

APT8030B2VR

V008 0.300Ω 27A

POWER MOS V®

Power MOS V® is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V® also achieves faster switching speeds through optimized gate layout.

Faster Switching

100% Avalanche Tested

Lower Leakage

MAXIMUM RATINGS

• New T-MAX[™] Package (Clip-mounted TO-247 Package)

All Ratings: $T_{C} = 25^{\circ}C$ unless otherwise specified.

		U ·	1	
Symbol	Parameter	APT8030B2VR	UNIT	
$V_{_{DSS}}$	Drain-Source Voltage	800	Volts	
Ι _D	Continuous Drain Current @ T _C = 25°C	27	A	
I _{DM}	Pulsed Drain Current ^①	108	- Amps	
V _{GS}	Gate-Source Voltage Continuous	±30	Volts	
V_{GSM}	Gate-Source Voltage Transient	±40		
P _D	Total Power Dissipation @ T _C = 25°C	520	Watts	
	Linear Derating Factor	4.16	W/°C	
T_,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C	
Τ _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current igodoldoldoldoldoldoldoldoldoldoldoldoldol	27	Amps	
E _{AR}	Repetitive Avalanche Energy ^①	50		
E _{AS}	Single Pulse Avalanche Energy ^④	2500	- mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V, I_{D} = 250\mu A$)	800			Volts
l _{D(on)}	On State Drain Current \bigcirc (V _{DS} > I _{D(on)} x R _{DS(on)} Max, V _{GS} = 10V)	27			Amps
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.300	Ohms
I _{DSS}	Zero Gate Voltage Drain Current ($V_{DS} = V_{DSS}$, $V_{GS} = 0V$)			25	μA
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}, V_{GS} = 0V, T_{C} = 125^{\circ}C$)			250	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = $\pm 30V$, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 2.5 \text{mA}$)	2		4	Volts

🟹 🛦 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	ТҮР	МАХ	UNIT
C _{iss}	Input Capacitance	$V_{GS} = 0V$		6600	7900	
C _{oss}	Output Capacitance	V _{DS} = 25V		645	900	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		320	480	
Qg	Total Gate Charge ③	V _{GS} = 10V		340	510	
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		31	47	nC
Q _{gd}	Gate-Drain ("Miller") Charge	Ι _D = Ι _{D[Cont.]} @ 25°C		170	250	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		16	32	
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		14	28	20
t _{d(off)}	Turn-off Delay Time	I _D = I _{D[Cont.]} @ 25°C		59	90	ns
t _f	Fall Time	$R_{G} = 0.6\Omega$		8	16	

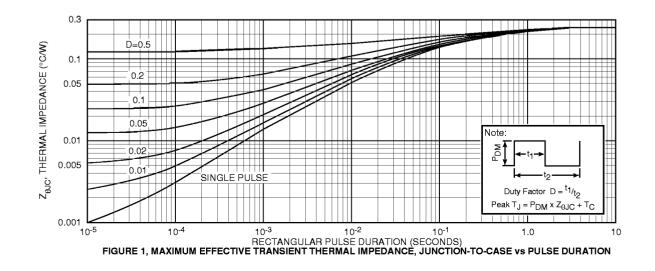
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

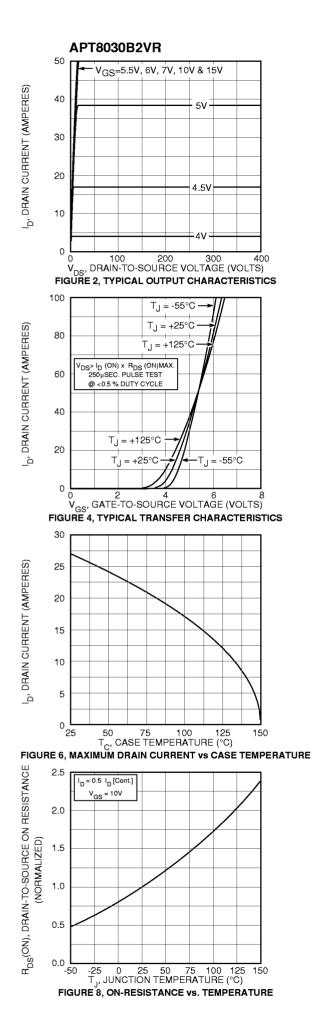
Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	UNIT
۱ _s	Continuous Source Current (Body Diode)			27	Amno
I _{SM}	Pulsed Source Current $^{igodold 0}$ (Body Diode)			108	Amps
V _{SD}	Diode Forward Voltage $\textcircled{O}(V_{GS} = 0V, I_{S} = -I_{D[Cont.]})$			1.3	Volts
t _{rr}	Reverse Recovery Time $(I_{s} = -I_{D[Cont.]}, dI_{s}/dt = 100A/\mu s)$		850		ns
Q _{rr}	Reverse Recovery Charge $(I_{S} = -I_{D[Cont.]}, dI_{S}/dt = 100A/\mu s)$		22		μC

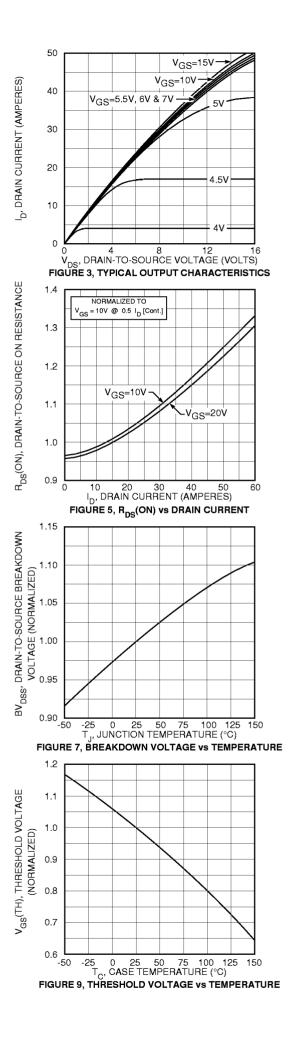
THERMAL CHARACTERISTICS

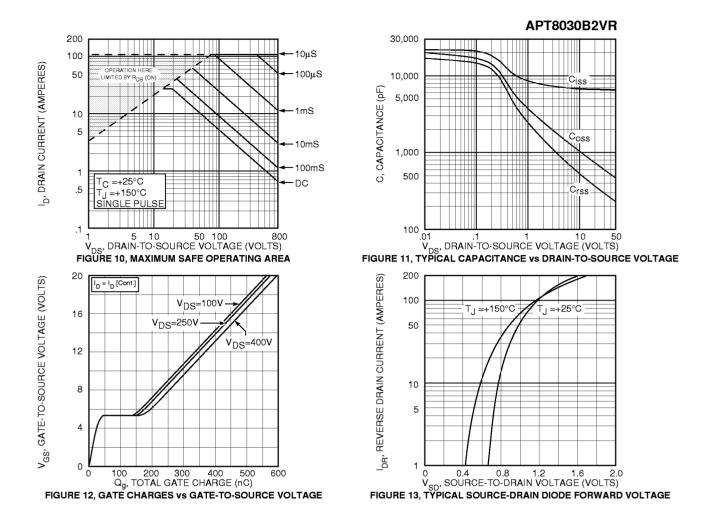
Symbol	Characteristic	MIN	ТҮР	МАХ	UNIT
$R_{ extsf{ heta}JC}$	Junction to Case			0.24	°C MI
R _{θJA}	Junction to Ambient			40	°C/W

1 Repetitive Rating: Pulse width limited by maximum junction temperature.

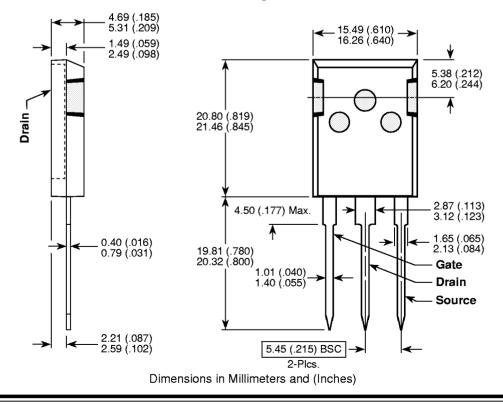

③ See MIL-STD-750 Method 3471


4 Starting T_j = +25°C, L = 6.86mH, R_G = 25 Ω , Peak I_L = 27A


O Pulse Test: Pulse width < 380 $\mu S,$ Duty Cycle < 2%


^⑤ These dimensions are equal to the TO-247AD without mounting hole

APT Reserves the right to change, without notice, the specifications and information contained herein.



T-MAX[™] Package Outline ^⑤

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: APT8030B2VRG