

Positive Fixed Voltage Regulator

Description

The SG78xxA/SG78xx series of positive regulators offer self-contained, fixed-voltage capability with up to 1.5 A of load current and input voltage up to 50 V (SG78xxA series only). These units feature a unique on-chip trimming system to set the output voltages to within ±1.5% of nominal on the SG78xxA series with ±2.0% on the SG78xx series. The SG78xxA versions also offer much improved line and load regulation characteristics. Utilizing an improved bandgap reference design, problems such as drift in output voltage and large changes in the line and load regulation, that are normally associated with the Zener diode references have been eliminated.

All protective features of thermal shutdown, current limiting, and safe-area control have been designed into these units and since these regulators require only a small output capacitor for satisfactory performance, ease of application is assured. Although designed as fixed-voltage regulators, the output voltage can be increased through the use of a simple voltage divider. The low quiescent drain current of the device ensures good regulation when this method is used. Product is available in hermetically sealed TO-257 (both case grounded 'G' and isolated 'IG'), TO-3, TO-39 and leadless chip carrier (LCC) packages.

Features

- Output Voltage Set Internally to ±1.5% on SG78xxA
- Input Voltage Range to 50 V max on SG78xxA
- 2 V Input-Output Differential
- Excellent Line and Load Regulation
- Fold back Current Limiting
- Thermal Overload Protection
- Voltages Available: 5 V, 12 V, 15 V
- Contact Factory for Other Voltage Options
- Available in Surface Mount Package

High Reliability Features

- Available to MIL-STD 883, ¶ 1.2.1
- MIL-M38510/10702BXA SG7805T-JAN
- MIL-M38510/10703BXA SG7812T-JAN
- MIL-M38510/10704BXA SG7815T-JAN
- MIL-M38510/10706BYA SG7805K-JAN
- MIL-M38510/10707BYA SG7812K-JAN
- MIL-M38510/10708BYA SG7815K-JAN
- MSC-AMSG level "S" Processing Available
- Available to DSCC
 - -Standard Microcircuit Drawing (SMD)

Circuit Schematic

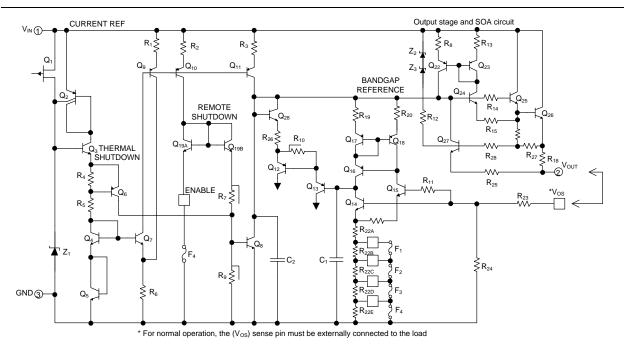


Figure 1 - Circuit Schematic

Connection Diagrams and Ordering Information

Ambient Temperature	Туре	Package	Part Number	Packaging Type	Connection Diagram
-			SG78xxAK-883B		
			SG7805AK-DESC		
			SG7812AK-DESC		V _{IN}
			SG7815AK-DESC		
-55 °C to	1/	3-Terminal	SG78xxAK	TO 0	
125 °C	K	Metal Can	SG78xxK-883B	TO-3	
			SG7805K-JAN		2
			SG7812K-JAN		V _{OUT} Case is Ground
			SG7815K-JAN		Ground
			SG78xxK		
			SG78xxAT-883B		
			SG7805AT-DESC		
			SG7812AT-DESC		V _{OUT}
			SG7815AT-DESC		
-55 °C to	_	2 Din Matal Can	SG78xxAT	TO 20	
125 °C	Т	3-Pin Metal Can	SG78xxT-883B	TO-39	GND (3 1) V _{IN}
			SG7805T-JAN		\downarrow
			SG7812T-JAN		Case is Ground
			SG7815T-JAN		
			SG78xxT		
			SG78xxAIG-883B		
			SG7805AIG-DESC		
55.00 4-	IG	3-Pin Hermetic	SG7812AIG-DESC	TO-257	Vour
-55 °C to 125 °C		Isolated	SG7815AIG-DESC		Ground V _{IN}
120 0		Package	SG78xxAIG		- 114
			SG78xxIG-883B		
			SG78xxIG		
			SG7805AL-DESC		0
			SG7812AL-DESC		3 2 1 20 19
			SG7815AL-DESC		N.C. 4 ∐ 18 N.C.
-55 °C to 125 °C	L	20-Pin Ceramic Package	SG78xxL-883B	Leadless Chip Carrier	N.C. 5
			SG78xxAG-883B		
			SG7805AG-DESC		Vout
		0.00	SG7812AG-DESC		Ground
-55 °C to 125 °C	G	3-Pin Hermetic Package	SG7815AG-DESC	TO-257	V _{IN}
120 0		i ackaye	SG78xxAG		Case is Ground
			SG78xxG-883B		
			SG78xxG		

Notes:

- 1. Contact factory for JAN and DESC product availability.
- 2. All parts are viewed from the top.
- 3. "xx" to be replaced by output voltage of specific fixed regulator.
- 4. Some products will be available in hermetic flat pack (F). Consult factory for price and availability.
- 5. Both inputs and outputs must be externally connected together at the device terminals.
- 6. For normal operation, the V_O SENSE pin must be externally connected to the load.

Absolute Maximum Ratings

Parameter	Value	Units
Device Output Voltage	5, 12, 15	V
Input Voltage	35	V
Input Voltage (Transient) (Note 2)	50	V
Input Voltage Differential (Output Shorted to Ground)	35	V
Operating Junction Temperature	150	°C
Storage Temperature Range	-65 to 150	°C
Lead Temperature (Soldering 10 seconds)	300	°C

Notes

- 1. Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.
- 2. Operation at high input voltages is dependent upon load current. When load current is less than 5 mA, output will rise out of regulation as input-output differential increases beyond 30 V. Note also from Figure 2, that maximum load current is reduced at high voltages. The 50 V input rating of the SG78xxA series refers to ability to withstand high line or transient conditions without damage. Since the regulator's maximum current capability is reduced, the output may fall out of regulation at high input voltages under nominal loading.

Thermal Data

Parameter	Value	Units
K Package TO-3 3-Terminal Metal Can (Two pins and case)		
Thermal Resistance-Junction to Case, θ _{JC}	3	°C/W
Thermal Resistance-Junction to Ambient, θ_{JA}	35	°C/W
T Package TO-39 3-Pin Metal Can		
Thermal Resistance-Junction to Case, θ_{JC}	15	°C/W
Thermal Resistance-Junction to Ambient, θ_{JA}	120	°C/W
G Package TO-257 3-Pin Hermetic		
Thermal Resistance-Junction to Case, θ _{JC}	3.5	°C/W
Thermal Resistance-Junction to Ambient, θ_{JA}	42	°C/W
IG Package TO-257 3-Pin Hermetic (Isolated)		
Thermal Resistance-Junction to Case, θ_{JC}	4	°C/W
Thermal Resistance-Junction to Ambient, θ_{JA}	42	°C/W
L Package Leadless Chip Carrier 20-Pin Ceramic		
Thermal Resistance-Junction to Case, θ_{JC}	35	°C/W
Thermal Resistance-Junction to Ambient, θ _{JA}	120	°C/W
Notas:	•	

Notes

- 1. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.
- 2. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

Recommended Operating Conditions

Borometer	5	G78xx / 78xx	Unito		
Parameter	Min	Тур	Max	Units	
Operating Junction Temperature Range	-55		150	°C	
Note: Range over which the device is functional.					

Electrical Characteristics

Unless specified, these specifications apply over the operating ambient temperatures for SG7805A / SG7805 with -55 °C \leq $T_A \leq$ 125 °C, V_{IN} = 10 V, I_O = 500 mA for the K, G, and IG - Power Packages, I_O = 100 mA for the T and L packages, C_{IN} = 0.33 μF and C_{OUT} = 0.1 μF . Low duty cycle pulse testing techniques are used, which maintains junction and case temperatures equal to the ambient temperature.

_	Test Conditions		SG7805A			SG7805		
Parameter			Тур	Max	Min	Тур	Max	Units
Output Voltage	T _J = 25 °C	4.92	5	5.08	4.80	5	5.20	٧
Line Regulation	V_{IN} = 7.5 V to 20 V, T_J = 25 °C		5	25		5	25	mV
(Note 1)	V _{IN} = 8 V to 12 V, T _J = 25 °C		2	12		2	25	mV
	Power Pkgs: $I_0 = 5$ mA to 1.5 A, $T_J = 25$ °C		15	50		15	50	mV
Load Regulation (Note 1)	$I_{O} = 250 \text{ mA to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$		5	25		5	25	mV
(14010-1)	T, L – Pkg: I_0 = 5 mA to 500 mA, T_J = 250 °C		5	25		20	25	mV
Total Output Voltage	$V_{IN} = 8 \text{ V to } 20 \text{ V}$ Power Pkgs: $I_O = 5 \text{ mA to } 1.0 \text{ A}, P \le 20 \text{W}$	4.85	5	5.15	4.65	5	5.35	V
Tolerance	$V_{IN} = 8 \text{ V to } 20 \text{ V}$ T, L - Pkg: $I_0 = 5 \text{ mA to } 500 \text{ mA}, \text{ P} \le 2 \text{ W}$	4.85	5	5.15	4.65	5	5.35	٧
Quiescent Current	Over Temperature Range			7			7	mA
Quiescent Current	T _J = 25 °C		4	6		4	6	mA
	With Line: V _{IN} = 8 V to 25 V			0.8			0.8	mA
Quiescent Current Change	With Load: I _O = 5 mA to 1.0 A (Power Pkgs)			0.5			0.5	mA
	I _O = 5 mA to 500 mA (T, L)			0.5			0.5	mA
Dropout Voltage	$\Delta V_{\rm O}$ = 100 mV, T _J = 25 °C Power Pkgs: I _O = 1.0 A, T, L -Pkg: I _O = 500 mA		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: V _{IN} = 10 V, T _J = 25 °C	1.5	2	3.3	1.5	2	3.3	Α
r eak Output Current	T, L – Pkg: V _{IN} = 10 V, T _J = 25 °C	0.5	1	2	0.5	1	2	Α
Short Circuit Current	Power Pkgs: V _{IN} = 35 V, T _J = 25 °C			1.2			1.2	Α
Short Circuit Current	T, L – Pkg: V _{IN} = 35V, T _J = 25 °C			0.7			0.7	Α
Ripple Rejection	ΔV_{IN} = 10 V, f = 120 Hz, T_J = 25 °C	68			68			dB
Output Noise Voltage (rms)	f = 10 Hz to 100 kHz (Note 2)			40			40	μV/V
Long Term Stability	1000 hours @ T _J = 125 °C		20			20		mV
Thermal Shutdown	$I_O = 5 \text{ mA}$		175			175		°C

Notes:

- 1. All regulation tests are made at constant junction temperature with low duty cycle testing.
- 2. This test is guaranteed but is not tested in production.

Electrical Characteristics

Unless specified, these specifications apply over the operating ambient temperatures for SG7812A / SG7812 with -55 °C \leq $T_A \leq$ 125 °C, V_{IN} = 19 V, I_O = 500 mA for the K, G, and IG - Power Packages, I_O = 100 mA for the T and L packages, C_{IN} = 0.33 μF and C_{OUT} = 0.1 μF . Low duty cycle pulse testing techniques are used, which maintains junction and case temperatures equal to the ambient temperature.

_	Test Conditions		SG7812A			SG7812		
Parameter			Тур	Max	Min	Тур	Max	Units
Output Voltage	T _J = 25 °C	11.8	12	12.2	11.5	12	12.5	V
Line Regulation	V_{IN} = 14.5 V to 30 V, T_J = 25 °C		12	60		12	120	mV
(Note 1)	$V_{IN} = 16 \text{ V to } 22 \text{ V}, T_{J} = 25 \text{ °C}$		6	30		6	60	mV
1 15 10	Power Pkgs: $I_O = 5$ mA to 1.5 A, $T_J = 25$ °C		28	80		28	120	mV
Load Regulation (Note 1)	I_O = 250 mA to 750 mA, T_J = 25 °C		10	40		10	60	mV
,	T, L – Pkg: $I_O = 5$ mA to 500 mA, $T_J = 25$ °C		10	40		10	60	mV
Total Output Voltage	V_{IN} = 15.5 V to 27 V Power Pkgs: I_O = 5 mA to 1.0 A, P \leq 20 W	11.7	12	12.3	11.4	12	12.6	V
Tolerance	$V_{IN} = 15.5 \text{ V to } 27 \text{ V}$ T, L - Pkg: $I_O = 5 \text{ mA to } 500 \text{ mA}, \text{ P} \le 2 \text{ W}$	11.7	12	12.3	11.4	12	12.6	V
Quiescent Current	Over Temperature Range			7			7	mA
Quiescent Current	T _J = 25 °C		4	6		4	6	mA
	With Line: V _{IN} = 15 V to 30 V			0.8			8.0	mA
Quiescent Current Change	With Load: I _O = 5 mA to 1.0 A (Power Pkgs)			0.5			0.5	mA
3	$I_{O} = 5 \text{ mA to } 500 \text{ mA (T, L)}$			0.5			0.5	mA
Dropout Voltage	ΔV_{O} = 100 mV, T_{J} = 25 °C Power Pkgs: I_{O} = 1.0 A, T, L – Pkg: I_{O} = 500 mA		2	2.5		2	2.5	V
Dools Outrout Commant	Power Pkgs: T _J = 25 °C	1.5	2	3.3	1.5	2	3.3	А
Peak Output Current	T, L – Pkg: T _J = 25 °C	0.5	1	1.7	0.5	1	1.7	Α
Short Circuit Current	Power Pkgs: $V_{IN} = 35 \text{ V}, T_J = 25 ^{\circ}\text{C}$			1.2			1.2	Α
Chort Giroux Gurront	T, L – Pkg: V_{IN} = 35 V, T_{J} = 25 °C			0.7			0.7	Α
Ripple Rejection	ΔV_{IN} = 10 V, f = 120 Hz, T_{J} = 25 °C	61			61			dB
Output Noise Voltage (rms)	f = 10 Hz to 100 kHz (Note 2)			40			40	μV/V
Long Term Stability	1000 hours @ T _J = 125 °C		48			48	_	mV
Thermal Shutdown	$I_O = 5 \text{ mA}$		175			175		°C

Notes.

^{1.} All regulation tests are made at constant junction temperature with low duty cycle testing.

^{2.} This test is guaranteed but is not tested in production.

Electrical Characteristics

Unless specified, these specifications apply over the operating ambient temperatures for SG7815A / SG7815 with -55 °C \leq T_A \leq 125 °C, V_{IN} = 23 V, I_O = 500 mA for the K, G, and IG - Power Packages, I_O = 100 mA for the T and L packages, C_{IN} = 0.33 μF and C_{OUT} = 0.1 μF . Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

_	T-10 0 1111		SG7815A			SG7815		
Parameter Test Conditions		Min	Тур	Max	Min	Тур	Max	Units
Output Voltage	T _J = 25 °C	14.8	15	15.2	14.4	15	15.6	V
Line Regulation	V _{IN} = 17.5 V to 30 V, T _J = 25 °C		15	75		15	150	mV
(Note 1)	V _{IN} = 20 V to 26 V, T _J = 25 °C		8	40		8	75	mV
	Power Pkgs: $I_O = 5$ mA to 1.5 A, $T_J = 25$ °C		30	100		30	150	mV
Load Regulation (Note 1)	$I_{\rm O}$ = 250 mA to 750 mA, $T_{\rm J}$ = 25 °C		12	50		12	75	mV
	T, L – Pkg: I_O = 5 mA to 500 mA, T_J = 25 °C		12	50		12	75	mV
Total Output Voltage	V_{IN} = 18.5 V to 30 V Power Pkgs: I_O = 5 mA to 1.0 A, P \leq 20 W	14.6	15	15.4	14.3	15	15.7	V
Tolerance	V_{IN} = 18.5 V to 30 V T, L - Pkg: I_{O} = 5 mA to 500 mA, P \leq 2 W	14.6	15	15.4	14.3	15	15.7	V
Quiescent Current	Over Temperature Range			7			7	mA
Quiescent Current	T _J = 25 °C		4	6		4	6	mA
	With Line: V _{IN} = 18.5 V to 30 V			0.8			0.8	mA
Quiescent Current Change	With Load: I _O = 5 mA to 1.0 A (Power Pkgs)			0.5			0.5	mA
	I _O = 5 mA to 500 mA (T, L)			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{ mV}, T_{J} = 25 \text{ °C}$ Power Pkgs: $I_{O} = 1.0 \text{ A}, T, L - \text{Pkg}$: $I_{O} = 500 \text{ mA}$		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: T _J = 25 °C	1.5	2.2	3.3	1.5	2.2	3.3	Α
Tour output outrone	$T, L - Pkg: T_J = 25 °C$	0.5	0.9	1.7	0.5	0.9	1.7	Α
Short Circuit Current	Power Pkgs: V _{IN} = 35 V, T _J = 25 °C			1.2			1.2	Α
Short Shoult Surform	$T, L - Pkg: V_{IN} = 35 V, T_J = 25 °C$			0.7			0.7	Α
Ripple Rejection	$\Delta V_{IN} = 10 \text{ V, f} = 120 \text{ Hz, T}_{J} = 25 \text{ °C}$	60			60			dB
Output Noise Voltage (rms)	f = 10 Hz to 100 kHz (Note 2)			40			40	μV/V
Long Term Stability	1000 hours @ T _J = 125 °C		60			60		mV
Thermal Shutdown	I _O = 5 mA		175			175		°C

Notes:

- 1. All regulation tests are made at constant junction temperature with low duty cycle testing.
- 2. This test is guaranteed but is not tested in production.

Characteristic Curves

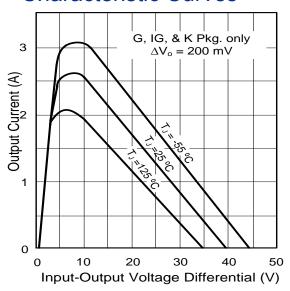


Figure 2 - Peak Output Current versus Input-Output
Differential

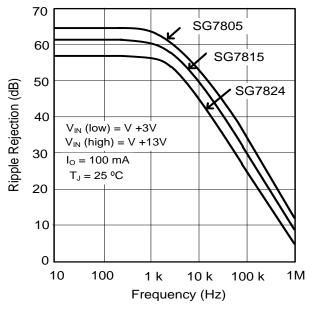


Figure 4 - Ripple Rejection versus Frequency

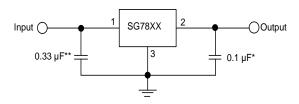



Figure 3 - Minimum Input-Output Voltage versus Load Current

Application Information

- * Increasing value of output capacitor improves system transient response
- **Required only if regulator is located an appreciable distance from power supply filter

Figure 5 - Fixed Output Regulator

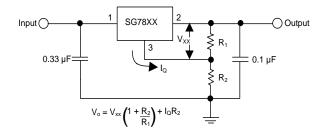
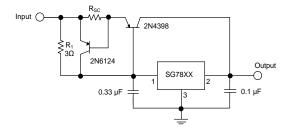
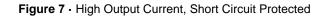




Figure 6 - Circuit for Increasing Output Voltage

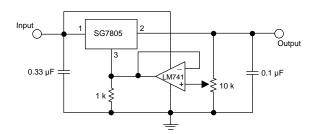
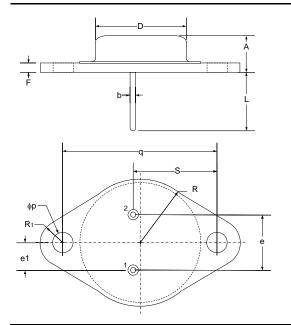
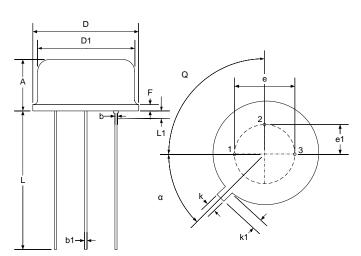



Figure 8 - Adjustable Output Regulator, 7 V to 30 V

Package Outline Dimensions

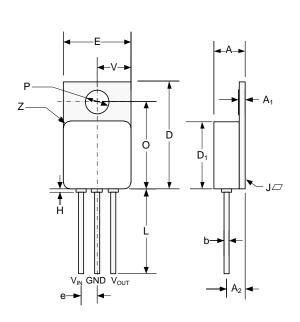

Controlling dimensions are in inches, metric equivalents are shown for general information.

Dim	MILLIMI	ETERS	INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	6.86	7.62	0.270	0.300	
q	29.90	30.40	1.177	1.197	
b	0.97	1.09	0.038	0.043	
D	19.43	19.68	0.765	0.775	
S	16.64	17.14	0.655	0.675	
е	10.67	11.18	0.420	0.440	
e1	5.21	5.72	0.205	0.225	
F	1.52	2.03	0.060	0.080	
фр	3.84	4.09	0.151	0.161	
L	10.79	12.19	0.425	0.480	
R1	3.33	4.78	0.131	0.188	
R	12.57	13.34	0.495	0.525	

Note: Dimensions do not include protrusions; these shall not exceed 0.155 mm (0.006") on any side. Lead dimension shall not include solder coverage.

Figure 9 - K 3-Pin Metal Can TO-3

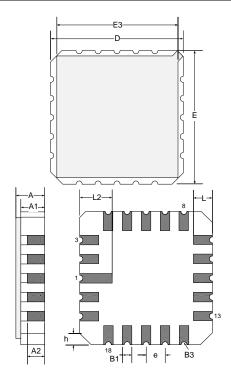
Dim	MILLIM	ETERS	INC	HES		
Dilli	MIN	MAX	MIN	MAX		
Α	4.19	4.70	0.165	0.185		
b	0.41	0.48	0.016	0.019		
b1	0.41	0.53	0.016	0.021		
D	8.89	9.40	0.350	0.370		
D1	8.13	8.51	0.320	0.335		
е	5.08	BSC	0.200 BSC			
e1	2.54	Тур	0.100) Тур		
F	-	1.02	-	0.040		
k	0.71	0.86	0.028	0.034		
k1	0.74	1.14	0.029	0.045		
L	12.70	14.48	0.500	0.570		
L1	-	1.27	-	0.050		
Q	90°	Тур	90° Typ			
α	45°	Тур	45° Typ			


^{*} Lead Coplanarity

Note: Dimensions do not include protrusions; these shall not exceed 0.155 mm (0.006") on any side. Lead dimension shall not include solder coverage.

Figure 10 · T 3-Pin Metal Can TO-39

Package Outline Dimensions (continued)



Dim	MILLIME	ETERS	INCHES		
Dilli	MIN	MAX	MIN	MAX	
Α	4.70	5.21	0.185	0.205	
A1	0.89	1.14	0.035	0.045	
A2	2.92	3.18	0.115	0.125	
b	0.71	0.081	0.027	0.032	
D	16.38	16.76	0.645	0.660	
D1*	10.41	10.92	0.410	0.430	
е	2.54 l	BSC	0.100 BSC		
E*	10.41	10.67	0.410	0.420	
Н		0.50		0.020	
L	12.70		0.500		
0	13.39	13.64	0.527	0.537	
Р	3.56	3.81	0.140	0.150	
J		0.10		0.004	
V	5.13	5.38	0.202	0.212	
Z	1.40	Тур	0.055 Typ		

^{*}Excludes Weld Fillet Around Lid.

Note: Dimensions do not include protrusions; these shall not exceed 0.155 mm (0.006") on any side. Lead dimension shall not include solder coverage.

Figure 11 - G/IG 3-Pin Hermetic TO-257

Dim	MILLIM	ETERS	INCHES			
Dim	MIN	MAX	MIN	MAX		
D, E	8.64	9.14	0.340	0.360		
E3	-	8.128	-	0.320		
е	1.270	BSC	0.050 BSC			
B1	0.635	5 Тур	0.025 Typ			
L	1.02	1.52	0.040	0.060		
Α	1.626	2.286	0.064	0.090		
h	1.016	3 Тур	0.040	Э Тур		
A1	1.372	1.68	0.054	0.066		
A2	-	1.168	-	0.046		
L2	1.91	2.41	0.075	0.95		
В3	0.20)3R	0.008R			

Note: All exposed metalized area shall be gold plated 60 μ -inch minimum thickness over nickel plated unless specified in purchase order. Lead dimension shall not include solder coverage

Figure 12 · L 20-Pin Ceramic Leadless Chip Carrier

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

SG7805AT-883B SG7805AG-DESC SG7805AIG SG7805AIG-883B SG7805AIG-DESC SG7805AK SG7805AK-883B SG7824T-883B SG7820AT-883B SG7818AIG SG7812L-883B SG7824AK SG7824AK-883B SG7824AKDESC SG7824K SG7824K-883B SG7824T SG7815K-JAN SG7815T SG7815T-883B SG7815T-JAN SG7818AK-883B SG7815AT-883B SG7815AT-883B SG7815AT-BESC SG7815IG SG7815IG-883B SG7815K SG7815K-883B SG7815AK-883B SG7815AL-DESC SG7815AL-DESC SG7815AL-DESC-TR SG7815AL-TR SG7815AT SG7812T-JAN SG7815AG-DESC SG7815AIG SG7815AIG-883B SG7815AK-883B SG7812IG-883B SG7812K-883B SG7812K-883B SG7812AL-883B SG7812AL-BESC SG7812AT SG7812AT-883B SG7812AT-BESC SG7812AIG-BESC SG7812AIG-883B SG7812AIG-BESC SG7812AK SG7812AK-883B SG7812AK-BESC SG7812AK-BESC SG7808AT-DESC SG7808K-883B SG7808AT SG7808AT-883B SG7805K-883B SG7805K-883B SG7805K-BESC SG7805AL-BESC SG7805AT-DESC SG7805AT-DESC SG7805AK-BESC SG7805AK-BESC SG7805AL-BESC SG7805AL-BESC SG7805AL-BESC SG7805AT-DESC SG7805AT-DESC SG7805AL-BESC SG7805AL-BESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC SG7805AT-DESC