1	C4	330µF	25V Elec. Alu. Cap	JA0	Chemicon	EMZE250ADA331MJA0G
1	C6	100µF	160V, Aluminium Cap	12.5X25X 5 mm	Panasonic	ECA-2CM101
4	C7, C8, C9, C10	0.22µF	Ceramic Cap, 250V	1210	MuRata	GRM32DR72E224KW01
4	C11,C12, C13, C14	22µF	Ceramic Cap, 25V, X5R	1210	MuRata	GRM32ER61E226KE15L
2	C17,C18	47pF	Ceramic Cap, 50V, C0G	0603	MuRata	GRM1885C1H470JA01D
1	C20	22nF	Ceramic Cap, 25V, X7R	0603	MuRata	GRM188R71E223JA01D
1	C21	4.7µF	Ceramic Cap, 6.3V, X5R	0603	MuRata	GRM188R60J475ME19D
1	L1	33µH	DCR=21.7mΩ, Isat=9A	18x18x9 mm	Wurth	WE74435573300
2	Q1, Q2	150V/30A	N-channel PowerPak MOSFET	PowerPak SO-8	Vishay	Si7738DP
	R1	NS		0603		
1	R2	10Ω	Film Resistor, 5%	0603	Yageo	RC0603JR-0710RL
1	R3	2.2Ω	Film Resistor, 5%	0603	Yageo	RC0603JR-072R2L
1	R4	1kΩ	Film Resistor, 1%	0603	Yageo	RC0603FR-071KL
1	R5	634Ω	Film Resistor, 1%	0603	Yageo	RC0603FR-07634RL
4	R6, R7, R8, R9	0Ω	Film Resistor	0603	Yageo	RC0603JR-070RL
1	R10	24.9kΩ	Film Resistor, 1%	0603	Yageo	RC0603FR-0724K9L
1	R11	100kΩ	Film Resistor, 1%	0603	Yageo	RC0603FR-07100KL
1	R12	76.8kΩ	Film Resistor, 1%	0603	Yageo	RC0603FR-0776K8L
1	U1	MPQ18021 HN-A	100V Half Bridge Driver	SOIC-8 EP	MPS	MPQ18021HN-A
1	U2	OR Gate	2-input OR Gate	SOT23-5	Fairchild Semiconductor	NC7S32M5
2	U3, U4	Inverter	Dual Inverter	SC70	Fairchild Semiconductor	NC7WZ14P6X
1	U5	MP2016	LDO, 5V, 30mA	SOT23-5	MPS	MP2016DJ

EVB TEST RESULTS


Performance waveforms are tested on the evaluation board.

 V_{POWER} = 100V, V_{DD} = 12V, I_{LOAD} = 2.5A, Duty=10%, L = 33µH, Frequency=200kHz, T_A = 25°C, unless otherwise noted.


Input Signals and SW Node

Gate Signals and SW Node

PRINTED CIRCUIT BOARD LAYOUT

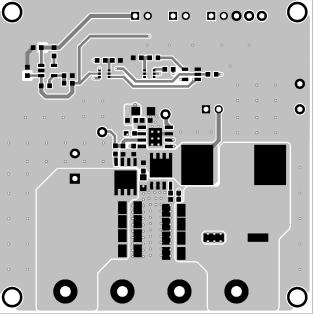


Figure 1: Top Silk Layer

Figure 2: Top Layer

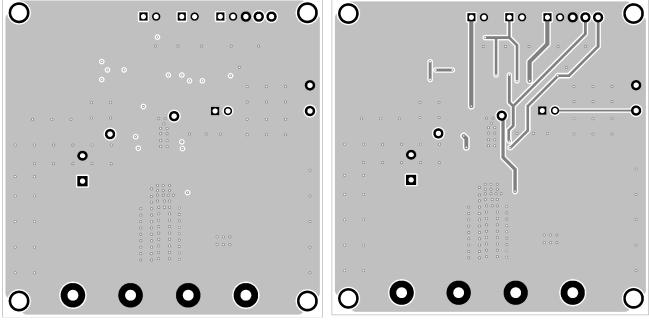


Figure 3: Inner 1 Layer & Inner 2 Layer

Figure 4: Bottom Layer

QUICK START GUIDE

EVQ18021HN-A-N-00A is configured in a buck converter. Below is the recommended setting for users to evaluate the EV board. User must watch for inductor saturation (do not set switching frequency too low) and over temperature (do not increase duty).

- 1. Preset Driver Power Supply between 9V-18V.
- 2. Preset Input Power Supply between 0V-100V.
- 3. Connect Driver Power Supply terminals to:
 - a. Positive (+): VDD
 - b. Negative (-): GND
- 4. Connect Input Power Supply terminals to:
 - a. Positive (+): VPOWER
 - b. Negative (–): GND
- 5. Connect Load to:
 - a. Positive (+): LOAD
 - b. Negative (-): LOADGND
- 6. Function Generator setting:
 - a. Frequency: 200 kHz
 - b. Logic High: 5V
 - c. Logic Low: 0V
 - d. Duty: 10%
 - e. Rising/Falling Edge Slew Rate: As fast as possible
- 7. Connect Function Generator's output to PWM and GND pins. Turn on Function Generator's output.
- 8. Turn on Driver Power Supply.
- 9. Check INH, INL, DRVH and DRVL signals. Make sure there are dead time between DRVH high and DRVL high to avoid shoot through.
- 10. If all signals are correct, then turn on Input Power Supply.
- 11. User may load up to 2.5A of output current. Higher load current may cause overheat to the MOSFET.
- 12. To turn off the board, please follow these steps:
 - a. Turn off load.
 - b. Turn off Input Power Supply.
 - c. Turn off Driver Power Supply.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Monolithic Power Systems (MPS):

EVQ18021HN-A-00A