

VOIDLESS HERMETICALLY SEALED FAST RECOVERY GLASS RECTIFIERS

Qualified per MIL-PRF-19500/411

<u>Qualified Levels:</u> JAN, JANTX, JANTXV and JANS

DESCRIPTION

This "fast recovery" rectifier diode series is military qualified and is ideal for high-reliability applications where a failure cannot be tolerated. These industry-recognized 3.0 amp rated rectifiers for working peak reverse voltages from 50 to 600 volts are hermetically sealed with voidless-glass construction using an internal "Category 1" metallurgical bond. These devices are also available in surface mount MELF package configurations. Microsemi also offers numerous other rectifier products to meet higher and lower current ratings with various recovery time speed requirements including fast and ultrafast device types in both through-hole and surface mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Popular JEDEC registered 1N5415 thru 1N5420 series.
- · Voidless hermetically sealed glass package.
- Quadruple-layer passivation.
- Internal "Category 1" metallurgical bonds.
- Working Peak Reverse Voltage 50 to 600 volts.
- JAN, JANTX, JANTXV and JANS qualifications available per MIL-PRF-19500/411.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Fast recovery 3 amp 50 to 600 volt rectifiers.
- Military and other high-reliability applications.
- General rectifier applications including bridges, half-bridges, catch diodes, etc.
- High forward surge current capability.
- Extremely robust construction.
- Low thermal resistance.
- Controlled avalanche with peak reverse power capability.
- Inherently radiation hard as described in Microsemi "MicroNote 050".

MAXIMUM RATINGS

Parameters/Test Conditions		Symbol	Value	Unit
Junction and Storage Temperature		T_J and T_{STG}	-65 to +175	°C
Thermal Resistance Junction-to-Lead (1)		R _{OJL}	22	°C/W
Forward Surge Current @ 8.3 ms half-sine		I _{FSM}	80	Α
Average Rectified Forward Current (4)	@ $T_A = +55$ °C @ $T_A = +100$	I _O (2, 3) I _O (3)	3 2	А
°C	@ 1A = +100	10	2	
Working Peak Reverse Voltage	1N5415	V_{RWM}	50	V
	1N5416		100	
	1N5417		200	
	1N5418		400	
	1N5419		500	
	1N5420		600	
Maximum Reverse Recovery Time (5)	1N5415	t _{rr}	150	ns
_	1N5416	-11	150	
	1N5417		150	
	1N5418		150	
	1N5419		250	
	1N5420		400	
Solder Temperature @ 10 s		T _{SP}	260	°C

See notes on next page.

"B" Package

Also available in:

"B" SQ-MELF (D-5B) Package (surface mount)

(Surface mount) 1N5415US – 1N5420US

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 Tel: (978) 620-2600 Fax: (978) 689-0803

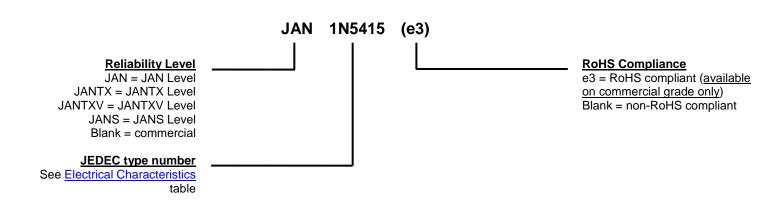
MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MAXIMUM RATINGS


Notes: 1. At 3/8 inch (10 mm) lead length from body.

- 2. Derate linearly at 22 mA/°C for 55 °C \leq T_A \leq 100 °C.
- 3. Above $T_A = 100$ °C, derate linearly at 26.7 mA/°C to zero at $T_A = 175$ °C.
- 4. These ambient ratings are for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled where T_{J(max)} does not exceed 175 °C.
- 5. $I_F = 0.5 \text{ A}$, $I_{RM} = 1 \text{ A}$, $I_{R(REC)} = 0.250 \text{ A}$.

MECHANICAL and PACKAGING

- CASE: Hermetically sealed voidless hard glass with tungsten slugs.
- TERMINALS: Axial-leads are tin/lead (Sn/Pb) over copper. RoHS compliant matte-tin is available for commercial grade only.
- MARKING: Body paint and part number.
- POLARITY: Cathode band.
- TAPE & REEL option: Standard per EIA-296. Contact factory for quantities.
- WEIGHT: 750 milligrams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
V_{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.			
V_{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B).			
Io	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.			
V_{F}	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.			
I _R	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.			
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.			

ELECTRICAL CHARACTERISTICS

TYPE	MINIMUM BREAKDOWN VOLTAGE V _{BR} @ 50 μA	FORWARD VOLTAGE V _F @ 9 A		MAXIMUM REVERSE CURRENT I _R @ V _{RWM}		CAPACITANCE C V _R @ 4 V	
	Volts	MIN. Volts	MAX. Volts	25 °C μΑ	100 °C μΑ	pF	
1N5415	55	0.6	1.5	1.0	20	550	
1N5416	110	0.6	1.5	1.0	20	430	
1N5417	220	0.6	1.5	1.0	20	250	
1N5418	440	0.6	1.5	1.0	20	165	
1N5419	550	0.6	1.5	1.0	20	140	
1N5420	660	0.6	1.5	1.0	20	120	

NOTE 1: $I_F = 0.5 \text{ A}$, $I_{RM} = 1 \text{ A}$, $I_{R(REC)} = 0.250 \text{ A}$.

GRAPHS

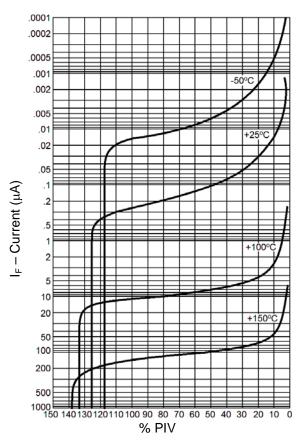


FIGURE 1
Typical Reverse Current vs. PIV

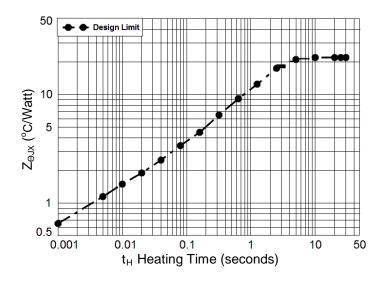


FIGURE 2

Maximum Thermal Impedance

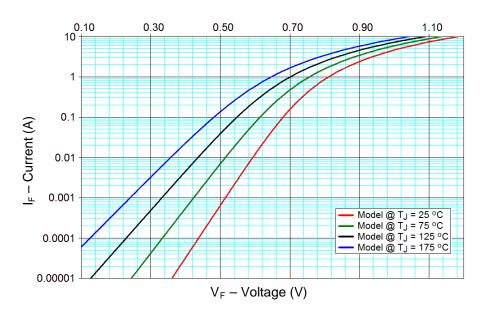
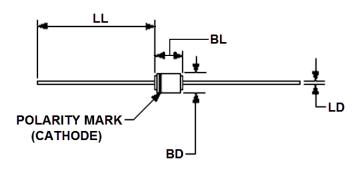



FIGURE 3
Typical Forward Current vs. Forward Voltage

PACKAGE DIMENSIONS

	Dimensions				
Symbol	Inch		Millimeters		Notes
	Min	Max	Min	Max	
BD	0.110	0.180	2.79	4.57	3
LD	0.036	0.042	0.91	1.07	4
BL	0.130	0.260	3.30	6.60	4
LL	0.90	1.30	22.9	33.0	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeter equivalents are given for general information only.
- 3. Dimension BD shall be measured at the largest diameter.
- 4. The BL dimension shall include the entire body including slugs and sections of the lead over which the diameter is uncontrolled. This uncontrolled area is defined as the zone between the edge of the diode body and extending .050 inch (1.27 mm) onto the leads.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

JANTXV1N5415 JANTXV1N5417 JANTXV1N5420 JAN1N5420 JANTX1N5419