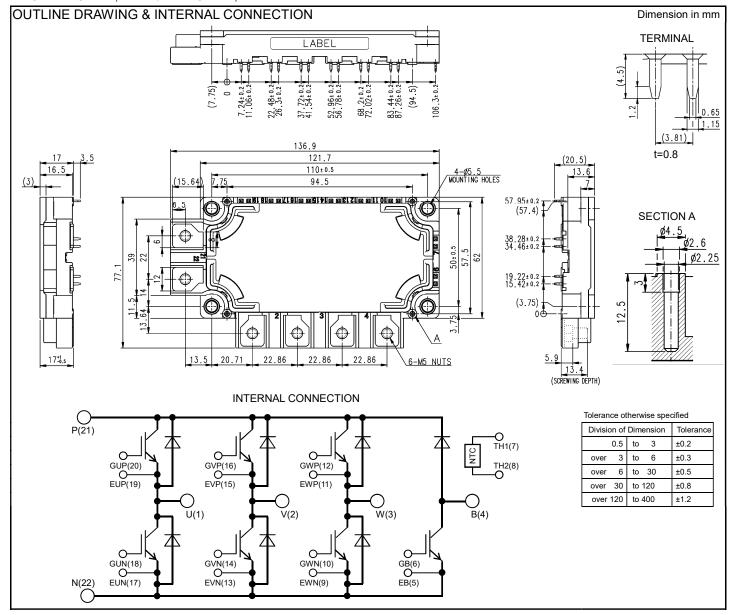


<IGBT Modules>

CM150RX-24S1

HIGH POWER SWITCHING USE INSULATED TYPE



sevenpack (3φ Inverter + Brake Chopper)

- •Flat base Type
- •Copper base plate (non-plating)
- •Tin plating pin terminals
- •RoHS Directive* compliant
- •Recognized under UL1557, File E323585

APPLICATION

AC Motor Control, Motion/Servo Control, etc.

1

Publication Date: February 2018

CMH-10251-C Ver.1.4

HIGH POWER SWITCHING USE INSULATED TYPE

MAXIMUM RATINGS (T_j=25 °C, unless otherwise specified)

INVERTER PART IGBT/DIODE

Symbol	Item	Conditions	Rating	Unit
V _{CES}	Collector-emitter voltage	G-E short-circuited	1200	V
V _{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V
Ic	Collector current	DC, T _C =107 °C (Note2, 4)	150	^
I _{CRM}	Collector current	Pulse, Repetitive (Note3)	300	A
P _{tot}	Total power dissipation	T _C =25 °C (Note2, 4)	935	W
I _E (Note1)	Emitter eurrent	DC (Note2)	150	_
I _{ERM} (Note1)	Emitter current	Pulse, Repetitive (Note3)	300	A

BRAKE PART IGBT/DIODE

Symbol	Item	Conditions	Rating	Unit
V _{CES}	Collector-emitter voltage	G-E short-circuited	1200	V
V _{GES}	Gate-emitter voltage	C-E short-circuited	± 20	V
Ic	Collector current	DC, T _C =109 °C (Note2, 4)	75	Α
I _{CRM}	Collector current	Pulse, Repetitive (Note3)	150	_ ^
P _{tot}	Total power dissipation	T _C =25 °C (Note2, 4)	480	W
V_{RRM}	Repetitive peak reverse voltage	G-E short-circuited	1200	V
I _F	Forward current	DC (Note2)	75	_
I _{FRM}	Forward current	Pulse, Repetitive (Note3)	150	A

MODULE

Symbol	Item	Conditions	Rating	Unit
Visol	Isolation voltage	Terminals to base plate, RMS, f=60 Hz, AC 1 min	4000	V
T _{jmax}	Maximum junction temperature	Instantaneous event (overload)	175	°C
T _{Cmax}	Maximum case temperature	(Note4)	125	C
T _{jop}	Operating junction temperature	Continuous operation (under switching)	-40 ~ +150	°C
T _{stg}	Storage temperature	-	-40 ~ +125	J

ELECTRICAL CHARACTERISTICS (T_j =25 °C, unless otherwise specified)

INVERTER PART IGBT/DIODE

Cumbal	Item	Conditions			Limits		Unit
Symbol	item	Conditions		Min.	Тур.	Max.	Offic
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited		-	-	1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μA
$V_{GE(th)}$	Gate-emitter threshold voltage	I _C =15 mA, V _{CE} =10 V		5.4	6.0	6.6	V
.,		I _C =150 A, V _{GE} =15 V,	T _j =25 °C	-	1.80	2.25	
V _{CEsat} (Terminal)		Refer to the figure of test circuit	T _j =125 °C	-	2.00	-	V
(Terminal)	Collector-emitter saturation voltage	(Note5)	T _j =150 °C	-	2.05	-	1
	CEsat	I _C =150 A,	T _j =25 °C	-	1.70	2.15	
V _{CEsat}		V _{GE} =15 V,	V _{GE} =15 V,	T _j =125 °C	-	1.90	-
(Chip)		(Note5)	T _j =150 °C	-	1.95	-	
Cies	Input capacitance			-	-	15	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited		-	-	3.0	nF
Cres	Reverse transfer capacitance	7		-	-	0.25	1
Q_G	Gate charge	V _{CC} =600 V, I _C =150 A, V _{GE} =15 V		-	315	-	nC
t _{d(on)}	Turn-on delay time	V 000 V I 450 A V 45 V		-	-	800	
tr	Rise time	V_{CC} =600 V, I _C =150 A, V_{GE} =±15 V,		-	-	200	1
t _{d(off)}	Turn-off delay time	D. O. O. Industrial Load		-	-	600	ns
t _f	Fall time	$R_{G}=0 \Omega$, Inductive load		-	-	300	1

HIGH POWER SWITCHING USE INSULATED TYPE

ELECTRICAL CHARACTERISTICS (cont.; T_j =25 °C, unless otherwise specified) INVERTER PART IGBT/DIODE

Cumbal	Item	Conditions		Limits			Unit
Symbol	item	Conditions	Conditions		Тур.	Max.	Offic
V (Note1)		I _E =150 A, G-E short-circuited,	T _j =25 °C	-	2.60	3.40	
V _{EC} ^(Note1) (Terminal)		Refer to the figure of test circuit	T _j =125 °C	-	2.16	-	V
(Terminal)	Emitter-collector voltage	(Note5)	T _j =150 °C	-	2.10	-	
Note1)	Emilier-collector voltage	I _E =150 A,	T _j =25 °C	-	2.50	3.30	
V _{EC} (Note1) (Chip)		G-E short-circuited,	T _j =125 °C	-	2.06	-	V
(Criip)		(Note5)	T _j =150 °C	-	2.00	-	
t _{rr} (Note1)	Reverse recovery time	V _{CC} =600 V, I _E =150 A, V _{GE} =±15 V,		-	-	300	ns
Q _{rr} (Note1)	Reverse recovery charge	R_G =0 Ω , Inductive load		-	4.0	-	μC
Eon	Turn-on switching energy per pulse	V _{CC} =600 V, I _C =I _E =150 A,		-	16.6	-	m l
E _{off}	Turn-off switching energy per pulse	V_{GE} =±15 V, R_{G} =0 Ω , T_{j} =150 °C,		-	17.6	-	mJ
E _{rr} (Note1)	Reverse recovery energy per pulse	Inductive load		-	10.8	-	mJ
R _{CC'+EE'}	Internal lead resistance	Main terminals-chip, per switch, T _C =25 °C (Note4)		-	-	0.7	mΩ
r _g	Internal gate resistance	Per switch		-	13	-	Ω

BRAKE PART IGBT/DIODE

Symbol	Item	Conditions			Limits		Unit
Syllibol	item	Conditions		Min.	Тур.	Max.	Offic
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , G-E short-circuited		-	-	1.0	mA
I _{GES}	Gate-emitter leakage current	V _{GE} =V _{GES} , C-E short-circuited		-	-	0.5	μΑ
$V_{GE(th)}$	Gate-emitter threshold voltage	I_C =7.5 mA, V_{CE} =10 V		5.4	6.0	6.6	V
		I _C =75 A, V _{GE} =15 V,	T _j =25 °C	•	1.80	2.25	
V _{CEsat} (Terminal)		Refer to the figure of test circuit	T _j =125 °C	-	2.00	-	V
(Terrillial)	Collector-emitter saturation voltage	(Note5)	T _j =150 °C	-	2.05	-	
.,	Collector-enfilter saturation voltage	I _C =75 A,	T _j =25 °C	-	1.70	2.15	
V _{CEsat} (Chip)		V _{GE} =15 V,	T _j =125 °C	-	1.90	-	V
(Cnip)		(Note5)	T _j =150 °C	-	1.95	-	1
Cies	Input capacitance		•	-	-	7.5	
Coes	Output capacitance	V _{CE} =10 V, G-E short-circuited	V _{CE} =10 V, G-E short-circuited		-	1.5	nF
Cres	Reverse transfer capacitance	1		-	-	0.13	1
Q_G	Gate charge	V _{CC} =600 V, I _C =75 A, V _{GE} =15 V		-	158	-	nC
t _{d(on)}	Turn-on delay time	V _{CC} =600 V, I _C =75 A, V _{GE} =±15 V,		-	-	300	
tr	Rise time			-	-	200	1
t _{d(off)}	Turn-off delay time			-	-	600	ns
t _f	Fall time	R_{G} =8.2 Ω , Inductive load		-	-	300	1
I _{RRM}	Repetitive peak reverse current	V _R =V _{RRM} , G-E short-circuited		-	-	1.0	mA
		I _F =75 A,	T _j =25 °C	-	2.60	3.40	
V _F		Refer to the figure of test circuit	T _j =125 °C	-	2.16	-	V
(Terminal)		(Note5)	T _j =150 °C	-	2.10	-	1
	Forward voltage	I _F =75 A,	T _j =25 °C	-	2.50	3.30	
V _F			T _j =125 °C	-	2.06	-	V
(Chip)		(Note5)	T _j =150 °C	-	2.00	-	1
t _{rr}	Reverse recovery time	V _{CC} =600 V, I _E =75 A, V _{GE} =±15 V,	•	-	-	300	ns
Qrr	Reverse recovery charge	R _G =8.2 Ω, Inductive load		-	2.0	-	μC
Eon	Turn-on switching energy per pulse	V _{CC} =600 V, I _C =I _E =75 A,		-	3.5	-	1
E _{off}	Turn-off switching energy per pulse	V_{GE} =±15 V, R _G =8.2 Ω , T _j =150 °C,		-	7.3	-	mJ
Err	Reverse recovery energy per pulse	Inductive load		-	6.5	-	mJ
rg	Internal gate resistance	-		-	0	-	Ω

HIGH POWER SWITCHING USE INSULATED TYPE

$\label{eq:cont.} \textbf{ELECTRICAL CHARACTERISTICS (cont.; T}_{j} = 25~^{\circ}\text{C, unless otherwise specified)}$

NTC THERMISTOR PART

Symbol	Item	Conditions	Limits			Unit
		Conditions	Min.	Тур.	Max.	Uill
R ₂₅	Zero-power resistance	T _C =25 °C (Note4)	4.85	5.00	5.15	kΩ
ΔR/R	Deviation of resistance	R ₁₀₀ =493 Ω, T _C =100 °C (Note4)	-7.3	-	+7.8	%
B _(25/50)	B-constant	Approximate by equation (Note6)	-	3375	-	K
P ₂₅	Power dissipation	T _C =25 °C (Note4)	-	-	10	mW

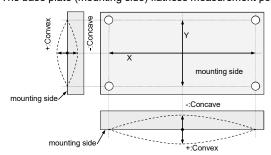
THERMAL RESISTANCE CHARACTERISTICS

Symbol Item		Conditions		Unit		
Symbol	item	Conditions	Min.	Тур.	Max.	Offic
$R_{th(j-c)Q}$		Junction to case, per Inverter IGBT (Note4)	-	-	0.16	K/W
$R_{th(j-c)D}$	Thermal resistance	Junction to case, per Inverter DIODE (Note4)	-	-	0.26	IV/VV
$R_{th(j-c)Q}$	Thermairesistance	Junction to case, per Brake IGBT (Note4)	-	-	0.31	K/W
$R_{th(j-c)D}$		Junction to case, per Brake DIODE (Note4)	-	-	0.47	I N/VV
R _{th(c-s)}	Contact thermal resistance	Case to heat sink, per 1 module, Thermal grease applied (Note4, 7)	-	15	-	K/kW

MECHANICAL CHARACTERISTICS

Cumbal	Item	Conditions		Limits			Unit
Symbol	item	Conditions		Min.	Тур.	Max.	Offic
M _t	Mounting torque	Main terminals	M 5 screw	2.5	3.0	3.5	N·m
M_s	Mounting torque	Mounting to heat sink	M 5 screw	2.5	3.0	3.5	N·m
٦	Creepage distance	Terminal to terminal		17	-	-	mm
d _s		Terminal to base plate		20.1	-	-	111111
4	Clearance	Terminal to terminal		10	-	-	mm
d _a	Clearance	Terminal to base plate		14.8	-	-	111111
m	mass	-		-	370	-	g
ec	Flatness of base plate	On the centerline X, Y (Note8)		±0	-	+100	μm

Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (DIODE).


- 2. Junction temperature (T_j) should not increase beyond $T_{j\,m\,a\,x}$ rating.
- 3. Pulse width and repetition rate should be such that the device junction temperature (T_i) dose not exceed T_{imax} rating.
- 4. Case temperature (T_C) and heat sink temperature (T_s) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location.
- 5. Pulse width and repetition rate should be such as to cause negligible temperature rise.

6.
$$B_{(25/50)} = In(\frac{R_{25}}{R_{50}})/(\frac{1}{T_{25}} - \frac{1}{T_{50}})$$

 R_{25} : resistance at absolute temperature T_{25} [K]; T_{25} =25 [°C]+273.15=298.15 [K]

 R_{50} : resistance at absolute temperature T_{50} [K]; $T_{50}\text{=}50$ [°C]+273.15=323.15 [K]

- 7. Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).
- 8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.

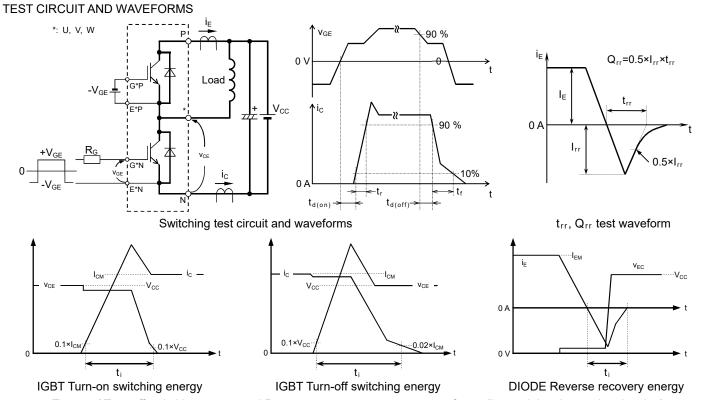
<IGBT Modules>

CM150RX-24S1

HIGH POWER SWITCHING USE INSULATED TYPE

9 Use the following screws when mounting the printed circuit board (PCB) on the standoffs. PCB thickness: t=1.6.

	Туре	Manufacturer	Size	Tightening torque (N•m)	Recommended tightening method
(1)	PT®	EJOT	K25×8	0.55 ± 0.055	
(2)	PT®		K25×10	0.75 ± 0.075 N•m	by handwork (equivalent to 30 rpm
(3)	DELTA PT®		25×8	0.55 ± 0.055 N•m	by mechanical screw driver)
(4)	DELTA PT®]	25×10	0.75 ± 0.075 N•m	~ 600 rpm (by mechanical screw driver)
(5)	B1	-	φ2.6×10	0.75 ± 0.075 N•m	
	tapping screw		φ2.6×12	0.75 ± 0.075 N°III	

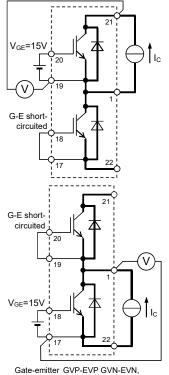

^{*} This product is compliant with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS).

RECOMMENDED OPERATING CONDITIONS

Symbol	Itom	Conditions	Conditions		Limits		
Symbol Item		Conditions		Min.	Тур.	Max.	Unit
V _{CC}	(DC) Supply voltage	Applied across P-N terminals		-	600	850	V
V _{GEon}	Gate (-emitter drive) voltage	Applied across GB-EB/ G*P-E*P/G*N-E*N(*=U, V, W) terminals		13.5	15.0	16.5	V
В	External gate registance	Per switch	Inverter IGBT	0	-	30	Ω
R _G	External gate resistance	Brake IGBT		8.2	-	82	32

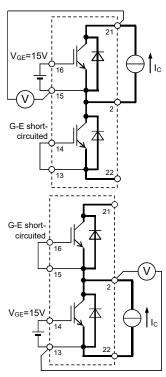
CHIP LOCATION (Top view) (136.9) (121.7) (110) (136.9) (121.7) (110) (136.9) (121.7) (14.9) (136.9) (121.7) (110) (136.9) (121.7) (110) (136.9) (121.7) (110) (136.9) (121.7) (110) (136.9) (121.7) (110) (136.9) (

Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: DIODE (*=U/V/W), DiBr: Brake DIODE, Th: NTC thermistor

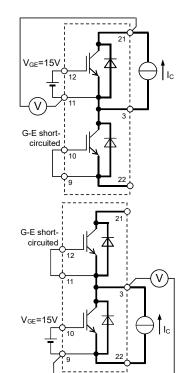


Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)

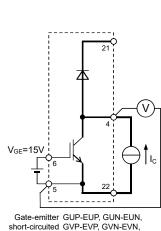
Ver.1.4


HIGH POWER SWITCHING USE **INSULATED TYPE**

TEST CIRCUIT

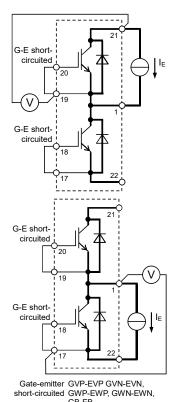

short-circuited GWP-EWP, GWN-EWN, GB-EB

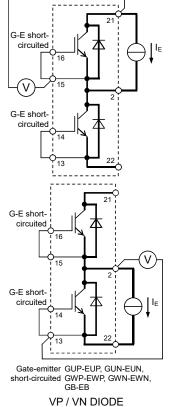
UP / UN IGBT

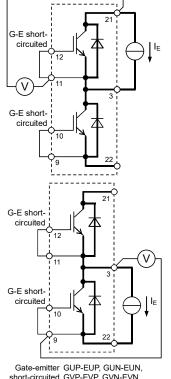

Gate-emitter GUP-EUP, GUN-EUN, short-circuited GWP-EWP, GWN-EWN, GB-EB

VP / VN IGBT

Gate-emitter GUP-EUP, GUN-EUN, short-circuited GVP-EVP, GVN-EVN, GB-EB


WP / WN IGBT




short-circuited GVP-EVP, GVN-EVN, GWP-EWP, GWN-EWN

Brake IGBT

V_{CEsat} characteristics test circuit

short-circuited GVP-EVP, GVN-EVN, GB-EB

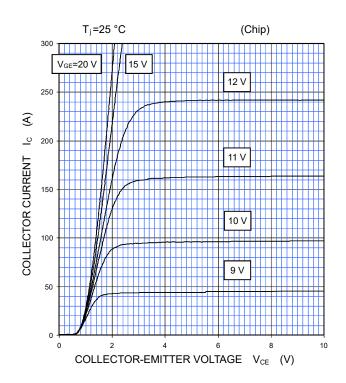
WP / WN DIODE

G-E short-

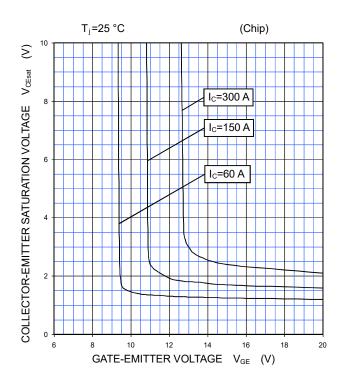
Gate-emitter GUP-EUP, GUN-EUN, short-circuited GVP-EVP, GVN-EVN, GWP-EWP, GWN-EWN

Brake DIODE

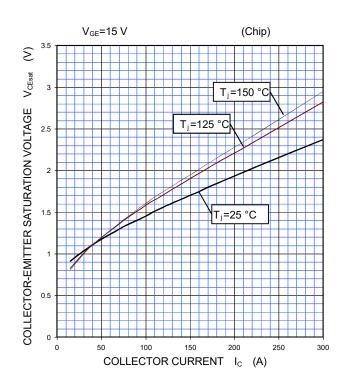
VEC / VF characteristics test circuit

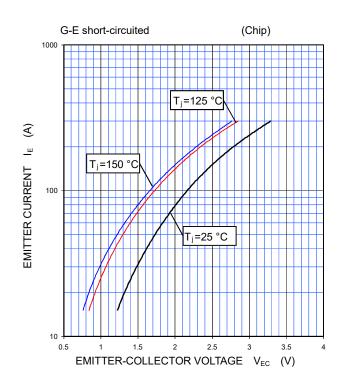

7

UP / UN DIODE

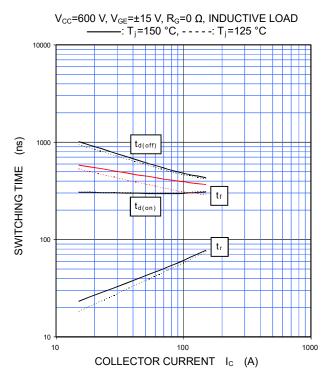

HIGH POWER SWITCHING USE **INSULATED TYPE**

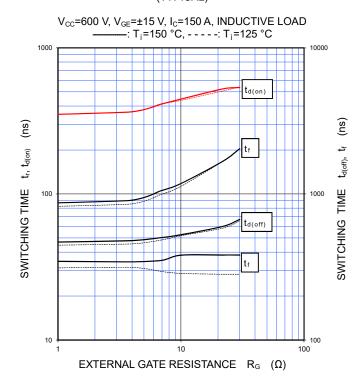
PERFORMANCE CURVES **INVERTER PART**


OUTPUT CHARACTERISTICS (TYPICAL)


COLLECTOR-EMITTER SATURATION VOLTAGE **CHARACTERISTICS** (TYPICAL)

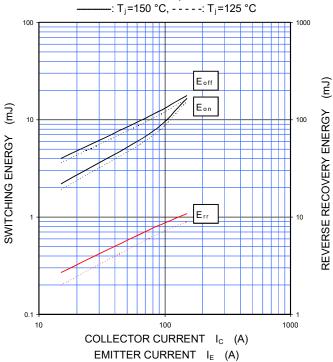
COLLECTOR-EMITTER SATURATION VOLTAGE **CHARACTERISTICS** (TYPICAL)


FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL)

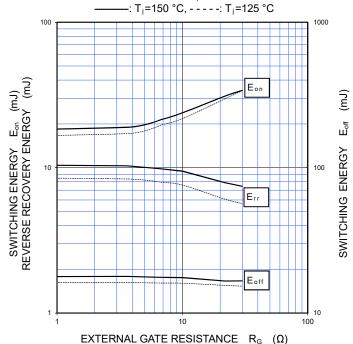

HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES INVERTER PART

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

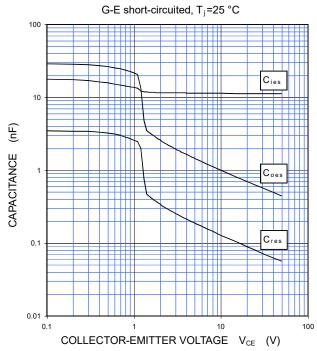


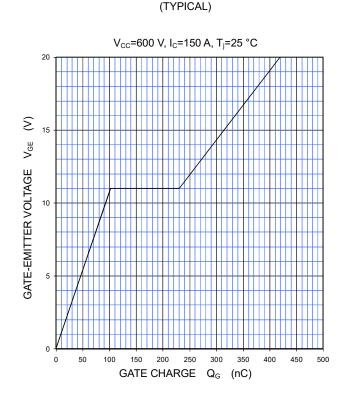
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)


HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

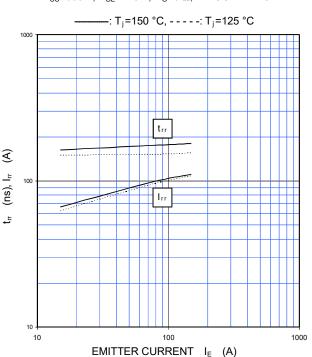
 V_{CC} =600 V, V_{GE} =±15 V, R_G =0 Ω , INDUCTIVE LOAD, PER PULSE: T_j =150 °C, - - - - : T_j =125 °

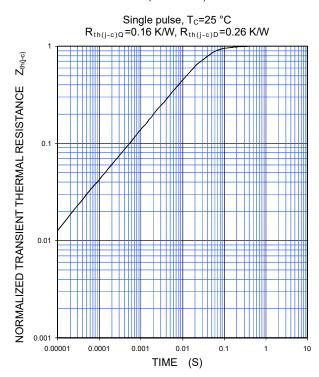
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)


V_{CC}=600 V, V_{GE}=±15 V, I_C/I_E=150 A, INDUCTIVE LOAD, PER PULSE

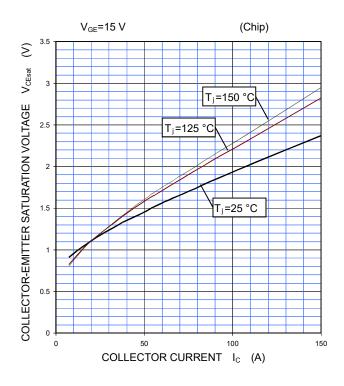

HIGH POWER SWITCHING USE INSULATED TYPE

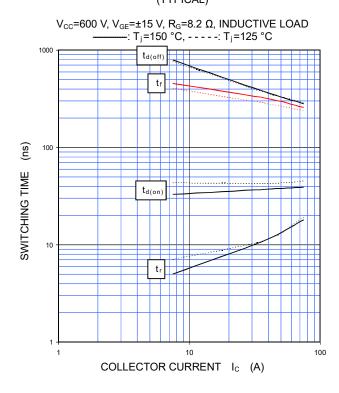
PERFORMANCE CURVES INVERTER PART


CAPACITANCE CHARACTERISTICS (TYPICAL)

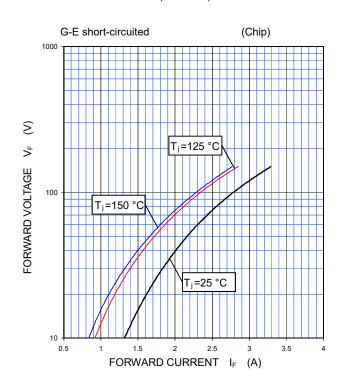

GATE CHARGE CHARACTERISTICS

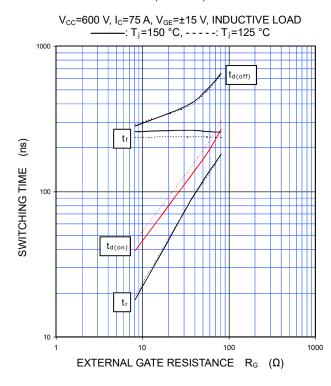
FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) $V_{\text{CC}}{=}600 \text{ V}, V_{\text{GE}}{=}\pm15 \text{ V}, R_{\text{G}}{=}0 \text{ }\Omega, \text{INDUCTIVE LOAD}$


TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM)

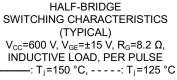

HIGH POWER SWITCHING USE INSULATED TYPE

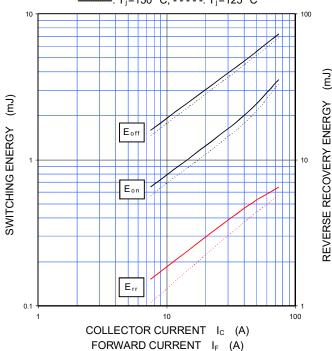
PERFORMANCE CURVES BRAKE PART


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

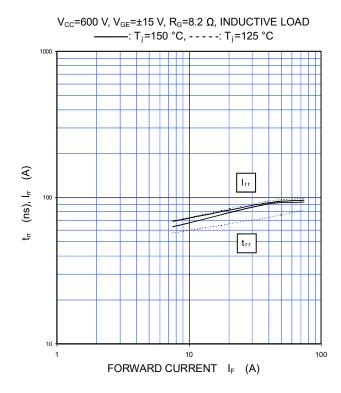

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)

CLAMP DIODE FORWARD CHARACTERISTICS (TYPICAL)

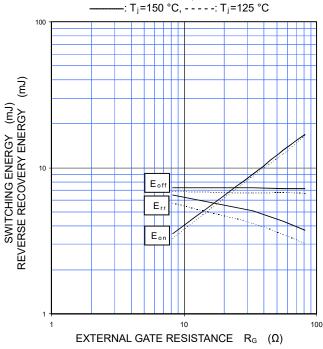

HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)



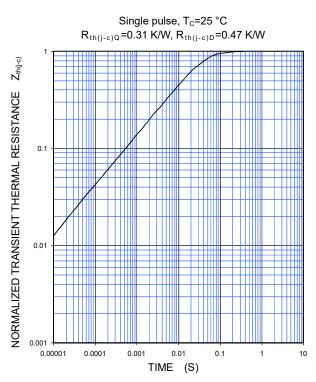
11


HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES BRAKE PART



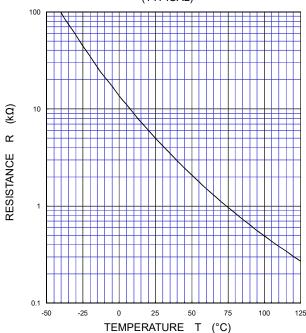
BRAKE DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)



HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) V_{CC}=600 V, I_C/I_F=75 A, V_{GE}=±15 V, INDUCTIVE LOAD, PER PULSE ——: T_j=150 °C, - - - - -: T_j=125 °C

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS

(MAXIMUM)



HIGH POWER SWITCHING USE INSULATED TYPE

PERFORMANCE CURVES

NTC thermistor part

TEMPERATURE CHARACTERISTICS (TYPICAL)

Important Notice

The information contained in this datasheet shall in no event be regarded as a guarantee of conditions or characteristics. This product has to be used within its specified maximum ratings, and is subject to customer's compliance with any applicable legal requirement, norms and standards.

Except as otherwise explicitly approved by Mitsubishi Electric Corporation in a written document signed by authorized representatives of Mitsubishi Electric Corporation, our products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

In usage of power semiconductor, there is always the possibility that trouble may occur with them by the reliability lifetime such as Power Cycle, Thermal Cycle or others, or when used under special circumstances (e.g. condensation, high humidity, dusty, salty, highlands, environment with lots of organic matter / corrosive gas / explosive gas, or situations which terminals of semiconductor products receive strong mechanical stress). Therefore, please pay sufficient attention to such circumstances. Further, depending on the technical requirements, our semiconductor products may contain environmental regulation substances, etc. If there is necessity of detailed confirmation, please contact our nearest sales branch or distributor.

The contents or data contained in this datasheet are exclusively intended for technically trained staff. Customer's technical departments should take responsibility to evaluate the suitability of Mitsubishi Electric Corporation product for the intended application and the completeness of the product data with respect to such application. In the customer's research and development, please evaluate it not only with a single semiconductor product but also in the entire system, and judge whether it's applicable. As required, pay close attention to the safety design by installing appropriate fuse or circuit breaker between a power supply and semiconductor products to prevent secondary damage. Please also pay attention to the application note and the related technical information.

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi Electric Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Electric Semiconductor home page (http://www.MitsubishiElectric.com/semiconductors/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Electric Semiconductor product distributor for further details on these materials or the products contained therein.

Generally the listed company name and the brand name are the trademarks or registered trademarks of the respective companies.