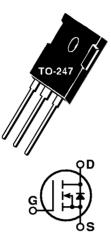


APT1201R5BVR

1200V **10A 1.500**Ω

POWER MOS V®


Power MOS V® is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V® also achieves faster switching speeds through optimized gate layout.

Faster Switching

100% Avalanche Tested

Lower Leakage

- Popular TO-247 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT1201R5BVR	UNIT		
$V_{\rm DSS}$	Drain-Source Voltage	1200	Volts		
Ι _D	Continuous Drain Current @ T _C = 25°C	10	A		
I _{DM}	Pulsed Drain Current ^①	40	- Amps		
V _{GS}	Gate-Source Voltage Continuous	±30	Volts		
V_{GSM}	Gate-Source Voltage Transient	±40			
P _D	Total Power Dissipation @ $T_{C} = 25^{\circ}C$	370	Watts		
	Linear Derating Factor	2.96	W/°C		
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C		
Τ _L	Lead Temperature: 0.063" from Case for 10 Sec.	300			
I _{AR}	Avalanche Current igodoldoldoldoldoldoldoldoldoldoldoldoldol	10	Amps		
E _{AR}	Repetitive Avalanche Energy ^①	30			
E _{AS}	Single Pulse Avalanche Energy ④	1300	- mJ		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V, I_D = 250\mu A$)	1200			Volts
l _{D(on)}	On State Drain Current \bigcirc (V _{DS} > I _{D(on)} x R _{DS(on)} Max, V _{GS} = 10V)	10			Amps
R _{DS(on)}	Drain-Source On-State Resistance \textcircled{O} (V _{GS} = 10V, 0.5 I _{D[Cont.]})			1.500	Ohms
I _{DSS}	Zero Gate Voltage Drain Current ($V_{DS} = V_{DSS}$, $V_{GS} = 0V$)			25	μA
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125^{\circ}C$)			250	μΛ
I _{GSS}	Gate-Source Leakage Current (V _{GS} = $\pm 30V$, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 1.0$ mA)	2		4	Volts

🟹 🛦 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

APT1201R5BVR

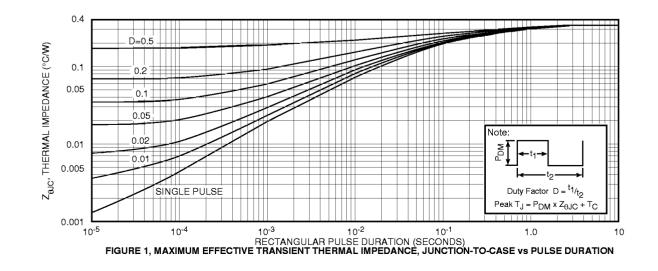
Symbol	Characteristic	Test Conditions	MIN	ТҮР	МАХ	UNIT
C _{iss}	Input Capacitance	$V_{GS} = 0V$		3700	4440	
C _{oss}	Output Capacitance	V _{DS} = 25V		320	450	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		150	225	
Qg	Total Gate Charge ③	V _{GS} = 10V		190	285	
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		16	24	nC
Q _{gd}	Gate-Drain ("Miller") Charge	I _D = I _{D[Cont.]} @ 25°C		90	135	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		12	24	
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		10	20	ns
t _{d(off)}	Turn-off Delay Time	I _D = I _{D[Cont.]} @ 25°C		50	75	115
t _f	Fall Time	R _G = 1.6Ω		14	28	

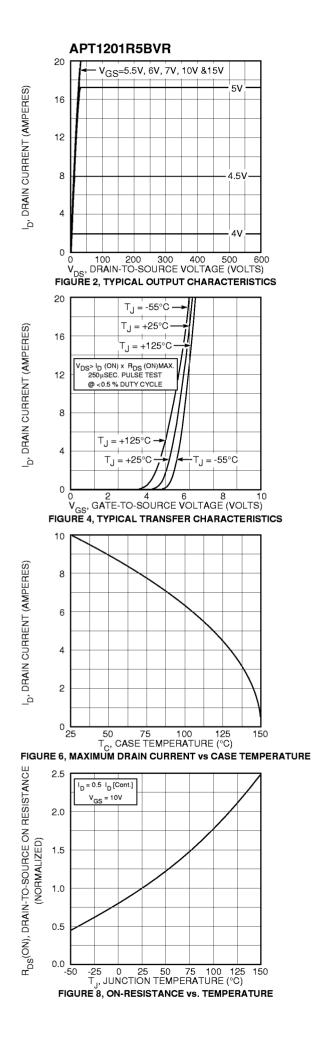
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

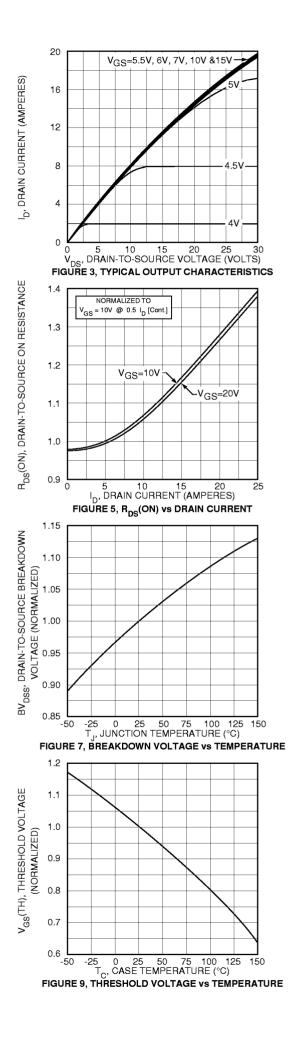
Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	UNIT
۱ _s	Continuous Source Current (Body Diode)			10	Amno
I _{SM}	Pulsed Source Current $^{igodold 0}$ (Body Diode)			40	Amps
V _{SD}	Diode Forward Voltage $\textcircled{O}(V_{GS} = 0V, I_{S} = -I_{D[Cont.]})$			1.3	Volts
t _{rr}	Reverse Recovery Time $(I_s = -I_{D[Cont.]}, dI_s/dt = 100A/\mu s)$		850		ns
Q _{rr}	Reverse Recovery Charge $(I_{S} = -I_{D[Cont.]}, dI_{S}/dt = 100A/\mu s)$		11		μC

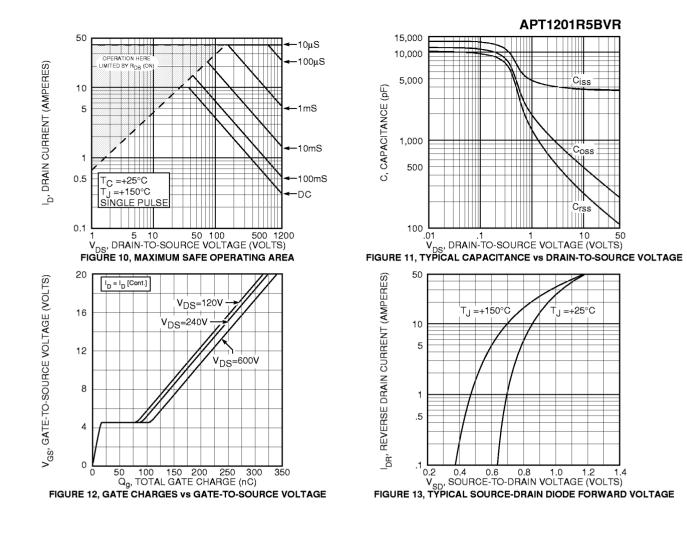
THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	ТҮР	МАХ	UNIT
$R_{_{ extsf{ heta}JC}}$	Junction to Case			0.34	°C/W
$R_{ extsf{ heta}JA}$	Junction to Ambient			40	

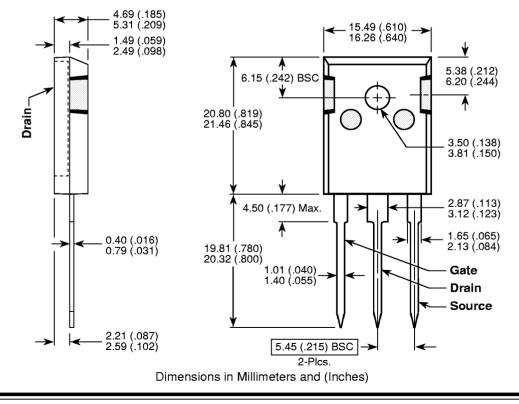

^① Repetitive Rating: Pulse width limited by maximum junction temperature.


③ See MIL-STD-750 Method 3471


3 Starting T_j = +25°C, L = 26mH, R_G = 25 Ω , Peak I_L = 10A


O Pulse Test: Pulse width < 380 $\mu S,$ Duty Cycle < 2%

APT Reserves the right to change, without notice, the specifications and information contained herein.



TO-247 Package Outline

 APT's devices are covered by one or more of the following U.S.patents:
 4,895,810
 5,045,903
 5,089,434
 5,182,234
 5,019,522
 5,262,336

 5,256,583
 4,748,103
 5,283,202
 5,231,474
 5,434,095
 5,528,058

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: APT1201R5BVRG