mikroBoard for ARM 144-pin[™] User manual

All MikroElektronika's development systems represent irreplaceable tools for programming and developing microcontroller-based devices. Carefully chosen components and the use of machines of the last generation for mounting and testing thereof are the best guarantee of high reliability of our devices. Due to simple design, a large number of add-on modules and ready to use examples, all our users, regardless of their experience, have the possibility to develop their project in a fast and efficient way.

roElektronika SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD ... making it simple

TO OUR VALUED CUSTOMERS

I want to express my thanks to you for being interested in our products and for having confidence in Mikroelektronika.

The primary aim of our company is to design and produce high quality electronic products and to constantly improve the performance thereof in order to better suit your needs.

Nebojsa Matic General Manager

TABLE OF CONTENTS

1.	General information	4
2.	LPC2214 microcontroller	5
3.	Programming the microcontroller	8
4.	Voltage regulator	13
5.	MicroSD connector	14
6.	Flash module	15

1. General information

Δ

MikroBoard for ARM 144-pin is primarily intended to be connected to the EasyARM v6 development system but can also be used as a stand-alone device. The board features the LPC2214 microcontroller, flash module, USB connector, microSD connector, JTAG connector, USB UART, voltage regulator and connectors that enable connection with the development system.

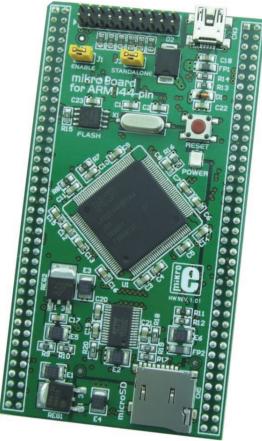


Figure 1-1: mikroBoard for ARM 144-pin

2. LPC2214 microcontroller

The LPC2214 microcontroller in 144-pin LQFP package is soldered on the mikroBoard for ARM 144-pin. Some of its key features are:

- 16/32-bit ARM7TDMI-S microcontroller in a LQFP144 package
- 16 kB on-chip static RAM and 256 kB on-chip flash program memory. 128-bit wide interface/ accelerator enables high speed 60 MHz operation.
- In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software.

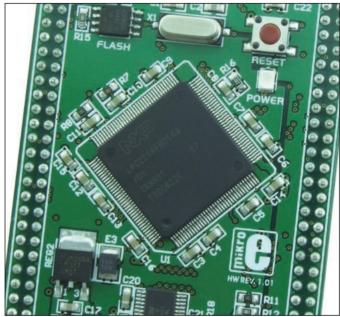


Figure 2-1: LPC2214 microcontroller

LPC2214 is connected to on board modules via pins which are also connected to CN1 and CN2 connectors. These two connectors enable the board to be connected to the EasyARM v6 development system or some other device.

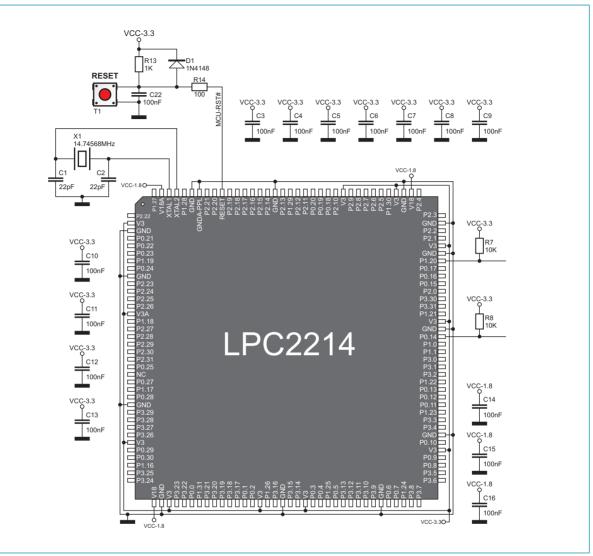


Figure 2-2: LPC2214 microcontroller with oscillators connection schematic

The LPC2214 microcontroller is connected to the X1 oscillator. The X1 oscillator generates a clock used for the operation of the microcontroller. The microcontroller can be cleared by feeding the reset pin with a logic 0, i.e. by pressing the RESET button.

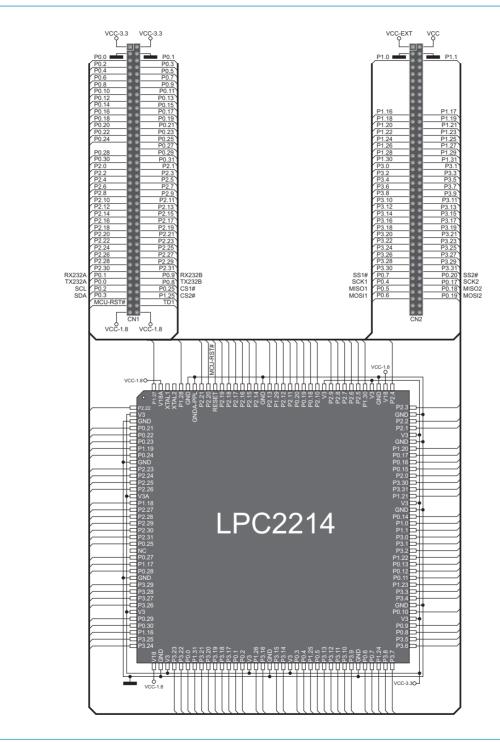


Figure 2-3: LPC2214 microcontroller with connectors connection schematic

3. Programming the microcontroller

The microcontroller can be programmed with a bootloader or the JTAG programmer. The use of bootloader is enabled due to the bootloader code that is loaded into the microcontroller. In order to program the microcontroller with the bootloader, it is necessary to connect the board to a PC via the CN3 connector and USB cable, Figure 3-1. A .hex code is transferred from the PC to the microcontroller by using some of the bootloader programs, such as Flash Magic.

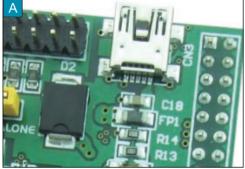


Figure 3-1: USB connector for programming

The CN3 USB connector is connected to the UART module built into the microcontroller via FTDI module (FT232RL).

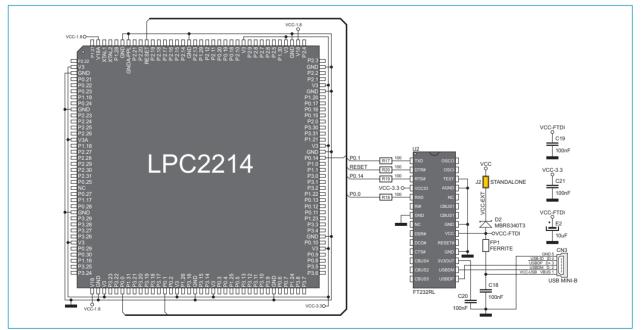
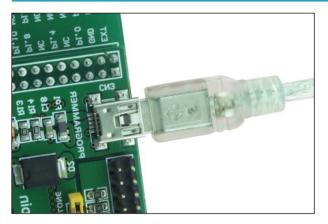



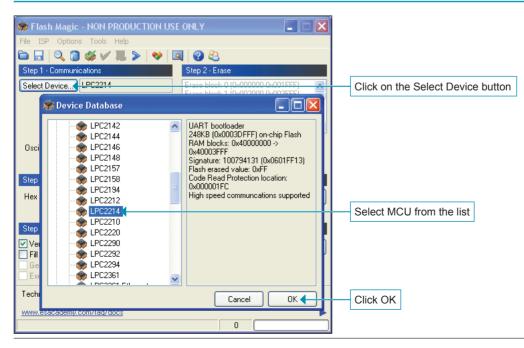
Figure 3-2: USB UART module connection schematic

When the mikroBoard for ARM 144-pin operates as a stand-alone device, it is necessary to place jumper J2 on the board. If the board is connected to the EasyARM v6 development system, jumper J2 should be removed.

In next few steps is explained how to program microcontroller with bootloader via Flash Magic application.

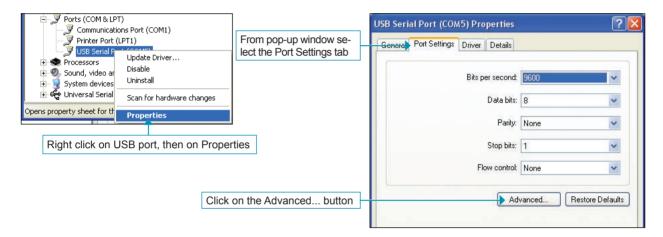
STEP 1: Connect the system to a PC

Connect the mikroBoard for ARM 144-pin to available USB port on your PC.


STEP 2: Start Flash Magic

Download the Flash Magic application from http://www.flashmagictool.com/download.html&d=FlashMagic.exe and install it on your PC

When the installation is finished double click on the Flash Magic icon


STEP 3: Select MCU

STEP 4: Settings

Step 1 - Communications		Step 2 - Erase			
Select Device	LPC2214	Erase block 0 (0x000000-0x001FFF)	^	From drop-down menu select	
COM Port:	СОМ 5 🛛 🔫	Erase block 1 (0x002000-0x003FFF) Erase block 2 (0x004000-0x003FFF)		the COM port on your PC	
Baud Rate:	230400	Erase block 3 (0x006000-0x007FFF) Erase block 4 (0x008000-0x009FFF)		Set Baud Rate to 230400	
Interface:	None (ISP)	Erase block 5 (0x00A000-0x00BFFF)	×	Set Baud Rate to 230400	
Oscillator (MHz): 14.74568		Erase all Flash+Code Rd Prot Erase blocks used by Hex File		Enter 14.74568 (if you use different oscillator set the appropriate value in MHz)	

Device Manager on your PC contains information on which COM port is used for USB communication with the mikroBoard for ARM 144-pin development system. In this case the COM5 port is used.

Advanced Settings for COM5	? 🛛	
COM Port Number: COM5 USB Transfer Sizes Select lower settings to correct performance problems at low I Select higher settings for faster performance. Receive (Bytes): 4096 ¥ Transmit (Bytes): 4096 ¥	Cancel Cancel Defaults	
BM Options Select lower settings to correct response problems. Latency Timer (msec): 16 Timeouts Minimum Read Timeout (msec): 0 Minimum Write Timeout (msec):	Miscellaneous Options Serial Enumerator Serial Printer Cancel If Power Off Event On Surprise Removal Set RTS On Close Disable Modem Ctrl At Startup	In pop-up window uncheck the Serial Enumeration option and click OK

MikroElektronika

STEP 5: Browse for .hex file

	ep 3 - Hex File ex File: C:\Project\I Modified: Mo	DEMO.hex nday, July 28, 2008	, 4:09:22 PM	more info	Browse		Click on the Browse button
SI	Select Hex File					? 🔀	
Di	Look in: My Recent Documents Desktop My Documents	DEMO.hex					In pop-up window select the appropriate .hex file
	My Computer	File name:	DEMO		~		Click on the Open button
	My Network	File name: Files of type:	Hex Files (*.hex)		×	Open Cancel	Check on the Open bullon

STEP 6: Upload .hex file

Step 4 - Options Verify after programming Fill unused Flash	Step 5 - Start	Click Start to begin .hex file upload
www.embeddedhints.com Finished	3	After progress bar becomes green the programing is finished

The microcontroller can also be programmed with the JTAG programmer, Figure 3-3. In addition, this programmer can also be used to test the operation of the microcontroller.

Figure 3-3: JTAG connector

In order to enable the JTAG programmer to be used, it is necessary to place jumper J1 in the ENABLE position, Figure 3-5. If the JTAG programmer is not used for programming, jumper J1 should be removed from the board, Figure 3-6.

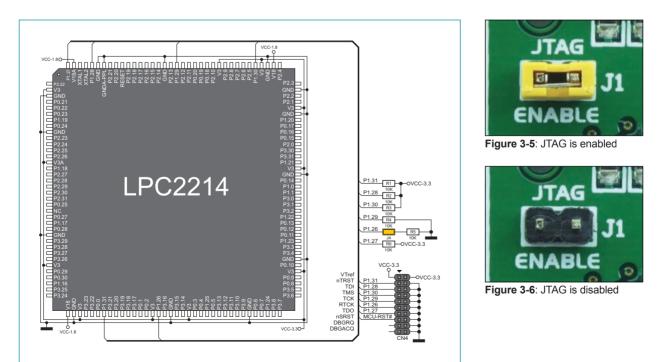


Figure 3-4: JTAG module connection schematic

4. Voltage regulator

The microcontroller require dual power supply: 1.8V for CPU and 3.3V for I/O. The board is powered with the 5V power supply voltage via the CN3 USB connector supplied on the board.

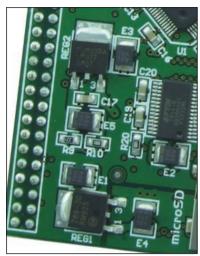


Figure 4-1: Voltage regulator

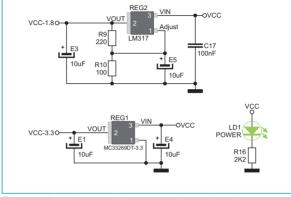


Figure 4-2: Voltage regulator connection schematic

If the board is powered by the development system (EasyARM v6), the function of the voltage regulator remains the same. In this case, it is necessary to remove jumper J2 (STANDALONE), Figure 4-3.

Figure 4-3: Standalone mode disabled

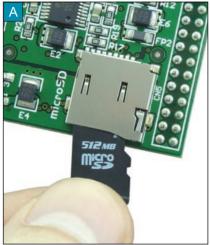
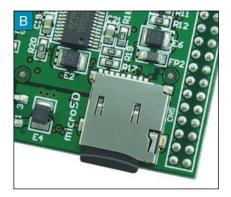


Figure 4-4: Standalone mode enabled


5. MicroSD connector

14

There is a connector CN5 provided on the board that enables the use of microSD card. When inserted, the microSD card provides additional memory space that the microcontroller can use to store data. Communication between the microSD card and the microcontroller is performed via the Serial Peripheral Interface (SPI).

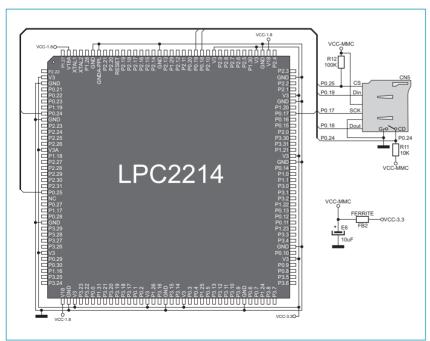


Figure 5-2: microSD connector connection schematic

The pins' designations have the following meaning:

CS - Chip Select

Din - Master Out/Slave In (MOSI)

- SCK Clock
- Dout Master In/Slave Out (MISO)

6. Flash module

Flash module provides additional 8Mbit of flash memory that the microcontroller can use via the Serial Peripheral Interface (SPI).

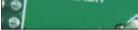


Figure 6-1: Flash memory

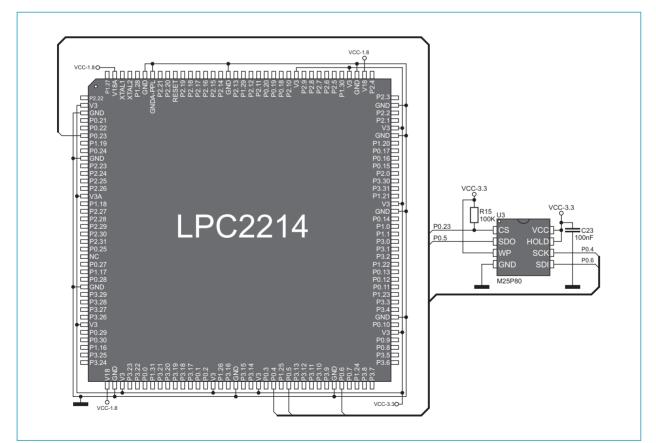


Figure 6-2: Flash module connection schematic

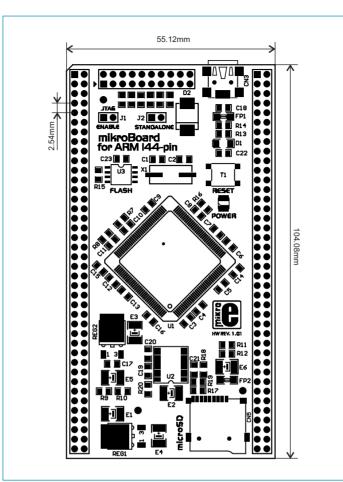


Figure 6-3: Dimensions of the mikroBoard for ARM 144-pin

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any other copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or transmitted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use, but not for distribution. Any modification of this manual is prohibited.

MikroElektronika provides this manual 'as is' without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties or conditions of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall MikroElektronika, its directors, officers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for loss of business profits and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if MikroElektronika has been advised of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any time without prior notice, if necessary.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault – tolerant nor designed, manufactured or intended for use or resale as on – line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

TRADEMARKS

The Mikroelektronika name and logo, the Mikroelektronika logo, mikroC, mikroC PRO, mikroBasic, mikroBasic, mikroBasic PRO, mikroPascal, mikroPascal PRO, AVRflash, PICflash, dsPICprog, 18FJprog, PSOCprog, AVR-prog, 8051prog, ARMflash, EasyPIC5, EasyPIC6, BigPIC5, BigPIC6, dsPIC PRO4, Easy8051B, EasyARM, EasyAVR5, EasyAVR6, BigAVR2, EasydsPIC4A, EasyPSoC4, EasyVR Stamp LV18FJ, LV24-33A, LV32MX, PIC32MX4 MultiMedia Board, PICPLC16, PICPLC8 PICPLC4, SmartGSM/GPRS, UNI-DS are trademarks of Mikroelektronika. All other trademarks mentioned herein are property of their respective companies.

All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are only used for identification or explanation and to the owners' benefit, with no intent to infringe.

If you want to learn more about our products, please visit our website at www.mikroe.com

If you are experiencing some problems with any of our products or just need additional information, please place your ticket at www.mikroe.com/en/support

If you have any questions, comments or business proposals, do not hesitate to contact us at office@mikroe.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Mikroe: MIKROE-650