Features

* High-performance, Low-power AVR® 8-bit Microcontroller
* RISC Architecture
— 130 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
¢ Nonvolatile Program and Data Memories
— 8K Bytes of In-System Self-programmable Flash
Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
- 512 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
— 512 Bytes Internal SRAM
— Up to 64K Bytes Optional External Memory Space
— Programming Lock for Software Security
Peripheral Features
— One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
— Three PWM Channels
— Programmable Serial USART
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Three Sleep Modes: Idle, Power-down and Standby
1/0 and Packages
— 35 Programmable /O Lines
— 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF
Operating Voltages
— 2.7 - 5.5V for ATmega8515L
— 4.5 - 5.5V for ATmega8515
Speed Grades
— 0 - 8 MHz for ATmega8515L
— 0-16 MHz for ATmega8515

ATMEL

Y (F)

8-bit AVR"
Microcontroller
with 8K Bytes
In-System
Programmable
Flash

ATmega8515
ATmega8515L

2512K-AVR-01/10

ATMEL

Pin Configurations

Figure 1. Pinout ATmega8515

PDIP
(OC0/T0) PBO [1 40[Jvee
(T1) PB1]2 39 [PAO (ADO)
(AINO) PB2 [] 3 38 [1 PA1 (AD1)
(AIN1) PB3] 4 37 [0 PA2 (AD2)
(SS) PB4 []5 36 [1 PA3 (AD3)
(MOSI) PB5 [6 35 [1 PA4 (AD4)
(MISO) PB6 [] 7 34 [PA5 (ADS5)
(SCK) PB7 [] 8 33 [PA6 (AD6)
RESET]9 32 [0 PA7 (AD7)
(RXD) PDO [] 10 31 [J PEO (ICP/INT2)
(TDX) PD1] 11 30 [1 PE1 (ALE)
(INTO) PD2 [] 12 29 [1 PE2 (OC1B)
(INT1) PD3] 13 28 [1PC7 (A15)
(XCK) PD4] 14 27 [0 PC6 (A14)
(OC1A) PD5 [] 15 26 [1PC5 (A13)
(WR) PD6] 16 25 [1PC4 (A12)
(RD) PD7 |17 24 [1PC3 (A1)
XTAL2 [] 18 23 [1PC2 (A10)
XTAL1] 19 22 [1PC1 (A9)
GND [] 20 21 [J PCO (A8)
TQFP/MLF PLCC
2
T2 _ 3 Sca @)
g8 5388 ~E2-8 5588
T o —o*x Oo~am n <<+ O << <<
piEEREeTEaz igdssegzz e
O M mE e e ooo0o00 Z>o000 0
IPYTIIBIIHEESNS minininlinisinlinlnlnls!
ersyoN—3IQYTR
(MOsI) PB5 L} 1 @ ------------- @ 33 [PA4 (AD4) (MosI) PB5 L} 7 O 39 [J PA4 (AD4)
(MISO) PB6 [2 : , 32[1PA5 (AD5) (MISO) PB6 [8 38 [J PA5 (AD5)
(SCK)PB7]3 I 31[1PA6 (AD6) (SCK) PB7 .} 9 37 [J PAG (AD6)
RESET | 4 1 : 30 [0 PA7 (AD7) RESET] 10 36 |1 PA7 (AD7)
(RXD) PDO [} 5 : I 291 PEO (ICP/INT2) (RXD) PDO] 11 35 [PEO (ICP/INT2)
NC*[]6 | ' 28[0NC* NC*[] 12 34 [NC*
(TXD) PD1 7 : : 27 [0 PE1 (ALE) (TXD) PD1] 13 33 [1 PE1 (ALE)
(INTO) PD2 [8 | I 26[1PE2(OC1B) (INTO) PD2] 14 32 [J PE2 (OC1B)
(NT1)PD3C|9 1 | 25[1PC7 (A15) (INT1) PD3] 15 31 [J PC7 (A15)
(XCK) PD4 {10 ! | 24[1PC6 (A14) (XCK) PD4] 16 30 [J PC6 (A14)
(OC1A) PD5 [11@ ————————————— @23]PCS(A13) (OCIA)PDE 17, o o o <« 6 © 1~ 22 PC5(A13)
— — AN AN AN AN AN AN
A MO T OONOO — A ooy
EpEpEpEpRpEpRpEmAgEEE 853532085383
85932085883 ok’ sgecs
cogEgFZzacoaa H3 223zx
ER™" 2ITZ:g - o
NOTES:
1. MLF bottom pad should be soldered to ground.
2. * NC = Do not connect (May be used in future devices)
2 ATmega851 5(L) |

2512K-AVR-01/10

s A TMega8515(L)

Overview

Block Diagram

2512K-AVR-01/10

The ATmega8515 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega8515 achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

Figure 2. Block Diagram

PAO - PA7 PEO - PE2 PCO-PC7
VCC A A A A A A A A A A A A A A A A A A A
Yyv Vv
PORTE
PORTA DRIVERS/BUFFERS DRIVERS/ PORTC DRIVERS/BUFFERS
BUFFERS
1 PORTE
GND PORTA DIGITAL INTERFACE DIGITAL PORTC DIGITAL INTERFACE
INTERFACE
v
PROGRAM STACK s MERS
COUNTERS
COUNTER [*]| POINTER ¥
I I
PROGRAM |] INTERNAL
FLASH | SRAM « OSCILLATOR
l i XTAL1
INSTRUCTION GENERAL WATCHDOG J I
REGISTER | | 1s] PURPOSE “ TIMER OSCILLATOR I— \—U‘
REGISTERS i
i n X XTAL2
INSTRUCTION MCU CTRL. — I
DECODER N Y M sTIMING RESET
i « V4
INTERNAL
C?_:\‘NTERSOL le—> 'NT'LEJ?‘TTUPT CALIBRATED
OSCILLATOR
STATUS
AVR CPU REGISTER [¢7* [« EEPROM
PROGRAMMING
SPI le—> —» USART
=
¥ COMP.
- INTERFACE [© °

PORTB DIGITAL INTERFACE 4—‘ PORTD DIGITAL INTERFACE

PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS

VY VYV V VYV VY Yy vV VvV vV VvV VY
PBO - PB7 PDO - PD7

ATMEL ;

Disclaimer

AT90S4414/8515 and
ATmega8515
Compatibility

AT90S4414/8515 Compatibility
Mode

ATMEL

The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The ATmega8515 provides the following features: 8K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, an
External memory interface, 35 general purpose 1/O lines, 32 general purpose working
registers, two flexible Timer/Counters with compare modes, Internal and External inter-
rupts, a Serial Programmable USART, a programmable Watchdog Timer with internal
Oscillator, a SPI serial port, and three software selectable power saving modes. The Idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and Interrupt
system to continue functioning. The Power-down mode saves the Register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or hard-
ware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of
the device is sleeping. This allows very fast start-up combined with low-power
consumption.

The device is manufactured using Atmel’s high density nonvolatile memory technology.
The On-chip ISP Flash allows the Program memory to be reprogrammed In-System
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-programmable Flash on a monolithic chip, the Atmel ATmega8515
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The ATmega8515 is supported with a full suite of program and system development
tools including: C Compilers, Macro assemblers, Program debugger/simulators, In-cir-
cuit Emulators, and Evaluation kits.

Typical values contained in this datasheet are based on simulations and characteriza-
tion of other AVR microcontrollers manufactured on the same process technology. Min
and Max values will be available after the device is characterized.

The ATmega8515 provides all the features of the AT90S4414/8515. In addition, several
new features are added. The ATmega8515 is backward compatible with
AT90S4414/8515 in most cases. However, some incompatibilities between the two
microcontrollers exist. To solve this problem, an AT90S4414/8515 compatibility mode
can be selected by programming the S8515C Fuse. ATmega8515 is 100% pin compati-
ble with AT90S4414/8515, and can replace the AT90S4414/8515 on current printed
circuit boards. However, the location of Fuse bits and the electrical characteristics dif-
fers between the two devices.

Programming the S8515C Fuse will change the following functionality:

* The timed sequence for changing the Watchdog Time-out period is disabled. See
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page
53 for details.

e The double buffering of the USART Receive Registers is disabled. See “AVR
USART vs. AVR UART — Compatibility” on page 137 for details.

¢ PORTE(2:1) will be set as output, and PORTEO will be set as input.

4 ATmega851 5(L) __

2512K-AVR-01/10

| ATmega851 5(L)

Pin Descriptions

vcC
GND

Port A (PA7..PAO)

Port B (PB7..PB0)

Port C (PC7..PC0)

Port D (PD7..PDO)

Port E(PE2..PEO)

RESET

XTALA1

XTAL2

2512K-AVR-01/10

Digital supply voltage.
Ground.

Port A is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. When pins PAO to PA7 are used as inputs and are externally
pulled low, they will source current if the internal pull-up resistors are activated. The Port
A pins are tri-stated when a reset condition becomes active, even if the clock is not
running.

Port A also serves the functions of various special features of the ATmega8515 as listed
on page 67.

Port B is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega8515 as listed
on page 67.

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega8515 as listed
on page 72.

Port E is an 3-bit bi-directional I/0O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega8515 as listed
on page 74.

Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset, even if the clock is not running. The minimum pulse length is given in Table
18 on page 46. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Output from the inverting Oscillator amplifier.

ATMEL ;

ATMEL

Resources A comprehensive set of development tools, application notes and datasheets are avail-
able for download on http://www.atmel.com/avr.

6 ATmega851 5(L) __

s A TMega8515(L)

About Code
Examples

2512K-AVR-01/10

This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C Compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C Compiler documentation for more details.

ATMEL 7

AVR CPU Core

Introduction

Architectural Overview

ATMEL

This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Figure 3. Block Diagram of the AVR Architecture

‘ Data Bus 8-bit

A
Program Status
PFIash < Counter] and Control
rogram
Memory <
Interrupt
. > 32x8 «> Unit
Instruction General
Register Purpose h SPI
< Registrers <> Unit
A
Instruction Watchdog
Decoder h 4 A < Timer
o g N
= ‘»
(2] (%]
l @ 8 ALU «> Analog
Control Lines 3 2 Comparator
< 3
(o] (9]
() =
= © .
e £ <1 1/0 Modulet
Data PN > /0 Module 2
> SRAM
<—>»| 1/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
— with separate memories and buses for program and data. Instructions in the Program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the Program memory. This concept
enables instructions to be executed in every clock cycle. The Program memory is In-
System re programmable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
the operation is executed, and the result is stored back in the Register File — in one
clock cycle.

8 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

ALU - Arithmetic Logic
Unit

2512K-AVR-01/10

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing — enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash Pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every Program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM instruction that writes into the Application Flash memory
section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The Stack Pointer SP is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its Control Registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate interrupt
vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The I/0O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, $20 - $5F.

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories — arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

ATMEL ;

Status Register

ATMEL

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0
| | | T | H | s [v N z Cc | sReG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individ-
ual interrupt enable control is then performed in separate Control Registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

* Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied

into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

e Bit 5 — H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.
e Bit4-S:SignBit,S=N®V

The S-bit is always an exclusive or between the Negative Flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

¢ Bit 3 - V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

¢ Bit 2 — N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit 0 - C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

10 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

General Purpose The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
Register File achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

¢ One 8-bit output operand and one 8-bit result input
e Two 8-bit output operands and one 8-bit result input
¢ Two 8-bit output operands and one 16-bit result input
¢ One 16-bit output operand and one 16-bit result input

Figure 4 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

7 0 Addr.
RO $00
R1 $01
R2 $02
R13 $0D
General R14 $OE
Purpose R15 $OF
Working R16 $10
Registers R17 $11
R26 $1A X-register Low Byte
R27 $1B X-register High Byte
R28 $1C Y-register Low Byte
R29 $1D Y-register High Byte
R30 $1E Z-register Low Byte
R31 $1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 4, each register is also assigned a Data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.

ATMEL i

2512K-AVR-01/10

ATMEL

The X-register, Y-register, and The registers R26..R31 have some added functions to their general purpose usage.

Z-register

Stack Pointer

These registers are 16-bit address pointers for indirect addressing of the Data Space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.

Figure 5. The X-, Y-, and Z-registers

15 XH XL
X-register |7 o7 o]
R27 ($1B) R26 ($1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (51D) R28 (31C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R31 ($1F) R30 ($1E)

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the Instruction Set
reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by one when
data is pushed onto the Stack with the PUSH instruction, and it is decremented by two
when the return address is pushed onto the Stack with subroutine call or interrupt. The
Stack Pointer is incremented by one when data is popped from the Stack with the POP
instruction, and it is incremented by two when address is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/0 space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
12 ATmega8515(L) m——

2512K-AVR-01/10

s A TMega8515(L)

Instruction Execution
Timing

Reset and Interrupt
Handling

2512K-AVR-01/10

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkgp, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 6 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 6. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

ok —/4 N N/

CPU
1st Instruction Fetch

| | |

| | |

i l :

1st Instruction Execute 1 } l
2nd Instruction Fetch | : |

| | |

T T T

| | |

| | |

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X X X X

Figure 7 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 7. Single Cycle ALU Operation

T T2 T3 T4

P A N A N S N S N

CPU
Total Execution Time

ALU Operation Execute

1 !
| |
| |
| |
| |
! !
| |
! !
| |
T T
| |
| |

|
|
|
:
Register Operands Fetch l
|
|
T
|
|

Result Write Back
| |
| |

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the Program memory space. All
interrupts are assigned individual enable bits which must be written logic one together
with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLBO2 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 179 for details.

The lowest addresses in the Program memory space are by default defined as the
Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on
page 54. The list also determines the priority levels of the different interrupts. The lower
the address the higher is the priority level. RESET has the highest priority, and next is
INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start
of the Boot Flash section by setting the IVSEL bit in the General Interrupt Control Regis-
ter (GICR). Refer to “Interrupts” on page 54 for more information. The Reset Vector can

ATMEL i

14

ATMEL

also be moved to the start of the Boot Flash section by programming the BOOTRST
Fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page 166.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding Interrupt Enable bit is cleared, the Interrupt Flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding interrupt flag(s) will be set and remembered until the Global Interrupt Enable
bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence..

Assembly Code Example

in rl6, SREG ; Store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ,; start EEPROM write

sbi EECR, EEWE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();
EECR |: (1<<EEMWE) ; /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

ATmega8515(L) m——

2512K-AVR-01/10

s A TMega8515(L)

Interrupt Response Time

2512K-AVR-01/10

When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Assembly Code Example

sei ,; set global interrupt enable
sleep,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_SEI(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the Program Vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The Vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I-bit in SREG is set.

ATMEL s

AVR ATmega8515
Memories

In-System
Reprogrammable Flash
Program memory

ATMEL

This section describes the different memories in the ATmega8515. The AVR architec-
ture has two main memory spaces, the Data Memory and the Program memory space.
In addition, the ATmega8515 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

The ATmega8515 contains 8K bytes On-chip In-System Reprogrammable Flash mem-
ory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is
organized as 4K x 16. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmega8515 Program Counter (PC) is 12 bits wide, thus addressing the 4K Program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 166. “Memory Programming” on page 179 con-
tains a detailed description on Flash data serial downloading using the SPI pins.

Constant tables can be allocated within the entire Program memory address space, see
the LPM — Load Program memory instruction description.

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 13.

Figure 8. Program memory Map

$000

Application Flash Section

e

Boot Flash Section

$FFF

16 ATmega851 5(L) __

2512K-AVR-01/10

| ATmega851 5(L)

SRAM Data Memory

2512K-AVR-01/10

Figure 9 shows how the ATmega8515 SRAM Memory is organized.

The lower 608 Data Memory locations address the Register File, the I/O Memory, and
the internal data SRAM. The first 96 locations address the Register File and I/O Mem-
ory, and the next 512 locations address the internal data SRAM.

An optional external data SRAM can be used with the ATmega8515. This SRAM will
occupy an area in the remaining address locations in the 64K address space. This area
starts at the address following the internal SRAM. The Register File, 1/0, Extended I/O
and Internal SRAM occupies the lowest 608 bytes in normal mode, so when using 64KB
(65536 bytes) of External Memory, 64928 Bytes of External Memory are available. See
“External Memory Interface” on page 25 for details on how to take advantage of the
external memory map.

When the addresses accessing the SRAM memory space exceeds the internal Data
memory locations, the external data SRAM is accessed using the same instructions as
for the internal Data memory access. When the internal data memories are accessed,
the read and write strobe pins (PD7 and PD6) are inactive during the whole access
cycle. External SRAM operation is enabled by setting the SRE bit in the MCUCR
Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access
of the internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD,
PUSH, and POP take one additional clock cycle. If the Stack is placed in external
SRAM, interrupts, subroutine calls and returns take three clock cycles extra because the
two-byte Program Counter is pushed and popped, and external memory access does
not take advantage of the internal pipe-line memory access. When external SRAM inter-
face is used with wait-state, one-byte external access takes two, three, or four additional
clock cycles for one, two, and three wait-states respectively. Interrupts, subroutine calls
and returns will need five, seven, or nine clock cycles more than specified in the instruc-
tion set manual for one, two, and three wait-states.

The five different addressing modes for the Data memory cover: Direct, Indirect with
Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, and the 512 bytes of inter-
nal data SRAM in the ATmega8515 are all accessible through all these addressing
modes. The Register File is described in “General Purpose Register File” on page 11.

ATMEL 7

ATMEL

Figure 9. Data Memory Map

Data Memory
32 Registers $0000 - $001F
64 1/0 Registers | $0020 - $005F
$0060
Internal SRAM
(512 x 8)
$025F
$0260
External SRAM
(0 - 64K x 8)
1]
1]
1]
! R
_—--""" _-
- 1
san !
| I
| I
| I
R | SFFFF

Data Memory Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkgp, cycles as described in Figure
10.

Figure 10. On-chip Data SRAM Access Cycles
T1 T2 T3

ok N N

CPU | | |
Address | Compute Address | X__Address Valid |

Data ; : : — | o

WR | / n _®

Data ! : | s

! : ! g

RD . / i)"

Memory Access Instruction Next Instruction
18 ATmega8515(L) __

2512K-AVR-01/10

s A TMega8515(L)

EEPROM Data Memory

EEPROM Read/Write Access

The EEPROM Address
Register - EEARH and EEARL

2512K-AVR-01/10

The ATmega8515 contains 512 bytes of data EEPROM memory. It is organized as a
separate data space, in which single bytes can be read and written. The EEPROM has
an endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 179 contains a detailed description on EEPROM Pro-
gramming in SPI or Parallel Programming mode.

The EEPROM Access Registers are accessible in the 1/O space.

The write access time for the EEPROM is given in Table 1. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In heav-
ily filtered power supplies, V¢ is likely to rise or fall slowly on Power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
24. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

Bit 15 14 13 12 11 10 9 8
- - - - - - - EEARS8 EEARH
EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R R R R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 X
X

¢ Bits 15..9 — Res: Reserved Bits

These bits are reserved bits in the ATmega8515 and will always read as zero.

* Bits 8..0 - EEARS..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL — specify the EEPROM
address in the 512 bytes EEPROM space. The EEPROM data bytes are addressed lin-

early between 0 and 511. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

ATMEL >

The EEPROM Data Register -
EEDR

The EEPROM Control Register
- EECR

ATMEL

Bit 7 6 5 4 3 2 1 0

| wsB LSB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 6 5 4 3 2 1 0

| - - - - EERIE | EEMWE | EEWE EERE | EECR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 X 0

¢ Bits 7..4 — Res: Reserved Bits

These bits are reserved bits in the ATmega8515 and will always read as zero.
¢ Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

e Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE s set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

e Bit 1 — EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure

should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

o0~ 0N~

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on
page 166 for details about boot programming.

20 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

2512K-AVR-01/10

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 1 lists the typical
programming time for EEPROM access from the CPU.

Table 1. EEPROM Programming Time

Number of Calibrated RC
Symbol Oscillator Cycles(" Typ Programming Time

EEPROM Write (from CPU) 8448 8.5ms

Note: 1. Uses 1 MHz clock, independent of CKSEL Fuse settings.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g., by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongoing SPM com-
mand to finish.

ATMEL 2

22

ATMEL

Assembly Code Example

EEPROM_write:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_write
; Set up address (rl18:r17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rlé6) to data register
out EEDR,rl6
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR, EEWE

ret

C Code Example

void EEPROM_write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEWE))
/* Set up address and data registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE) ;
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

ATmega8515(L) m——

2512K-AVR-01/10

s A TMega8515(L)

EEPROM Write During Power-
down Sleep Mode

2512K-AVR-01/10

The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_read
; Set up address (rl18:r17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in rl6,EEDR

ret

C Code Example

unsigned char EEPROM_read (unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

When entering Power-down Sleep mode while an EEPROM write operation is active,
the EEPROM write operation will continue, and will complete before the Write Access
time has passed. However, when the write operation is completed, the crystal Oscillator
continues running, and as a consequence, the device does not enter Power-down
entirely. It is therefore recommended to verify that the EEPROM write operation is com-
pleted before entering Power-down.

ATMEL 2

Preventing EEPROM
Corruption

/0 Memory

ATMEL

During periods of low V¢, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply volt-
age. This can be done by enabling the internal Brown-out Detector (BOD). If the
detection level of the internal BOD does not match the needed detection level, an
external low V. Reset Protection circuit can be used. If a Reset occurs while a
write operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

The 1/0O space definition of the ATmega8515 is shown in “Register Summary” on page
239.

All ATmega8515 I/Os and peripherals are placed in the I/O space. The I/O locations are
accessed by the IN and OUT instructions, transferring data between the 32 general pur-
pose working registers and the 1/0 space. I/0 Registers within the address range $00 -
$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the instruction set section for more details. When using the 1/0O specific commands IN
and OUT, the I/0 addresses $00 - $3F must be used. When addressing I/O Registers as
data space using LD and ST instructions, $20 must be added to these addresses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O Register, writing a one back into
any flag read as set, thus clearing the flag. The CBI and SBI instructions work with reg-
isters $00 to $1F only.

The 1/O and Peripherals Control Registers are explained in later sections.

24 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

External Memory With all the features the External Memory Interface provides, it is well suited to operate
Interface as an interface to memory devices such as external SRAM and Flash, and peripherals
such as LCD-display, A/D, and D/A. The main features are:
* Four Different Wait State Settings (Including No wait State)
* Independent Wait State Setting for Different External Memory Sectors (Configurable
Sector Size)
¢ The Number of Bits Dedicated to Address High Byte is Selectable
* Bus Keepers on Data Lines to Minimize Current Consumption (Optional)

Overview When the eXternal MEMory (XMEM) is enabled, address space outside the internal
SRAM becomes available using the dedicated external memory pins (see Figure 1 on
page 2, Table 26 on page 66, Table 32 on page 70, and Table 38 on page 74). The
memory configuration is shown in Figure 11.

Figure 11. External Memory with Sector Select

0x0000
Internal Memory
0x25F
A 0x260
Lower Sector
SRWO01
SRWO00
———————— SRL[2..0]
External Memory Upper Sector
(0-64K x 8)
SRW11
SRW10
 / OxFFFF
Using the External Memory The interface consists of:
Interface e AD7:0: Multiplexed low-order address bus and data bus

e A15:8: High-order address bus (configurable number of bits)
e ALE: Address latch enable

* RD: Read strobe

e WR: Write strobe

ATMEL 2

2512K-AVR-01/10

Address Latch Requirements

ATMEL

The control bits for the External Memory Interface are located in three registers, the
MCU Control Register —- MCUCR, the Extended MCU Control Register - EMCUCR, and
the Special Function IO Register — SFIOR.

When the XMEM interface is enabled, it will override the settings in the data direction
registers corresponding to the ports dedicated to the interface. For details about this port
override, see the alternate functions in section “I/O Ports” on page 59. The XMEM inter-
face will auto-detect whether an access is internal or external. If the access is external,
the XMEM interface will output address, data, and the control signals on the ports
according to Figure 13 (this figure shows the wave forms without wait states). When
ALE goes from high to low, there is a valid address on AD7:0. ALE is low during a data
transfer. When the XMEM interface is enabled, also an internal access will cause activ-
ity on address-, data-, and ALE ports, but the RD and WR strobes will not toggle during
internal access. When the External Memory Interface is disabled, the normal pin and
data direction settings are used. Note that when the XMEM interface is disabled, the
address space above the internal SRAM boundary is not mapped into the internal
SRAM. Figure 12 illustrates how to connect an external SRAM to the AVR using an octal
latch (typically “74x573” or equivalent) which is transparent when G is high.

Due to the high-speed operation of the XRAM interface, the address latch must be
selected with care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V.
When operating at conditions above these frequencies, the typical old style 74HC series
latch becomes inadequate. The external memory interface is designed in compliance to
the 74AHC series latch. However, most latches can be used as long they comply with
the main timing parameters. The main parameters for the address latch are:

* D to Q propagation delay (t,q)

e Data setup time before G low (1)

* Data (address) hold time after G low (y,)

The external memory interface is designed to guaranty minimum address hold time after
G is asserted low of t, = 5 ns (refer to t, xx Lp/t axx sTin Table 98 to Table 105 on page
204). The D to Q propagation delay (t,y) must be taken into consideration when calculat-
ing the access time requirement of the external component. The data setup time before

G low (tg,) must not exceed address valid to ALE low (tay, c) minus PCB wiring delay
(dependent on the capacitive load).

Figure 12. External SRAM Connected to the AVR

L\ 'l> D[7:0]
: [\ A
AD7:0 \l—l/ D Q A A[7:0]

ALE > G

AVR SRAM
. N ars:

A15:8 A[15:8]

o “) %

‘WR » WR
26 ATmega8515(L) __

2512K-AVR-01/10

s A TMega8515(L)

Pull-up and Bus Keeper

Timing

2512K-AVR-01/10

The pull-up resistors on the AD7:0 ports may be activated if the corresponding Port
Register is written to one. To reduce power consumption in sleep mode, it is recom-
mended to disable the pull-ups by writing the Port Register to zero before entering
sleep.

The XMEM interface also provides a bus keeper on the AD7:0 lines. The bus keeper
can be disabled and enabled in software as described in “Special Function IO Register —
SFIOR” on page 31. When enabled, the bus keeper will keep the previous value on the
AD7:0 bus while these lines are tri-stated by the XMEM interface.

External memory devices have various timing requirements. To meet these require-
ments, the ATmega8515 XMEM interface provides four different wait states as shown in
Table 3. It is important to consider the timing specification of the external memory
device before selecting the wait state. The most important parameters are the access
time for the external memory in conjunction with the set-up requirement of the
ATmega8515. The access time for the external memory is defined to be the time from
receiving the chip select/address until the data of this address actually is driven on the
bus. The access time cannot exceed the time from the ALE pulse is asserted low until
data must be stable during a read sequence (| g + tg g - tovrn iN Table 98 to Table
105 on page 204). The different wait states are set up in software. As an additional fea-
ture, it is possible to divide the external memory space in two sectors with individual wait
state settings. This makes it possible to connect two different memory devices with dif-
ferent timing requirements to the same XMEM interface. For XMEM interface timing
details, please refer to Figure 89 to Figure 92, and Table 98 to Table 105.

Note that the XMEM interface is asynchronous and that the waveforms in the figures
below are related to the internal system clock. The skew between the Internal and Exter-
nal clock (XTAL1) is not guaranteed (it varies between devices, temperature, and supply
voltage). Consequently, the XMEM interface is not suited for synchronous operation.

Figure 13. External Data Memory Cycles without Wait State (SRWn1 = 0 and
SRWno = 0)("

T4

' ' '
I T I T2 I T3
]]]

h

]

System Clock (CLKgpy) _/—_/__/—\

:

YT TN T

pam——

Address

Write

N /ol

1
1
|
1
1
1
1
\
! !
DA7:0 Prév. Data 'X Address >@<: Data
' '
1 1
1 1
| |
1 1
\ \
1 1
1
T
1

DA7:0 (XMBK =0) Prév. Data X Address E(pata |)
X Data X:

/1

Note: 1. SRWn1 =SRW11 (upper sector) or SRWO01 (lower sector), SRWn0O = SRW10 (upper
sector) or SRWO0O (lower sector)
The ALE pulse in period T4 is only present if the next instruction accesses the RAM
(internal or external).

Read

DA7:0 (XMBK = 1) Prév. Data :X Address

RD

ATMEL 2

ATMEL

Figure 14. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1()

T i T2 i T3 \ T4
1 1 1

System Clock (CLKgpy) _/I \ / \ /____/_\
ALE _E_/_E—\

T5

> - -
\l___

1

\ !
. ' . _
A15:8 Prdv. Addr. , . Address | i
¥ X : ' : K
. . . j . h o
: : : : ' £
DA7:0 Prdv. Data X Address ! Data | . =
; X XX - ! }
WR . . . ' V/ v
: : : . . -
DA7:0 (XMBK =0) Prév. Data X Address y————{ pata | ')—C
. X : . . X
1 1 1 1 1 8
DA7:0 (XMBK = 1) Prév. Data . Address . Data | . 5]
3 X X : : K| é
1 1 1 1 1 1
1 1 1 1
RD ' : : : 4 :
, , , : v

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O (lower sector)
The ALE pulse in period T5 is only present if the next instruction accesses the RAM
(internal or external).

Figure 15. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0()

N m N T2 N T3 1 T4 N T5 1 T6 N
1 1 1 ' 1 ! '
ALE | H . . : | :
; :
j -
A15:8 Prév. Addr. X ' Address ! X
! j ! . j H | e
: . : : : ! £
DA7:0 Prév. Data X Address H Data =
, X XX X
WR : : : -
DA7:0 (XMBK = 0) Prdv. Data X Address ————{{ pata | ' ')—:C
} | H | | \ |
1 1 1 1 1 1 g
DA7:0 (XMBK = 1) Prév. Data) Address ' Data | ! ' 5]
: X L X e
RD H

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO00 (lower sector)
The ALE pulse in period T6 is only present if the next instruction accesses the RAM
(internal or external).

ATmega8515(L) m——

XMEM Register
Description

MCU Control Register —
MCUCR

Extended MCU Control
Register - EMCUCR

2512K-AVR-01/10

ATmega8515(L)

Figure 16. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1("

4
N|

! T ! T2 ! T3 T4 5 T6
1 1

1
| 1 1 1
System Clock (CLKgpy)
AR Y A A S D W W A e
1 1 1 1 1 1
ALE _:_/_:_\ 1 ! ! ! 1 / |
1 T T T T T 1 _
1 1 1 1 1 1 1
A15:8 Prav. Addr. D'{] Address 1]]] X:
T 1 T T 1 T T 1 o
1 1 1 1 1 1 1 g
DA7:0 Prav. Data 1X Address | Data 1 1 1 1
T IX X>§(X| T T T T |X:
1 1 1 1 | 1 1 1
WR 1 1 "\ 1 | 1/ 1 |
1 1 1 T T T 1 [
1 1 1 1 1 1 1
DA7:0 (XMBK =0) Prav. Data X Address y——+—El{ Data 1 1 1) C
T 1 1 T 1 T 1 1
1 1 1 1 1 1 1 E
DA7:0 (XMBK =1) Prav. Data X Address 1+ X Data 1 | | | X: 8
T 1 T T T T T 1
1 1 1 1 I] 1 1
RD 1 1 "\ 1 | | / | |
1 1 1 T T T 1 -

Note: 1. SRWn1 = SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O (lower sector)
The ALE pulse in period T7 is only present if the next instruction accesses the RAM
(internal or external).

Bit 7 6 5 4 3 2 1 0

I SRE SRW10 SE SM1 ISC11 ISC10 ISCo1 ISC00 I MCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 7 — SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0,
A15:8, ALE, WR, and RD are activated as the alternate pin functions. The SRE bit over-
rides any pin direction settings in the respective Data Direction Registers. Writing SRE
to zero, disables the External Memory Interface and the normal pin and data direction
settings are used.

¢ Bit 6 — SRW10: Wait State Select Bit

For a detailed description, see common description for the SRWn bits below (EMCUCR
description).

Bit 7 6 5 4 3 2 1 0

I SMo SRL2 SRL1 SRLO SRWO01 SRW00 | SRW11 ISC2 I EMCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 6..4 — SRL2, SRL1, SRLO: Wait State Sector Limit

It is possible to configure different wait states for different external memory addresses.
The External Memory address space can be divided in two sectors that have separate
wait state bits. The SRL2, SRL1, and SRLO bits select the splitting of these sectors, see
Table 2 and Figure 11. By default, the SRL2, SRL1, and SRLO bits are set to zero and
the entire External Memory address space is treated as one sector. When the entire

ATMEL 2

ATMEL

SRAM address space is configured as one sector, the wait states are configured by the
SRW11 and SRW10 bits.

Table 2. Sector Limits with Different Settings of SRL2..0

SRL2 SRL1 SRLO Sector Limits
0 0 0 Lower sector = N/A
Upper sector = 0x0260 - OxFFFF
0 0 1 Lower sector = 0x0260 - Ox1FFF
Upper sector = 0x2000 - OxFFFF
0 1 0 Lower sector = 0x0260 - Ox3FFF
Upper sector = 0x4000 - OxFFFF
0 1 1 Lower sector = 0x0260 - Ox5FFF
Upper sector = 0x6000 - OxFFFF
1 0 0 Lower sector = 0x0260 - Ox7FFF
Upper sector = 0x8000 - OxFFFF
1 0 1 Lower sector = 0x0260 - Ox9FFF
Upper sector = 0xA000 - OxFFFF
1 1 0 Lower sector = 0x0260 - OXxBFFF
Upper sector = 0xC000 - OxFFFF
1 1 1 Lower sector = 0x0260 - OXDFFF
Upper sector = 0XEO0O - OxFFFF

e Bit 1 and Bit 6 MCUCR - SRW11, SRW10: Wait State Select Bits for Upper
Sector

The SRW11 and SRW10 bits control the number of wait states for the upper sector of
the External Memory address space, see Table 3.

¢ Bit 3..2 - SRWO01, SRWO00: Wait State Select Bits for Lower Sector

The SRWO01 and SRWO0O bits control the number of wait states for the lower sector of
the External Memory address space, see Table 3.

Table 3. Wait States("
SRWn1 SRWnO0 | Wait States

0 0 No wait states.
0 1 Wait one cycle during read/write strobe.
1 0 Wait two cycles during read/write strobe.

Wait two cycles during read/write and wait one cycle before driving out

1 1 new address.

Note: 1. n=0or 1 (lower/upper sector).
For further details of the timing and wait states of the External Memory Interface, see
Figure 13 to Figure 16 how the setting of the SRW bits affects the timing.

30 ATmega851 5(L) __

s A TMega8515(L)

Special Function 10 Register —

SFIOR

Using all Locations of
External Memory Smaller than
64 KB

2512K-AVR-01/10

Bit 7 6 5 4 3 2 1 0

I = XMBK XMM2 XMM1 XMMO PUD = PSR10 I SFIOR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit 6 — XMBK: External Memory Bus Keeper Enable

Writing XMBK to one enables the Bus Keeper on the AD7:0 lines. When the Bus Keeper
is enabled, AD7:0 will keep the last driven value on the lines even if the XMEM interface
has tri-stated the lines. Writing XMBK to zero disables the Bus Keeper. XMBK is not
qualified with SRE, so even if the XMEM interface is disabled, the Bus Keepers are still
activated as long as XMBK is one.

e Bit 5..3 — XMM2, XMM1, XMMO: External Memory High Mask

When the External Memory is enabled, all Port C pins are used for the high address
byte by default. If the full 64,928 bytes address space is not required to access the
External Memory, some, or all, Port C pins can be released for normal Port Pin function
as described in Table 4. As described in “Using all 64KB Locations of External Memory”
on page 33, it is possible to use the XMMn bits to access all 64KB locations of the Exter-
nal Memory.

Table 4. Port C Pins Released as Normal Port Pins when the External Memory is
Enabled

XMM2 | XMM1 | XMMO | # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full 64,928 Bytes Space) None

0 0 1 7 PC7

0 1 0 6 PC7 - PC6

0 1 1 5 PC7 - PC5

1 0 0 4 PC7 - PC4

1 0 1 3 PC7 - PC3

1 1 0 2 PC7 - PC2

1 1 1 No Address High bits Full Port C

Since the external memory is mapped after the internal memory as shown in Figure 11,
the external memory is not addressed when addressing the first 608 bytes of data
space. It may appear that the first 608 bytes of the external memory are inaccessible
(external memory addresses 0x0000 to 0x025F). However, when connecting an exter-
nal memory smaller than 64 KB, for example 32 KB, these locations are easily accessed
simply by addressing from address 0x8000 to 0x825F. Since the External Memory
Address bit A15 is not connected to the external memory, addresses 0x8000 to 0x825F
will appear as addresses 0x0000 to 0x025F for the external memory. Addressing above
address 0x825F is not recommended, since this will address an external memory loca-
tion that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from 0x0260
to 0x825F. This is illustrated in Figure 17.

ATMEL s

ATMEL

Figure 17. Address Map with 32 KB External Memory

Memory Configuration

AVR Memory Map External 32K SRAM

0x0000 0x0000
OX025F Internal Memory 0x025F
oxo260 |- - """~ /"""~ 7] 0x0260
ox7FFF | _EBxtemal Ox7FFF
0x8000 Memory
Ox825F |_ _ _ _ _ _ _
0x8260

(Unused)
OXFFFF

32 ATmega851 5(L) [

2512K-AVR-01/10

s A TMega8515(L)

Using all 64KB Locations of
External Memory

2512K-AVR-01/10

Since the External Memory is mapped after the Internal Memory as shown in Figure 11,
only 64,928 bytes of External Memory is available by default (address space 0x0000 to
0x025F is reserved for Internal Memory). However, it is possible to take advantage of
the entire External Memory by masking the higher address bits to zero. This can be
done by using the XMMn bits and control by software the most significant bits of the
address. By setting Port C to output 0x00, and releasing the most significant bits for nor-
mal Port Pin operation, the Memory Interface will address 0x0000 - Ox1FFF. See code

example below.

Assembly Code Example("

; OFFSET is defined to 0x2000 to ensure

; external memory access

; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

1di 1rl6, OXFF

out DDRC, rlé6

1di rl6, 0x00

out PORTC, rlé6

; release PC7:5

1di rl6, (1<<XMM1) | (1<<XMMO)

out SFIOR, rlé6

; write O0xAA to address 0x0001 of external
; memory

1di rl6, Oxaa

sts O0x0001+OFFSET, rlé6

; re-enable PC7:5 for external memory
1di rl6, (0<<XMM1) | (0<<XMMO)

out SFIOR, rlé6

; store 0x55 to address (OFFSET + 1) of
; external memory

1di «rl6, 0x55

sts O0x0001+OFFSET, rlé6

C Code Example"

#define OFFSET 0x2000

void XRAM example (void)

{

unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OxFF;
PORTC = 0x00;

SFIOR = (1l<<XMM1) | (1l<<XMMO) ;
*p = Oxaa;
SFIOR = 0x00;

*p = 0x55;
}

Note: 1. See “About Code Examples” on page 7.

Care must be exercised using this option as most of the memory is masked away.

ATMEL

33

System Clock and
Clock Options

Clock Systems and their

Distribution

ATMEL

Figure 18 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to modules not being used can be halted by using different sleep modes, as
described in “Power Management and Sleep Modes” on page 41. The clock systems
are detailed below.

Figure 18. Clock Distribution

General I/0O Flash and
Modules CPU Core RAM EEPROM
A 4 4 A |
clkyo AVR Clock clkepy
Control Unit
CIkFLASH
A
Reset Logic Watchdog Timer
* t A
Source clock Watchdog clock
Clock Watchdog
Multiplexer Oscillator
A A A A A
External RC Crystal Low-frequency Calibrated RC
Oscillator External Clock Oscillator Crystal Oscillator Oscillator

The CPU clock is routed to parts of the system concerned with operation of the AVR

core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister, and the Data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the 1/O clock is halted.

34 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

Flash Clock — clKg agh The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

Clock Sources The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Table 5. Device Clocking Options Select("

Device Clocking Option CKSELS3..0
External Crystal/Ceramic Resonator 1111 -1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from Reset, there is as an additional delay allowing the power to
reach a stable level before commencing normal operation. The Watchdog Oscillator is
used for timing this real-time part of the start-up time. The number of WDT Oscillator
cycles used for each time-out is shown in Table 6. The frequency of the Watchdog Oscil-
lator is voltage dependent as shown in “ATmega8515 Typical Characteristics” on page

207.
Table 6. Number of Watchdog Oscillator Cycles
Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
41ms 4.3ms 4K (4,096)
65 ms 69 ms 64K 65,536)
Default Clock Source The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source

setting is therefore the Internal RC Oscillator with longest start-up time. This default set-
ting ensures that all users can make their desired clock source setting using an In-
System or Parallel Programming.

Crystal Oscillator XTAL1 and XTALZ2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 19. Either a quartz
crystal or a ceramic resonator may be used. The CKOPT Fuse selects between two dif-
ferent Oscillator amplifier modes. When CKOPT is programmed, the Oscillator output
will oscillate will a full rail-to-rail swing on the output. This mode is suitable when operat-
ing in a very noisy environment or when the output from XTAL2 drives a second clock
buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the
Oscillator has a smaller output swing. This reduces power consumption considerably.
This mode has a limited frequency range and it can not be used to drive other clock
buffers.

For resonators, the maximum frequency is 8 MHz with CKOPT unprogrammed and
16 MHz with CKOPT programmed. C1 and C2 should always be equal for both crystals
and resonators. The optimal value of the capacitors depends on the crystal or resonator

ATMEL 55

2512K-AVR-01/10

ATMEL

in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in
Table 7. For ceramic resonators, the capacitor values given by the manufacturer should
be used.

Figure 19. Crystal Oscillator Connections

co
S XTAL2

n
S L | xTALf
GND

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSELS3..1 as shown in
Table 7.

Table 7. Crystal Oscillator Operating Modes

Frequency Range Recommended Range for Capacitors
CKOPT CKSELS3..1 (MHz) C1 and C2 for Use with Crystals (pF)
1 101™ 0.4-0.9 -
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12-22
0 101, 110, 111 1.0< 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 8.

Table 8. Start-up Times for the Crystal Oscillator Clock Selection

Start-up Time Additional Delay from | Recommended
CKSELO | SUT1..0 | from Power-down Reset (V¢ = 5.0V) Usage
0 00 258 CK™M 4.1 ms Ceramic resonator,
fast rising power
0 01 258 CK™M 65 ms Ceramic resonator,
slowly rising power
0 10 1K CK®@ - Ceramic resonator,
BOD enabled
0 11 1K CK® 41ms Ceramic resonator,
fast rising power
1 00 1K CK® 65 ms Ceramic resonator,
slowly rising power

36

ATmega8515(L) m——

2512K-AVR-01/10

s A TMega8515(L)

Low-frequency Crystal
Oscillator

2512K-AVR-01/10

Table 8. Start-up Times for the Crystal Oscillator Clock Selection (Continued)

Start-up Time Additional Delay from | Recommended
CKSELO | SUT1..0 | from Power-down Reset (V¢ = 5.0V) Usage

1 01 16K CK - Crystal Oscillator,
BOD enabled

1 10 16K CK 4.1 ms Crystal Oscillator, fast
rising power

1 11 16K CK 65 ms Crystal Oscillator,
slowly rising power

Notes: 1. These options should only be used when not operating close to the maximum fre-

quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
quency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

To use a 32.768 kHz watch crystal as the clock source for the device, the Low-fre-
quency Crystal Oscillator must be selected by setting the CKSEL Fuses to “1001”. The
crystal should be connected as shown in Figure 19. By programming the CKOPT Fuse,
the user can enable internal capacitors on XTAL1 and XTAL2, thereby removing the
need for external capacitors. The internal capacitors have a nominal value of 36 pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 9.

Table 9. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time Additional Delay from
SUT1..0 | from Power-down Reset (V¢ = 5.0V) Recommended Usage
00 1K CK™ 41ms Fast rising power or BOD
enabled

01 1K CK(" 65 ms Slowly rising power

10 32K CK 65 ms Stable frequency at start-up

11 Reserved

Note: 1. These options should only be used if frequency stability at start-up is not important

for the application.

ATMEL 5

External RC Oscillator

ATMEL

For timing insensitive applications, the external RC configuration shown in Figure 20
can be used. The frequency is roughly estimated by the equation f = 1/(3RC). C should
be at least 22 pF. By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND, thereby removing the need for an external
capacitor.

Figure 20. External RC Configuration

VCC
R NC ——— XTAL2
I XTALA
C

j GND

The Oscillator can operate in four different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSELS..0 as shown in
Table 10.

Table 10. External RC Oscillator Operating Modes

CKSEL3..0 Frequency Range (MHz)
0101 0.1-0.9
0110 0.9-3.0
0111 3.0-8.0
1000 8.0-12.0

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 11.

Table 11. Start-up Times for the External RC Oscillator Clock Selection

Start-up Time Additional Delay from
SUT1..0 | from Power-down Reset (V¢ = 5.0V) Recommended Usage
00 18 CK - BOD enabled
01 18 CK 4.1 ms Fast rising power
10 18 CK 65 ms Slowly rising power
1 6 CKM 41ms Fast rising power or BOD
enabled

Note: 1. This option should not be used when operating close to the maximum frequency of
the device.

38 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

Calibrated Internal RC
Oscillator

Oscillator Calibration Register
— OSCCAL

2512K-AVR-01/10

The calibrated internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0 MHz clock. All
frequencies are nominal values at 5V and 25°C. This clock may be selected as the sys-
tem clock by programming the CKSEL Fuses as shown in Table 12. If selected, it will
operate with no external components. The CKOPT Fuse should always be unpro-
grammed when using this clock option. During reset, hardware loads the calibration byte
into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. At 5V,
25°C, and 1.0 MHz Oscillator frequency selected, this calibration gives a frequency
within + 3% of the nominal frequency. Using run-time calibration methods as described
in application notes available at www.atmel.com/avr it is possible to achieve + 1% accu-
racy at any given V. and Temperature. When this Oscillator is used as the chip clock,
the Watchdog Oscillator will still be used for the Watchdog Timer and for the Reset
Time-out. For more information on the pre-programmed calibration value, see the sec-
tion “Calibration Byte” on page 181.

Table 12. Internal Calibrated RC Oscillator Operating Modes

CKSEL3..0 Nominal Frequency (MHz)
0001 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 13. XTAL1 and XTAL2 should be left unconnected (NC).

Table 13. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

Start-up Time from Additional Delay from
SUT1..0 Power-down Reset (Vo = 5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 41 ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

Bit 7 6 5 4 3 2 1 0

| CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO I OSCCAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value Device Specific Calibration Value

¢ Bits 7..0 — CAL7..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove pro-
cess variations from the Oscillator frequency. During Reset, the 1 MHz calibrated value
which is located in the signature row High Byte (address 0x00) is automatically loaded
into the OSCCAL Register. If the internal RC is used at other frequencies, the calibration
values must be loaded manually. This can be done by first reading the signature row by
a programmer, and then store the calibration values in the Flash or EEPROM. Then the
value can be read by software and loaded into the OSCCAL Register. When OSCCAL is
zero, the lowest available frequency is chosen. Writing non-zero values to this register

ATMEL s

External Clock

ATMEL

will increase the frequency of the internal Oscillator. Writing $FF to the register gives the
highest available frequency. The calibrated Oscillator is used to time EEPROM and
Flash access. If EEPROM or Flash is written, do not calibrate to more than 10% above
the nominal frequency. Otherwise, the EEPROM or Flash write may fail. Note that the
Oscillator is intended for calibration to 1.0, 2.0, 4.0, or 8.0 MHz. Tuning to other values is
not guaranteed, as indicated in Table 14.

Table 14. Internal RC Oscillator Frequency Range.

Min Frequency in Percentage of Max Frequency in Percentage of

OSCCAL Value Nominal Frequency Nominal Frequency

$00 50% 100%
$7F 75% 150%
$FF 100% 200%

To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 21. To run the device on an external clock, the CKSEL Fuses must be pro-
grammed to “0000”. By programming the CKOPT Fuse, the user can enable an internal
36 pF capacitor between XTAL1 and GND.

Figure 21. External Clock Drive Configuration

NC ———— XTAL2
EXTERNAL

CLOCK ———— XTAL1
SIGNAL

When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 15.

Table 15. Start-up Times for the External Clock Selection

Start-up Time from Additional Delay from
SUT1..0 Power-down Reset (Vo = 5.0V) Recommended Usage
00 6 CK - BOD enabled
01 6 CK 41ms Fast rising power
10 6 CK 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. It is
required to ensure that the MCU is kept in Reset during such changes in the clock
frequency.

40 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

Power Management
and Sleep Modes

MCU Control Register —
MCUCR

MCU Control and Status
Register - MCUCSR

2512K-AVR-01/10

Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

To enter any of the three sleep modes, the SE bit in MCUCR must be written to logic
one and a SLEEP instruction must be executed. The SM2 bit in MCUCSR, the SM1 bit
in MCUCR, and the SMO bit in the EMCUCR Register select which sleep mode (Idle,
Power-down, or Standby) will be activated by the SLEEP instruction. See Table 16 for a
summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU
wakes up. The MCU is then halted for four cycles in addition to the start-up time, it exe-
cutes the interrupt routine, and resumes execution from the instruction following SLEEP.
The contents of the Register File and SRAM are unaltered when the device wakes up
from sleep. If a Reset occurs during sleep mode, the MCU wakes up and executes from
the Reset Vector.

Figure 18 on page 34 presents the different clock systems in the ATmega8515, and
their distribution. The figure is helpful in selecting an appropriate sleep mode.

Bit 7 6 5 4 3 2 1 0
| SRE | sRwio SE SM1 Isc11 | Isc1o | iIsco1 | iscoo | mcucr

Read/Write RW RW R/W RIW RW RW RW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 5 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmers purpose, it is recommended to write the Sleep Enable (SE) bit to one
just before the execution of the SLEEP instruction and to clear it immediately after wak-
ing up.

e Bit4 — SM1: Sleep Mode Select Bit 1

The Sleep Mode Select bits select between the three available sleep modes as shown
in Table 16.

Bit 7 6 5 4 3 2 1 0

I - - SM2 - WDRF BORF EXTRF PORF I MCUCSR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 5 - SM2: Sleep Mode Select Bit 2

The Sleep Mode Select bits select between the three available sleep modes as shown
in Table 16.

ATMEL i

Extended MCU Control
Register - EMCUCR

Idle Mode

Power-down Mode

ATMEL

Bit 7 6 5 4 3 2 1 0

I SMo SRL2 SRL1 SRLO SRWO01 SRW00 | SRW11 ISC2 I EMCUCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7 — SMO: Sleep Mode Select Bit 0

The Sleep Mode Select bits select between the three available sleep modes as shown
in Table 16.

Table 16. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 Reserved
0 1 0 Power-down
0 1 1 Reserved
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby("
1 1 1 Reserved

Note: 1. Standby mode is only available with external crystals or resonators.

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing SPI, USART, Analog Comparator,
Timer/Counters, Watchdog, and the Interrupt System to continue operating. This sleep
mode basically halts clksp and clkg osy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register — ACSR. This will reduce power consumption in Idle mode.

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the external Oscillator is stopped, while the External
Interrupts and the Watchdog continue operating (if enabled). Only an External Reset, a
Watchdog Reset, a Brown-out Reset, an External level interrupt on INTO or INT1, or an
External interrupt on INT2 can wake up the MCU. This sleep mode basically halts all
generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 77 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
Fuses that define the Reset Time-out period, as described in “Clock Sources” on page
35.

42 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

Standby Mode

Minimizing Power
Consumption

Analog Comparator

Brown-out Detector

Internal Voltage Reference

Watchdog Timer

2512K-AVR-01/10

When the SM2..0 bits are written to 110, and an external crystal/resonator clock option
is selected, the SLEEP instruction makes the MCU enter Standby mode. This mode is
identical to Power-down with the exception that the Oscillator is kept running. From
Standby mode, the device wakes up in six clock cycles.

Table 17. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

Active Clock domains Oscillators Wake-up Sources
INT2 SPM/
Main Clock INT1 | EEPROM
Sleep Mode | clkcpy | Clkpash | Clko | Source Enabled | INTO Ready Other I/O
Idle X X X X X
Power-down x®@
Standby(‘) X X@

Notes: 1. External Crystal or resonator selected as clock source
2. Only INT2 or level interrupt INT1 and INTO

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

When entering Idle mode, the Analog Comparator should be disabled if not needed. In
the other sleep modes, the Analog Comparator is automatically disabled. However, if
the Analog Comparator is set up to use the Internal Voltage Reference as input, the
Analog Comparator should be disabled in all sleep modes. Otherwise, the Internal Volt-
age Reference will be enabled, independent of sleep mode. Refer to “Analog
Comparator” on page 164 for details on how to configure the Analog Comparator.

If the Brown-out Detector is not needed in the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODEN Fuse, it will be enabled in all
sleep modes, and hence, always consume power. In the deeper sleep modes, this will
contribute significantly to the total current consumption. Refer to “Brown-out Detection”
on page 48 for details on how to configure the Brown-out Detector.

The Internal Voltage Reference will be enabled when needed by the Brown-out Detector
or the Analog Comparator. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming
power. When turned on again, the user must allow the reference to start up before the
output is used. If the reference is kept on in sleep mode, the output can be used imme-
diately. Refer to “Internal Voltage Reference” on page 50 for details on the start-up time.

If the Watchdog Timer is not needed in the application, this module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to page 53 for details on how to configure the
Watchdog Timer.

ATMEL i

ATMEL

Port Pins When entering a sleep mode, all port pins should be configured to use minimum power.
The most important thing is to ensure that no pins drive resistive loads. In sleep modes
where the I/O clock (clk,,p) is stopped, the input buffers of the device will be disabled.
This ensures that no power is consumed by the input logic when not needed. In some
cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 63 for
details on which pins are enabled. If the input buffer is enabled and the input signal is
left floating or have an analog signal level close to V/2, the input buffer will use exces-
sive power.

44 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

System Control and
Reset

Resetting the AVR

Reset Sources

2512K-AVR-01/10

During Reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a
RJMP instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at
these locations. This is also the case if the Reset Vector is in the Application section
while the Interrupt Vectors are in the Boot section or vice versa. The circuit diagram in
Figure 22 shows the reset logic. Table 18 defines the electrical parameters of the reset
circuitry.

The 1/O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
internal reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the
CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 35.

The ATmega8515 has four sources of reset:

* Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (Vpgr).

¢ External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

¢ Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

e Brown-out Reset. The MCU is reset when the supply voltage V¢ is below the
Brown-out Reset threshold (Vzgr) and the Brown-out Detector is enabled.

ATMEL s

46

ATMEL

Figure 22. Reset Logic

DATA BUS
A

A

MCU Control and Status
Register (MCUCSR)

L) Lo L e
Sl
Power-on oo Xl =
vee > Reset Circuit O
Brown-out
BOEI?I_OEI?/EENL Reset Circuit
._
[H Pull-up Resistor %
RESET ohke Reset Gircuit | \ s Q- i
| L :
~ IR o
Watchdog o
Timer &
T Z
2
Q
Watchdog o
Oscillator
Y
Clock CK . Delay Counters -
Generator ” TIMEOUT
CKSEL[3:0]
SUT[1:0]
Table 18. Reset Characteristics
Symbol | Parameter Condition Min | Typ | Max | Units
Power-on_F{_ese(t1)Threshold 14 53 v
Voltage (rising)
Veor
Power-on Reset Threshold
) 1.3 2.3 \%
Voltage (falling)
VRsT RESET Pin Threshold Voltage 0.1 0.9 Ve
Minimum pulse width on
®sT | RESET Pin 15 1 bs
v Brown-out Reset Threshold BODLEVEL =1 2.5 2.7 3.2 v
(2
Bor | Voltage BODLEVEL=0 | 3.7 | 40 | 45
Minimum low voltage period for | BODLEVEL =1 2 us
t _ .
BOD Brown-out Detection BODLEVEL = 0 5 s
Vivst Brown-out Detector hysteresis 130 mV

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqt
(falling).

2. Vgor may be below nominal minimum operating voltage for some devices. For
devices where this is the case, the device is tested down to Vo = Vgor during the
production test. This guarantees that a Brown-out Reset will occur before V¢ drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL=1 for ATmega8515L and BODLEVEL=0 for
ATmega8515. BODLEVEL=1 is not applicable for ATmega8515.

ATmega8515(L) m——

2512K-AVR-01/10

s A TMega8515(L)

Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 18. The POR is activated whenever V. is below the
detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after V¢ rise. The RESET signal is activated
again, without any delay, when V. decreases below the detection level.

Figure 23. MCU Start-up, RESET Tied to V¢

RESET

TIME-OUT

INTERNAL
RESET ‘
Figure 24. MCU Start-up, RESET Extended Externally

I
-~ Veor
Vee J

Vv
RESET RST

€ toyr —>

TIME-OUT

INTERNAL
RESET

ATMEL i

2512K-AVR-01/10

External Reset

Brown-out Detection

ATMEL

An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 18) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage — Vi1 — oOn its positive edge, the delay
counter starts the MCU after the Time-out period tygyt has expired.

Figure 25. External Reset During Operation

Vce
RESET | |
I
|
: tTOUT
I

I
I
l
I
TIME-OUT !
I
]
I
I
I

INTERNAL ‘
RESET

ATmega8515 has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the fuse BODLEVEL to be 2.7V (BODLEVEL unprogrammed),
or 4.0V (BODLEVEL programmed). The trigger level has a hysteresis to ensure spike
free Brown-out Detection. The hysteresis on the detection level should be interpreted as
Veot: = Vot + Vhyst/2 and Vgor. = Vot - Viyst/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is
enabled (BODEN programmed), and V¢ decreases to a value below the trigger level
(Vgor. in Figure 26), the Brown-out Reset is immediately activated. When V¢ increases
above the trigger level (Vgor, in Figure 26), the delay counter starts the MCU after the
time-out period tyoyt has expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level
for longer than tgop given in Table 18.

Figure 26. Brown-out Reset During Operation

Vee
RESET | |
TIME-OUT | < tour
INTERNAL |
RESET |
48 ATmega8515(L) __

2512K-AVR-01/10

s A TMega8515(L)

Watchdog Reset

MCU Control and Status
Register - MCUCSR

2512K-AVR-01/10

When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
trout. Refer to page 53 for details on operation of the Watchdog Timer.

Figure 27. Watchdog Reset During Operation

Vee
RESET
—>» <«— 1 CKCycle
WDT
TIME-OUT H
[
L
[
| — t.
RESET ! TouT
TIME-OUT |
I

INTERNAL
RESET

The MCU Control and Status Register provides information on which reset source
caused an MCU Reset.

Bit 7 6 5 4 3 2 1 0
I - | - | swm - WDRF BORF | EXTRF PORF | mMcucsr

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description

e Bit 3 — WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

¢ Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

e Bit 1 — EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

e Bit 0 — PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and
then reset the MCUCSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the
Reset Flags.

ATMEL 1

Internal Voltage
Reference

Voltage Reference Enable
Signals and Start-up Time

Watchdog Timer

ATMEL

ATmega8515 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator.

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 19. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

Thus, when the BOD is not enabled, after setting the ACBG bit, the user must always
allow the reference to start up before the output from the Analog Comparator is used. To
reduce power consumption in Power-down mode, the user can avoid the two conditions
above to ensure that the reference is turned off before entering Power-down mode.

Table 19. Internal Voltage Reference Characteristics

Symbol | Parameter Min Typ Max Units
Vgg Bandgap reference voltage 115 | 1283 | 1.35 Vv
tae Bandgap reference start-up time 40 70 us
Izg Bandgap reference current consumption 10 A

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at
1 MHz. This is the typical frequency at V¢ = 5V. See characterization data for typical
values at other V. levels. By controlling the Watchdog Timer prescaler, the Watchdog
Reset interval can be adjusted as shown in Table 21 on page 52. The WDR — Watchdog
Reset — instruction resets the Watchdog Timer. The Watchdog Timer is also reset when
it is disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the ATmega8515 resets and executes from the Reset Vector. For tim-
ing details on the Watchdog Reset, refer to page 49.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out
period, three different safety levels are selected by the Fuses S8515C and WDTON as
shown in Table 20. Safety level 0 corresponds to the setting in AT90S4414/8515. There
is no restriction on enabling the WDT in any of the safety levels. Refer to “Timed
Sequences for Changing the Configuration of the Watchdog Timer” on page 53 for
details.

50 ATmega851 5(L) __

2512K-AVR-01/10

s A TMega8515(L)

Watchdog Timer Control
Register - WDTCR

2512K-AVR-01/10

Table 20. WDT Configuration as a Function of the Fuse Settings of S8515C and

WDTON.
WDT How to
Safety | Initial How to Disable | Change Time-
S$8515C WDTON Level | State the WDT out
Unprogrammed | Unprogrammed 1 Disabled | Timed sequence | Timed
sequence
Unprogrammed | Programmed 2 Enabled | Always enabled | Timed
sequence
Programmed Unprogrammed 0 Disabled | Timed sequence | No restriction
Programmed Programmed 2 Enabled | Always enabled | Timed
sequence
Figure 28. Watchdog Timer
WATCHDOG N WATCHDOG
OSCILLATOR | < PRESCALER
HEEHEEEE
e HEEHE
WATCRHEDS(E(_;I_ 8|8|38|2|2|g 2|8
. YVYYVYVVYYVY
WDPO >
WDP1 é\
WDP2 »
WDE
MCU RESET
Bit 7 6 5 4 3 2 1 0
| - - WDCE WDE WDP2 | WDP1 wbPo | wbTcR
Read/Write R R R RW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7..5 — Res: Reserved Bits

These bits are reserved bits in the ATmega8515 and will always read as zero.
* Bit 4 - WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure. In
Safety Levels 1 and 2, this bit must also be set when changing the prescaler bits. See
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 53.

e Bit 3 - WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is
written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared

if the WDCE bit has logic level one. To disable an enabled Watchdog Timer, the follow-
ing procedure must be followed:

ATMEL s

ATMEL

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be
written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the
Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algo-
rithm described above. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 53.

¢ Bits 2..0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 21.

Table 21. Watchdog Timer Prescale Select

Number of WDT Typical Time-out Typical Time-out
WDP2 | WDP1 | WDPO | Oscillator Cycles at Voo = 3.0V at Voo = 5.0V
0 0 0 16K (16,384) 17.1 ms 16.3 ms
0 0 1 32K (32,768) 34.3ms 32.5ms
0 1 0 64K (65,536) 68.5 ms 65 ms
0 1 1 128K (131,072) 0.14 s 0.13s
1 0 0 256K (262,144) 0.27 s 0.26s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 11s 1.0s
1 1 1 2,048K (2,097,152) 22s 21s

The following code example shows one assembly and one C function for turning off the
WDT. The example assumes that interrupts are controlled (e.g., by disabling interrupts
globally) so that no interrupts will occur during execution of these functions.

Assembly Code Example

WDT_off:
; Write logical one to WDCE and WDE
1di rl6, (1<<WDCE) | (1<<WDE)
out WDTCR, rlé6
; Turn off WDT
1di rl6, (0<<WDE)
out WDTCR, rlé6

ret

C Code Example

void WDT off (void)
{
/* Write logical one to WDCE and WDE */
WDTCR = (1<<WDCE) | (1<<WDE) ;
/* Turn off WDT */
WDTCR = 0x00;

52 ATmega851 5(L) __

2512K-AVR-01/10

| ATmega851 5(L)

Timed Sequences for
Changing the
Configuration of the
Watchdog Timer

Safety Level 0

Safety Level 1

Safety Level 2

2512K-AVR-01/10

The sequence for changing configuration differs slightly between the three safety levels.
Separate procedures are described for each level.

This mode is compatible with the Watchdog operation found in AT90S4414/8515. The
Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit to 1 with-
out any restriction. The time-out period can be changed at any time without restriction.
To disable an enabled Watchdog Timer, the procedure described on page 51 (WDE bit
description) must be followed.

In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the
WDE bit to 1 without any restriction. A timed sequence is needed when changing the
Watchdog Time-out period or disabling an enabled Watchdog Timer. To disable an
enabled Watchdog Timer, and/or changing the Watchdog Time-out, the following proce-
dure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be
written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP
bits as desired, but with the WDCE bit cleared.

In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read

as one. A timed sequence is needed when changing the Watchdog Time-out period. To

change the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the
WDE always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as
desired, but with the WDCE bit cleared. The value written to the WDE bit is
irrelevant.

ATMEL s

Interrupts

Interrupt Vectors in

ATMEL

This section describes the specifics of the interrupt handling as performed in
ATmega8515. For a general explanation of the AVR interrupt handling, refer to “Reset
and Interrupt Handling” on page 13.

Table 22. Reset and Interrupt Vectors

ATmega8515
Program
Vector No. | Address® | Source Interrupt Definition
1 $000™M RESET External Pin, Power-on Reset, Brown-out
Reset and Watchdog Reset
2 $001 INTO External Interrupt Request 0
3 $002 INTH External Interrupt Request 1
4 $003 TIMER1 CAPT Timer/Counter1 Capture Event
5 $004 TIMER1 COMPA | Timer/Counteri Compare Match A
6 $005 TIMER1 COMPB | Timer/Counteri Compare Match B
7 $006 TIMER1 OVF Timer/Counter1 Overflow
8 $007 TIMERO OVF Timer/Counter0 Overflow
9 $008 SPI, STC Serial Transfer Complete
10 $009 USART, RXC USART, Rx Complete
11 $00A USART, UDRE USART Data Register Empty
12 $00B USART, TXC USART, Tx Complete
13 $00C ANA_COMP Analog Comparator
14 $00D INT2 External Interrupt Request 2
15 $00E TIMERO COMP Timer/Counter0 Compare Match
16 $00F EE_RDY EEPROM Ready
17 $010 SPM_RDY Store Program memory Ready
Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support — Read-While-Write Self-Programming”
on page 166.
2. When the IVSEL bit in GICR is set, Interrupt Vectors will be moved to the start of the
Boot Flash section. The address of each Interrupt Vector will then be the address in
this table added to the start address of the Boot Flash section.
Table 23 shows Reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the Boot section or vice versa.
54 ATmega851 5(L) |

2512K-AVR-01/10

s A TMega8515(L)

Table 23. Reset and Interrupt Vectors Placement("

BOOTRST IVSEL | Reset Address Interrupt Vectors Start Address
1 0 $0000 $0001
1 1 $0000 Boot Reset Address + $0001
0 0 Boot Reset Address $0001
0 1 Boot Reset Address Boot Reset Address + $0001
Note: 1. The Boot Reset Address is shown in Table 78 on page 177. For the BOOTRST Fuse

“1” means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector

Addresses in ATmega8515 is:

Address
$000
$001
$002
$003
$004
$005
$006
$007
$008
$009
$00a
$00b
$00c
$00d
$S00e
SO00f

$010
Handler

$011
$012
$013
$014
$015
$016

2512K-AVR-01/10

Labels

RESET:

Code
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp
rjmp

rjmp

1di
out
1di
out

sei

<instr>

RESET
EXT_INTO
EXT_INT1
TIM1_CAPT
TIM1_COMPA
TIM1_COMPB
TIM1_OVF
TIMO_OVF
SPI_STC
USART_RXC
USART_UDRE
USART_TXC
ANA_COMP
EXT_INT2
TIMO_COMP
EE_RDY
SPM_RDY

Comments

i

Reset Handler
IRQO0 Handler
IRQ1 Handler
Timerl Capture Handler
Timerl Compare A Handler
Timerl Compare B Handler
Timerl Overflow Handler
Timer0 Overflow Handler

SPI Transfer Complete Handler
USART RX Complete Handler
UDRO Empty Handler

USART TX Complete Handler
Analog Comparator Handler
IRQ2 Handler

Timer0 Compare Handler

EEPROM Ready Handler

Store Program memory Ready

rl6,high(RAMEND); Main program start

SPH,rl6

rl6, low (RAMEND)

SPL,rl6

XXX

ATMEL

i

i

Set Stack Pointer to top of RAM

Enable interrupts

55

ATMEL

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and
the IVSEL bit in the GICR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels
$000 RESET:
$001

$002

$003

$004

$005

.org $C02

$C02

$Co4

SC2A
Handler

Code
1di
out
1di
out

sei

Comments

rl6,high (RAMEND); Main program start

SPH,rl6 ;
rl6, low (RAMEND)

SPL,rl6

<instr> xxx

rijmp
rjmp

rjmp

EXT_INTO ;
EXT_INT1 :

SPM_RDY :

Set Stack Pointer to top of RAM

Enable interrupts

IRQO0 Handler
IRQ1 Handler

Store Program memory Ready

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:
Comments

Address Labels
.org $002

$001

$002

$010

Handler

.org $C00

$C00 RESET:

$Co1l
$Co02
$Co3
$Co04
$CO05

Code

rjmp

rjmp

rjmp

1di
out
1di
out

sei

EXT_INTO i
EXT_INT1 H

SPM_RDY :

IRQO0 Handler
IRQ1 Handler

Store Program memory Ready

rl6,high(RAMEND); Main program start

SPH,rl6 H
rl6, low (RAMEND)

SPL,rl6

i

<instr> XxXxx

Set Stack Pointer to top of RAM

Enable interrupts

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the
IVSEL bit in the GICR Register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $C00

$C00 rjmp RESET ; Reset handler

SC01 rjmp EXT_INTO ; IRQO0 Handler

$C02 rjmp EXT_INT1 ; IRQ1 Handler

$SC10 rjmp SPM_RDY ; Store Program memory Ready
Handler

sCl1 RESET: 1di rl16,high(RAMEND); Main program start

2512K-AVR-01/10

s A TMega8515(L)

Moving Interrupts between
Application and Boot Space

General Interrupt Control
Register — GICR

2512K-AVR-01/10

SC12 out SPH,rl6 ; Set Stack Pointer to top of RAM
SC13 1di rl6, low(RAMEND)

sSCl4 out SPL,rlé6

$C15 sei ; Enable interrupts

SC16 <instr> xxx

The General Interrupt Control Register controls the placement of the Interrupt Vector
table.

Bit 7 6 5 4 3 2 1 0

| T INTO INT2 - - - IVSEL IVCE | GICR
Read/Write R/W R/W R/W R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the Interrupt Vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address of the start of the Boot
Flash section is determined by the BOOTSZ Fuses. Refer to the section “Boot Loader
Support — Read-While-Write Self-Programming” on page 166 for details. To avoid unin-
tentional changes of Interrupt Vector tables, a special write procedure must be followed
to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four
cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-
grammed, interrupts are disabled while executing from the Application section. If
Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is pro-
gramed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Boot Loader Support — Read-While-Write Self-Programming” on page 166
for details on Boot Lock bits.

ATMEL 5

58

ATMEL

e Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code
Example below.

Assembly Code Example

Move_interrupts:
; Enable change of interrupt vectors
1di rlé6, (1<<IVCE)
out GICR, rlé6
; Move interrupts to boot flash section
1di rle6, (1<<IVSEL)
out GICR, rlé6

ret

C Code Example

void Move_interrupts (void)

{
/* Enable change of interrupt vectors */
GICR = (1<<IVCE);
/* Move interrupts to boot flash section */

GICR = (1<<IVSEL) ;

ATmega8515(L) m——

2512K-AVR-01/10

s A TMega8515(L)

I/0 Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital
I/0O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. The pin driver is strong enough
to drive LED displays directly. All port pins have individually selectable pull-up resistors
with a supply-voltage invariant resistance. All I/O pins have protection diodes to both
Vcc and Ground as indicated in Figure 29. Refer to “Electrical Characteristics” on page
197 for a complete list of parameters.

Figure 29. I/O Pin Equivalent Schematic

pu

Logic

See Figure
"General Digital /0" for
Details

All registers and bit references in this section are written in general form. A lower case
“X” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. For example, PORTBS3 for bit no. 3 in Port B, here documented generally
as PORTxn. The physical I/O Registers and bit locations are listed in “Register Descrip-
tion for I/O Ports” on page 75.

Three 1/0 memory address locations are allocated for each port, one each for the