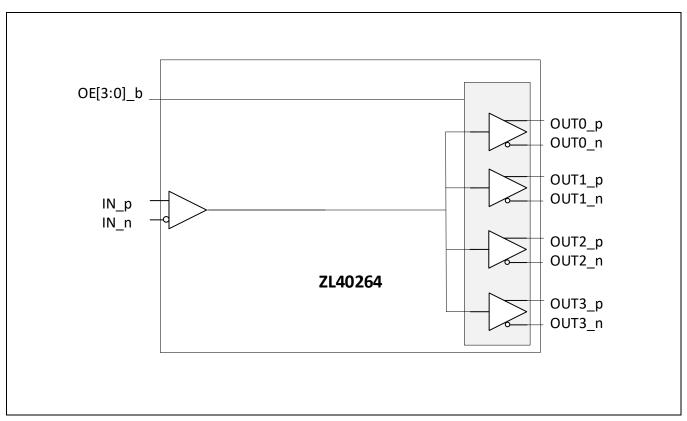


Four output ultra-low additive phase noise PCIe Gen 1 to 5, and UPI/QPI fanout buffer

Features

- One differential input which accepts any • differential format.
- Four differential HCSL outputs
- Ultra-low additive jitter: 32fs (in 12kHz to 20MHz integration band at 400MHz clock frequency)
- Supports clock frequencies from 0 to 400MHz
- Supports 2.5V or 3.3V power supplies for HCSL outputs
- Embedded Low Drop Out (LDO) Voltage regulator provides superior Power Supply Noise Rejection
- Maximum output to output skew of 50ps
- Individual Output Enable pin for each differential pair.
- Transfers Spread-Spectrum without attenuation


20 pin QFN Travs 20 pin QFN Tape and Reel

Package size: 4 x 4 mm -40°C to +85°C

Ordering Information

Applications

- PCI Express generation 1/2/3/4/5 clock distribution
- UPI/QPI clock distribution
- Low jitter clock trees •
- Logic translation •
- Clock and data signal restoration •
- High performance microprocessor clock distribution
- **Test Equipment**

Figure 1. Functional Block Diagram

Table of Contents

Microsemi

а 🐼 Міскоснір company

Features	1
Applications	
Table of Contents	2
Pin Diagram	5
Pin Descriptions	6
Functional Description	7
Clock Inputs	7
Clock Outputs	10
Termination of unused outputs	11
Power Consumption	11
Power Supply Filtering	11
Power Supplies and Power-up Sequence	12
Device Control	12
Typical phase noise performance	13
AC and DC Electrical Characteristics	14
Absolute Maximum Ratings	14
Recommended Operating Conditions	14
Package Outline	24
Change history:	

List of Figures

Figure 1.	Functional Block Diagram Pin Diagram	1
Figure 2.	Pin Diagram	5
Figure 3.	Input driven by source terminated HCSL	7
Figure 4.	Input driven by receiver terminated HCSL	8
Figure 5.	Input driven by AC coupled LVPECL output	
Figure 6.	Input driven by AC coupled LVDS	8
Figure 7.	Input driven by a single ended output	9
Figure 8.	Source terminated HCSL	10
Figure 9.	Receiver terminated HCSL	
Figure 10.	Power Supply Filtering	12
Figure 11.	100MHz HCSL Phase Noise	13
Figure 12.	133MHz HCSL Phase Noise	13
Figure 13.	400MHz HCSL Phase Noise	13
Figure 14.	Single-Ended Measurement Points for Absolute Cross Point and Swing	21
Figure 15.	Single-Ended Measurement Points for Delta Cross Point	21
Figure 16.	Single-Ended Measurement Points for Rise and Fall Time Matching	
Figure 17.	Differential Measurement Points for Rise and Fall Time	22
Figure 18.	Differential Measurement Points for Ringback	22
Figure 19.	Test Circuit	22

List of Tables

Table 1 Pin Descriptions	
Table 2 Absolute Maximum Ratings*	
Table 3 Recommended Operating Conditions*	
Table 4 Current consumption	
Table 5 Input Characteristics*	
Table 6 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*	
Table 7 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*	
Table 8 HCSL Outputs for VDDO = 3.3V*	
Table 9 HCSL (PCIe) Jitter Performance for VDDO = 3.3V	
Table 10 HCSL Outputs for VDDO = $2.5V^*$	
Table 11 HCSL (PCIe) Jitter Performance for VDDO = 2.5V	
Table 12 4x4mm QFN Package Thermal Properties	

Pin Diagram

The device is packaged in a 4x4mm 20-pin QFN.

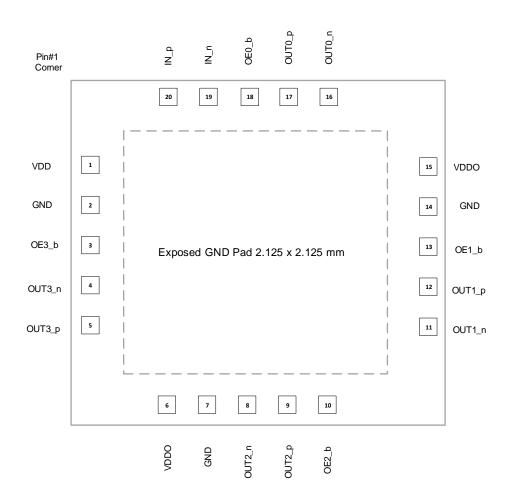


Figure 2. Pin Diagram

Pin Descriptions

All device inputs and outputs are HCSL unless described otherwise. The I/O column uses the following symbols: I – input, I_{PU} – input with 300k Ω internal pull-up resistor, I_{PD} – input with 300k Ω internal pull-down resistor, I_{APU} – input with 31k Ω internal pull-up resistor, I_{APD} – input with 30k Ω internal pull-down resistor, $I_{APU/APD}$ – input biased to VDD/2 with 60k Ω internal pull-up and pull-down resistors (30 k Ω equivalent), O – output, I/O – Input/Output pin, NC-No connect pin, P – power supply pin.

Table 1 Pin Descriptions

#	Name	I/O		Description				
Input Refe	rence							
20 19	IN_p IN_n	I _{APD} I _{APU/APD} I _{APD} I _{APU/APD}	Input Differential or Single Ended Reference Input frequency range 0Hz to 400MHz. Non-inverting inputs (_p) are pulled down with internal $30k\Omega$ pull-down res Inverting inputs (_n) are pulled up and pulled down with $60k\Omega$ internal resistors equivalent) to keep inverting input voltages at VDD/2 when inverting inputs a floating (device fed with a single ended reference).					
Output Clo	ocks							
17 16 12 11 9 8 5 4	OUT0_p OUT0_n OUT1_p OUT1_n OUT2_p OUT2_n OUT3_p OUT3_n	0		Additive Jitter Differential HCSL Outputs 0 to 3 uency range 0 to 400MHz				
Control								
18 13 10	OE0_b OE1_b OE2_b	I _{PD}	Output Ena	able. Logic level on these pins enables/disables corresponding outputs.				
3	OE3_b		OEn_b	OUTn_p/n				
			0	Active				
			1	High-Z (outputs p/n will be low/low because of 50Ω shunt resistors—see recommended output termination)				
Power and	l Ground							

1	VDD	Ρ	Positive Supply Voltage. Connect to 3.3V or 2.5V supply.
6 15	VDDO	Ρ	Positive Supply Voltage for Differential Outputs Connect 3.3V or 2.5V power supply. VDDO does not have to be connected to the same voltage level as VDD.
2 7 14	GND	Ρ	Ground Connect to the ground
E-Pad	GND	Ρ	Ground. Connect to the ground

Functional Description

The ZL40264 is an ultra-low additive jitter, low power 1 to 4 HCSL fanout buffer.

The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature range -40°C to +85°C.

Clock Inputs

The following blocks diagram shows how to terminate different signals fed to the ZL40264 inputs.

Figure 3 and Figure 4 show how to terminate the input when driven from an HCSL driver.

The input buffer in ZL40264 in a native HCSL receiver so other differential formats need to be AC coupled as shown in Figure 5 and Figure 6 for LVPECL and LVDS signals respectively.

Figure 7 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be 100Ω each and R0 + Rs should be 50Ω so that the transmission line is terminated at both ends with characteristic impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series resistor Rs should be increased. This will reduce the voltage swing at the input but this should be fine as long as the input voltage swing requirement is not violated (Table 5). The source resistors of Rs = 270 Ω could be used for standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of $(3.3V/2) *(1/(270\Omega + 50\Omega)) = 5.16mA$.

For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence, the ratio R1/R2 should be equal to the ratio R3/R4.

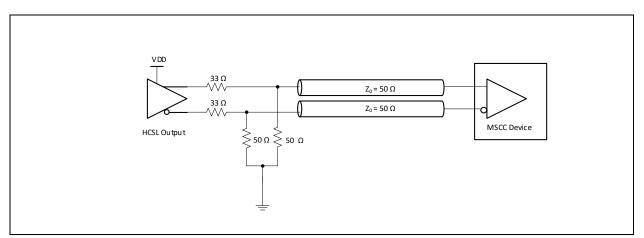
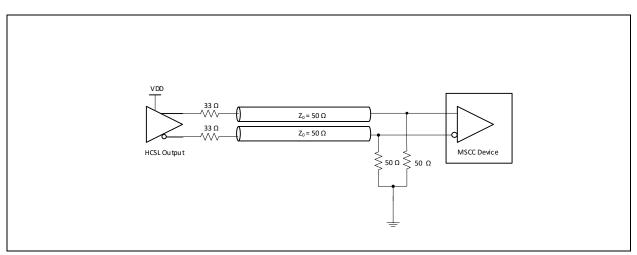
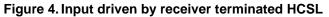




Figure 3. Input driven by source terminated HCSL

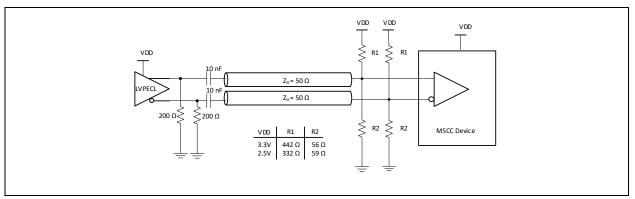


Figure 5. Input driven by AC coupled LVPECL output

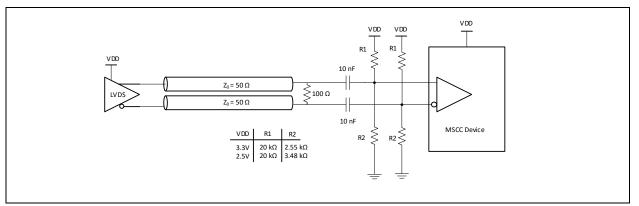


Figure 6. Input driven by AC coupled LVDS

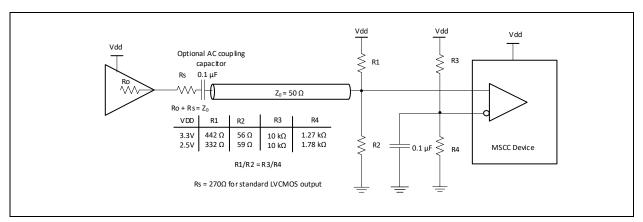


Figure 7. Input driven by a single ended output

Clock Outputs

Differential HCSL outputs should be terminated as shown in Figure 8 or Figure 9.

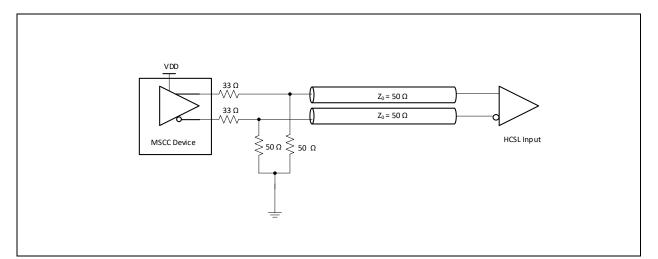


Figure 8. Source terminated HCSL

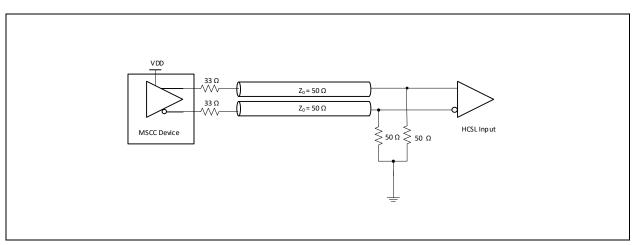


Figure 9. Receiver terminated HCSL

Termination of unused outputs

Unused outputs should be left unconnected.

Power Consumption

The device total power consumption can be calculated as: $P_T = P_S + P_C + P_{O_DIFF}$ Where:

$P_S = V_{DD} * I_S$	Core power consumed by the input buffer. The static current (Is) is specified in Table 4.
$P_C = V_{DDO} * I_{DD_CM}$	Common output power shared among four outputs. The current IDD_CM is specified in Table 4.
Po_DIF = VDDO* IDD_HCSL * N	Output power where output current per output (I _{DD_HCSL}) is specified in Table 4. N is number of enabled outputs.

Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors from the power consumption:

$$P_D = P_T - N * P_{HCSL}$$

Where:

 $P_{HCSL} = (V_{SW} / 50\Omega)^2 * (50\Omega + 33\Omega)$

 V_{SW} is voltage swing of HCSL output. 50Ω is termination resistance and 33Ω is series resistance of the HCSL output.

Power Supply Filtering

Each power pin (VDD and VDDO) should be decoupled with 0.1μ F capacitor with minimum equivalent series resistance (ESR) and minimum series inductance (ESL). For example, 0402 X5R Ceramic Capacitors with 6.3V minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce the power noise from adjacent digital components on the board each power supply could optionally be further insulated with low resistance ferrite bead with 10μ F and 1μ F capacitors. Following figure shows the standard and optional decoupling method.

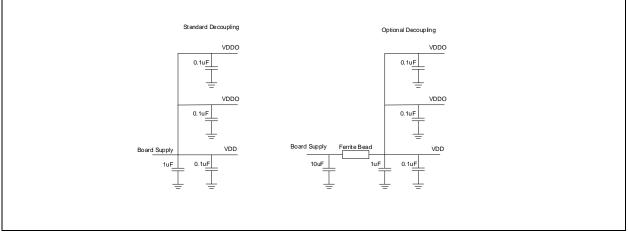
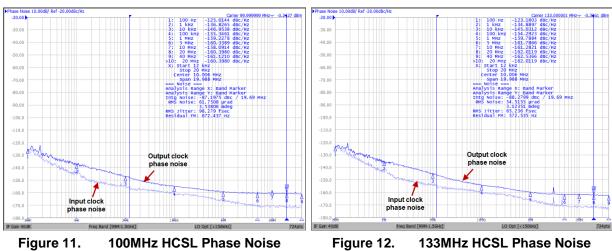


Figure 10. Power Supply Filtering

Power Supplies and Power-up Sequence

The device has two different power supplies: VDD and VDDO which should always be connected to the same voltage supply. Voltages supported by each of these power supplies are specified in Table 3.

VDD and VDDO should always be turned on and off at the same time.


Device Control

ZL40264 outputs are controlled via OE[3:0]_b pins. When an OE_b pin is low the corresponding outputs will be active and when this pin is high the output will be high-Z. When the output driver is in high-Z mode, the output pins will be pulled low via external 50Ω HCSL termination resistors.

Typical phase noise performance

The following plots show typical phase noise performance for 100 MHz, 133 MHz and 400 MHz clocks respectively.

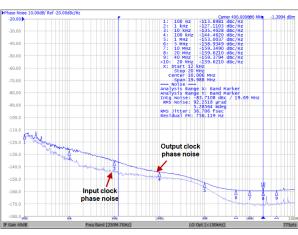


Figure 13. 400MHz HCSL Phase Noise

AC and DC Electrical Characteristics

Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings*

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage (3.3V)	V _{DD} /V _{DDO}	-0.5		4.6	V	
2	Supply voltage (2.5V)	V _{DD} /V _{DDO}	-0.5		3.5	V	
3	Storage temperature	T _{ST}	-55		125	°C	

* Exceeding these values may cause permanent damage * Functional operation under these conditions is not implied

* Voltages are with respect to ground (GND) unless otherwise stated

Recommended Operating Conditions

Table 3 Recommended Operating Conditions*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage 3.3V	V_{DD} / V_{DDO}	3.135	3.30	3.465	V	
2	Supply voltage 2.5V	V _{DD} /V _{DDO}	2.375	2.50	2.625	V	
5	Operating temperature	T _A	-40	25	85	°C	
6	Input voltage	V _{DD-IN}	- 0.3		V _{DD} + 0.3	V	

* Voltages are with respect to ground (GND) unless otherwise stated * The device core supports two power supply modes (3.3V and 2.5V)

Table 4 Current consumption

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
4	Core device current	I _{s_3.3V}		49	53	mA	VDD= 3.3V+5%
l '		I _{s_2.5V}		48	53	mA	VDD = 2.5V+5%
2	Common output current	I _{DD_CM_3.3V}		5.24	5.82	mA	VDDO= 3.3V+5%
2		I _{DD_CM_2.5V}		4.72	5.32	mA	VDDO= 2.5V+5%
3	Current dissipation per HCSL output	IDD_HCSL_3.3V		14.92	17.18	mA	VDDO= 3.3V+5%
3		IDD_HCSL_2.5V		14.61	16.62	mA	VDDO= 2.5V+5%

Table 5 Input Characteristics*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1a	CMOS high-level input voltage for control inputs	V _{CIH_3.3V}	0.7 * V _{DD}			V	$V_{DD} = 3.3 V$
1b	CMOS high-level input voltage for control inputs	$V_{CIH_{2.5V}}$	0.8 * V _{DD}			V	$V_{DD} = 2.5 V$
2	CMOS low-level input voltage for control inputs	V _{CIL}			0.32 * V _{DD}	V	
3	CMOS input leakage current for control inputs (includes current due to pull down resistors)	IIL.	-25		50	μA	$V_{I} = V_{DD} \text{ or } 0$
4	Differential input common mode voltage for IN_p/n	V _{CM}	0.1		0.8	V	
5	Differential input voltage for IN_p/n	VID	0.2		V _{DD} + 0.3	V	
6	Differential input leakage current for IN_p/n (includes current due to pull-up and pull-down resistors)	Ι _{IL}	-150		150	μA	$V_1 = 2V \text{ or } 0V$
7	Single ended input voltage for IN_p	Vsi	-0.3		2.7	V	VDD = 3.3V or 2.5V
8	Single ended input common mode voltage IN_p	Vsic	0.1		0.8	V	VDD = 3.3V or 2.5V
9	Single ended input voltage swing for IN_p	V _{SID}	0.3		1.3	V	VDD = 3.3V or 2.5V
10	Input frequency (differential)	f _{IN}	0		400	MHz	
11	Input duty cycle	dc	35%		65%		
13	Input slew rate	slew	0.6	2		V/ns	
14	Input pull-up/ pull-down resistance	$R_{\text{PU}}/R_{\text{PD}}$		60		kΩ	
15	Input pull-down resistance for IN_p	R _{PD}		30		kΩ	
16	Control input (OE_b) pull-down resistance	R _{PDOE}		300		kΩ	

* Values are over Recommended Operating Conditions * Values are over all two power supply modes (V_{DD} = 3.3V and V_{DD} = 2.5V)

(1) low frequency only

Table 6 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes	
					-80.7			$f_{IN} = 100 \text{ MHz}$
1	PSRR for HCSL output	PSRR _{HCSL}		-76.4		dBc	f _{IN} = 133 MHz	
				-66.5			$f_{IN} = 400 \text{ MHz}$	

* Values are over Recommended Operating Conditions
 * Noise injected to VDD/VDDO power supply with frequency 100 kHz and amplitude 100 mVpp
 * PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes	
					-73.5			f_{IN} = 100 MHz
3	PSRR for HCSL output	PSRRHCSL		-69.8		dBc	$f_{IN} = 133 \text{ MHz}$	
				-61.2			$f_{IN} = 400 \text{ MHz}$	

Table 7 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*

* Values are over Recommended Operating Conditions
 * Noise injected to VDD/VDDO power supply with frequency 100 kHz and amplitude 100 mVpp
 * PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Rising edge rate	Rise_rate	1.3	1.7	2	V/ns	(2), (3)
2	Falling edge rate	Fall_rate	1.3	1.7	2	V/ns	(2), (3)
3	Differential High Voltage	VIH	0.6		0.9	V	(2)
4	Differential Low Voltage	VIL	-0.9		-0.6	V	(2)
5	Single ended high voltage	V _{SIH}	0.6	0.74	0.85	V	DC Measurement
6	Single ended low voltage	V _{SIL}	-0.01	0	0.01	V	DC Measurement
7	Absolute Crossing Voltage	V _{CROSS}	0.26	0.32	0.38	V	(1), (4), (5)
8	Variation of V _{CROSS} over all rising clock edges	ΔV_{CROSS}	0.039	0.050	0.061	V	(1), (4), (9)
9	Ring back voltage margin	V _{RB}	0.534	0.674	0.809	V	(2), (11)
10	Time before V_{RB} is allowed	tSTABLE	4.6			ns	(2), (11)
11	Cycle-to-cycle additive jitter	TJCC		6.5	8.1	ps peak to peak	(2)
12	Absolute Maximum voltage	V _{MAX}			0.92		(1), (7)
13	Absolute Minimum voltage	V _{MIN}	-0.05				(1), (8)
14	Output Duty-Cycle (when input has 50% duty-cycle)	Duty_cycle	48	50	52	%	(2)
15	Rising to falling edge matching	r/f match			15	%	(1), (12)
16	Clock Source DC impedance (CK)	Z _{C-DC_CK}	49	50	51	Ω	DC Measurement (1), (13)
17	Clock Source DC impedance (CK#)	Zc-dc_ck#	49	50	51	Ω	DC Measurement (1), (13)
18	Output frequency	FMAX	0		400	MHz	
19	Output to output skew	t _{OOSK}			50	ps	
20	Device to device output skew	t _{DOOSK}			129	ps	
21	Input to output delay	t _{IOD}	0.75	0.84	1	ns	
22	Output enable time	t _{EN}			3	cycles	
23	Output disable time	t _{DIS}			3	cycles	

Table 8 HCSL Outputs for VDDO = 3.3V*

Measurement taken from single ended waveform

(2) Measurement taken from differential waveform.

Measured from -150 mV to +150 mV on the differential waveform (derived from CK minus CK#) The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing. See Figure 17 Measured at crossing point where the instantaneous voltage value of the rising edge of CK equals the falling edge of CK#. See Figure 14 (3)

(4)

Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Figure 14. (5)

(6) This requirement, from PCI Express Base Specification, Revision 4.0 is applicable only to clock generators and not to buffers. A clock buffer is a transparent device whose output clock period follows the input clock period.

(7) Defined as the maximum instantaneous voltage including overshoot. See Figure 14.

Defined as the minimum instantaneous voltage including undershoot. See Figure 14. (8)

(c) Defined as the total variation of all crossing voltage including undershoot. See Figure 14.
(g) Defined as the total variation of all crossing voltages of Rising CK and Falling CK# This is the maximum allowed variance in VCROSS for any particular system. See Figure 15.
(10) The PPM requirement from PCIe Express Base Specification, Revision 4.0 is related to clock generation devices. This requirement is not applicable to buffers because buffer's output frequency accuracy is identical to the frequency accuracy of the source driving the buffer.
(11) TSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after20 rising/falling edges before it is allowed to droop back into the VRB ±100 mV differential range. See Figure 18.

(12) Matching applies to rising edge rate for CKx and falling edge rate for CK#x. It is measured using a ±75 mV window centered on the median cross point where CKx rising meets CK#x falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of CKx should be compared to the Fall Edge Rate of CK#x the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 16.

(13) Clock DC impedance tolerance depends only on the tolerance of external 50Ω shunt resistors used in HCSL. The test used resistors with +/-1% tolerance.

		- (. 0.0) .			••••••		
	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Additive Jitter as per PCIe 1.0 (1.5MHz to 22MHz)	T _{jPCle_1.0}		1.2	1.45	ps pk-pk	Input clock: 100 MHz
2	Additive Jitter as per PCIe 2.0 high band (1.5MHz to 50MHz)	TjPCle_2.0_high		134	163	fs RMS	Input clock: 100 MHz
3	Additive Jitter as per PCIe 2.0 low band (10kHz to 1.5MHz)	TjPCIe_2.0_low		31	48	fs RMS	Input clock: 100 MHz
4	Additive Jitter as per PCIe 2.0 mid band (5MHz to 16MHz)	TjPCle_2.0_mid		105	130	fs RMS	Input clock: 100 MHz
5	Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz, CDR = 10 MHz)	T _{jPCle_3.0}		33	41	fs RMS	Input clock: 100 MHz
6	Additive Jitter as per PCIe 4.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_4.0}		33	41	fs RMS	Input clock: 100 MHz
7	Additive Jitter as per PCIe 5.0 (PLL_BW = 0.5 to 1.8MHz, CDR for 32 GT/s CC)	T _{jPCle_5.0}		13	16	fs RMS	Input clock: 100 MHz
8	Additive jitter as per Intel QPI 9.6Gbps	TjQPI		61	75	fs RMS	Input clock: 100 MHz
	Additive RMS jitter in 1MHz to 20MHz band	Т _{ј_1М_20М}		87	106	fs RMS	Input clock: 100 MHz
9				56	68	fs RMS	Input clock: 133 MHz
				26	34	fs RMS	Input clock: 400 MHz
	Additive RMS jitter in 12kHz to 20MHz band	Tj_12k_20M		91	112	fs RMS	Input clock: 100 MHz
10				60	75	fs RMS	Input clock: 133 MHz
				32	48	fs RMS	Input clock: 400 MHz
	Noise floor	NF		-161	-159	dBc/Hz	Input clock: 100 MHz
11				-162	-161	dBc/Hz	Input clock: 133 MHz
				-160	-157	dBc/Hz	Input clock: 400 MHz

Table 9 HCSL (PCIe) Jitter Performance for VDDO = 3.3V

* Values are over Recommended Operating Conditions

Data Sheet

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Rising edge rate	Rise_rate	1.3	1.6	1.9	V/ns	(2), (3)
2	Falling edge rate	Fall_rate	1.3	1.6	1.9	V/ns	(2), (3)
3	Differential High Voltage	VIH	0.6		0.9	V	(2)
4	Differential Low Voltage	VIL	-0.9		-0.6	V	(2)
5	Single ended high voltage	V _{SIH}	0.58	0.71	0.84	V	DC Measurement
6	Single ended low voltage	V _{SIL}	-0.01	0	0.01	V	DC Measurement
7	Absolute Crossing Voltage	VCROSS	0.25	0.31	0.37	V	(1), (4), (5)
8	Variation of V _{CROSS} over all rising clock edges	ΔV_{CROSS}	0.04	0.05	0.06	V	(1), (4), (9)
9	Ring back voltage margin	V _{RB}	0.514	0.660	0.791	V	(2), (11)
10	Time before V_{RB} is allowed	t _{STABLE}	4.6			ns	(2), (11)
11	Additive Cycle-to-cycle jitter	TJCC		5.5	7.1	ps peak to peak	(2)
12	Absolute Maximum voltage	V _{MAX}			0.90		(1), (7)
13	Absolute Minimum voltage	V _{MIN}	-0.05				(1), (8)
14	Output Duty-Cycle (when input has 50% duty-cycle)	Duty_cycle	48	50	52	%	(2)
15	Rising to falling edge matching	r/f match			15	%	(1), (12)
16	Clock Source DC impedance (CK)	Z _{C-DC_CK}	49	50	51	Ω	DC Measurement (1), (13)
17	Clock Source DC impedance (CK#)	Z _{C-DC_CK#}	49	50	51	Ω	DC Measurement (1), (13)
18	Output frequency	FMAX	0		400	MHz	
19	Output to output skew	toosĸ			50	ps	
20	Device to device output skew	t _{DOOSK}			129	ps	
21	Input to output delay	t _{IOD}	0.75	0.85	1	ns	
22	Output enable time	t _{EN}			3	cycles	
23	Output disable time	t _{DIS}			3	cycles	

Table 10 HCSL Outputs for VDDO = 2.5V*

* Values are over Recommended Operating Conditions (1) Measurement taken from single ended waveform

Measurement taken from differential waveform. (2)

Measured from -150 mV to +150 mV on the differential waveform (derived from CK minus CK#) The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing. See Figure 17 Measured at crossing point where the instantaneous voltage value of the rising edge of CK equals the falling edge of CK#. See Figure 14 (3)

(4) Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Figure 14. (5)

This requirement, from PCI Express Base Specification, Revision 4.0 is applicable only to clock generators and not to buffers. A clock buffer is a transparent device whose output clock period follows the input clock period. (6)

Defined as the maximum instantaneous voltage including overshoot. See Figure 14. (7)

(8) Defined as the minimum instantaneous voltage including undershoot. See Figure 14.

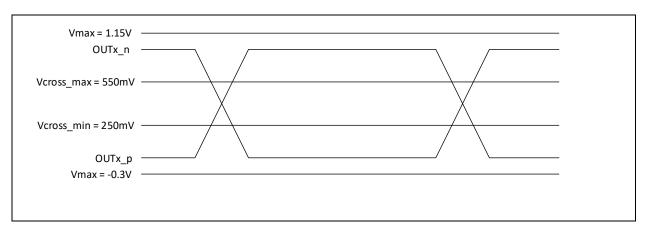
Defined as the total variation of all crossing voltages of Rising CK and Falling CK# This is the maximum allowed variance in VCROSS for any particular system. See Figure 15. (9)

(10) The PDM requirement from PCIe Express Base Specification, Revision 4.0 is related to clock generation devices. This requirement is not applicable to buffers because buffer's output frequency accuracy is identical to the frequency accuracy of the source driving the buffer.

(11) TSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after20 rising/falling edges before it is allowed to droop back into the VRB ±100 mV differential range. See Figure 18.

(12) Matching applies to rising edge rate for CKx and falling edge rate for CK#x. It is measured using a ±75 mV window centered on the median cross point where CKx rising meets CK#x falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of CKx should be compared to the Fall Edge Rate of CK#x the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 16.

(13) Clock DC impedance tolerance depends only on the tolerance of external 50Ω shunt resistors used in HCSL. The test used resistors with +/-1% tolerance.



			0) 0111	0 0			VDDO = 2.3V
	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Additive Jitter as per PCIe 1.0 (1.5MHz to 22MHz)	T _{jPCle_1.0}		1.03	1.27	ps pk-pk	Input clock: 100MHz
2	Additive Jitter as per PCIe 2.0 high band (1.5MHz to 50MHz)	TjPCle_2.0_high		115	143	fs RMS	Input clock: 100MHz
3	Additive Jitter as per PCIe 2.0 low band (10kHz to 1.5MHz)	T _{jPCle_2.0_low}		28	46	fs RMS	Input clock: 100MHz
4	Additive Jitter as per PCIe 2.0 mid band (5MHz to 16MHz)	TjPCle_2.0_mid		91	113	fs RMS	Input clock: 100MHz
5	Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_3.0}		29	36	fs RMS	Input clock: 100MHz
6	Additive Jitter as per PCIe 4.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_4.0}		29	36	fs RMS	Input clock: 100MHz
7	Additive Jitter as per PCIe 5.0 (PLL_BW = 0.5 to 1.8MHz, CDR for 32 GT/s CC)	T _{jPCle_4.0}		11	14	fs RMS	Input clock: 100MHz
8	Additive jitter as per Intel QPI 9.6Gbps	TjQPI		53	67	fs RMS	Input clock: 100MHz
	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		75	94	fs RMS	Input clock: 100 MHz
9				51	64	fs RMS	Input clock: 133 MHz
				26	33	fs RMS	Input clock: 400 MHz
	Additive RMS jitter in 12kHz to 20MHz band	Tj_12k_20M		79	99	fs RMS	Input clock: 100 MHz
10				55	68	fs RMS	Input clock: 133 MHz
				32	47	fs RMS	Input clock: 400 MHz
	Noise floor	NF		-162	-159	dBc/Hz	Input clock: 100 MHz
11				-163	-161	dBc/Hz	Input clock: 133 MHz
				-160	-158	dBc/Hz	Input clock: 400 MHz

Table 11 HCSL	(PCle)	Jitter	Performance for	VDDO = 2.5V
		Uniter		1000 - 2.51

* Values are over Recommended Operating Conditions

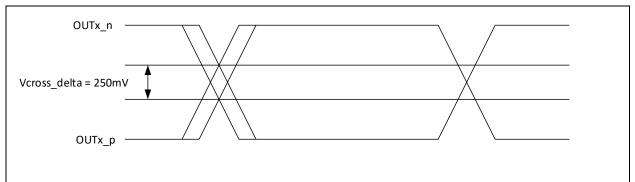


Figure 15. Single-Ended Measurement Points for Delta Cross Point

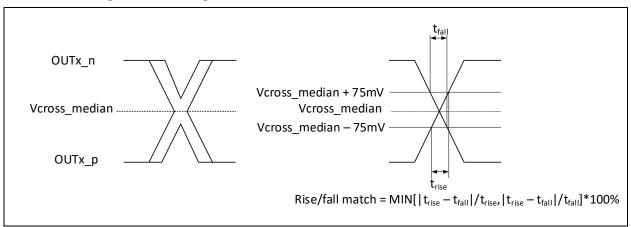
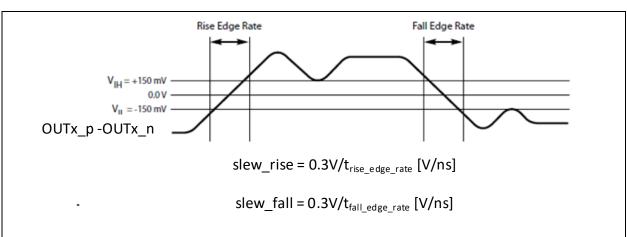



Figure 16. Single-Ended Measurement Points for Rise and Fall Time Matching

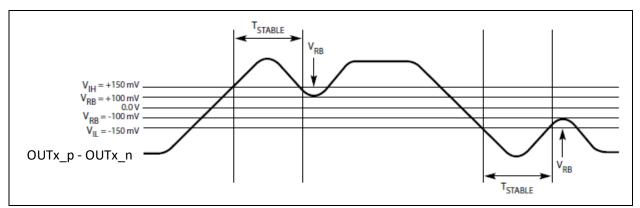


Figure 18. Differential Measurement Points for Ringback

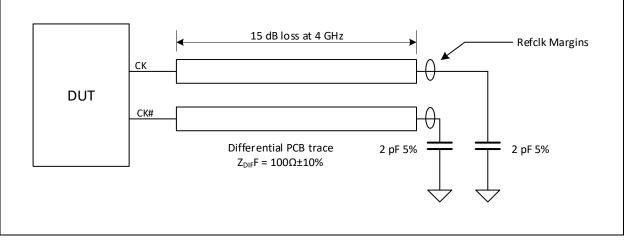
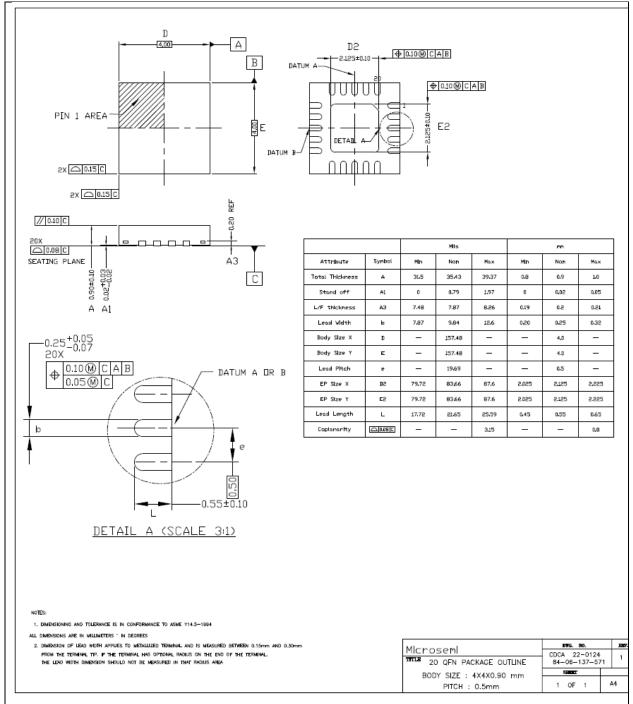


Figure 19. Test Circuit

Table 12 4x4mm QFN Package Thermal Properties


Parameter	Symbol	Conditions	Value	Units		
Maximum Ambient Temperature	TA		85	°C		
Maximum Junction Temperature	TJMAX		125	°C		
		still air	34			
Junction to Ambient Thermal Resistance ⁽¹⁾	θја	1m/s airflow	28.9	°C/W		
		2.5m/s airflow	27.0			
Junction to Board Thermal Resistance	θјв		15.4	°C/W		
Junction to Case Thermal Resistance	θյς		25.9	°C/W		
Junction to Pad Thermal Resistance ⁽²⁾	θ」Ρ	Still air	8.1	°C/W		
Junction to Top-Center Thermal Characterization Parameter	Ψ_{JT}	Still air	1.0	°C/W		

Theta-JA (θ_{JA}) is the thermal resistance from junction to ambient when the package is mounted on a 4-layer JEDEC standard test board and dissipating maximum power Theta-JP (θ_{JP}) is the thermal resistance from junction to the center exposed pad on the bottom of the package) (1)

(2)

Package Outline

Change history:

June 2019 revision-Initial release

а 🔨 Міскоснір company

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2019 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information is provided to make any changes to the information in this document or to any products and services at any time without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: ZL40264LDF1