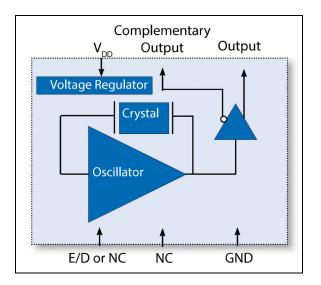


LVPECL, LVDS Crystal Oscillator

Features

- 40 fs_{RMS} Phase Jitter Typical, 12 kHz to 20 MHz
- 3rd OT or Fundamental Crystal Design
- Extended Operating Temperature Range: –40°C to +105°C
- 100 MHz to 200 MHz Output Frequencies
- Excellent Power Supply Rejection Ratio
- · Glitch Free Output upon Power-Up and Enable
- Hermetically Sealed 3.2 mm x 2.5 mm Ceramic Package
- Product is Compliant to RoHS Directive and Fully Compatible with Lead-Free Assembly


Applications

- · Medical, Ultrasound
- · Ethernet, GbE, SynchE
- · Fibre Channel
- PON
- · Clock Source for A/Ds, D/As, FPGAs
- · Test and Measurement
- Storage Area Network

General Description

Microchip's VC-830 crystal oscillator is a quartz-stabilized, differential output oscillator that operates off a 2.5V or 3.3V power supply in a hermetically sealed 3.2 mm x 2.5 mm ceramic package.

Block Diagram

Phase Noise Plot

FIGURE 0-1: RMS Jitter, 40 fs_{RMS} at 156.25 MHz, over 12 kHz to 20 MHz.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage	
Enable Disable Voltage	
ESD Rating, Human Body Model (Note 1)	
ESD Rating, Charged Device Model (Note 1)	
Storage Temperature (T _S)	
Junction Temperature (T ₁)	

† Notice: Stresses in excess of the Absolute Maximum Ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to Absolute Maximum Ratings for extended periods may adversely affect device reliability.

Note 1: Although ESD protection circuitry has been designed into the VC-830, proper precautions should be taken when handling and mounting. Microchip employs a Human Body Model (HBM) and a Charged Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM, a standard resistance of 1.5 kΩ and capacitance of 100 pF is widely used and therefore can be used for comparison purposes.

ELECTRICAL CHARACTERISTICS, LVPECL OPTION

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions	
Supply Voltage (Nate 4)		2.375	2.5	2.625	.,	0.1.	
Supply Voltage (Note 1)	V_{DD}	3.135	3.3	3.465	V	Ordering Option	
Current Consumption	I _{DD}	_	_	66	mA	_	
Frequency							
Nominal Frequency	f_N	100	_	200	MHz	Ordering Option	
		_	_	±25			
Stability (Nata 2)	_	_	_	±30	ppm	Ordering Option	
Stability (Note 2)		_	_	±50			
		_	_	±100			
Outputs							
Output Logic Level High (Note 3)	V_{OH}	V _{DD} – 1.085	_	V _{DD} – 0.880	.,		
Output Logic Level Low (Note 3)	V _{OL}	V _{DD} – 1.810	_	V _{DD} – 1.620	V	V _{DD} = +2.5V	
Output Logic Level High (Note 3)	V _{OH}	V _{DD} – 1.085	_	V _{DD} – 0.880	.,,	V _{DD} = +3.3V	
Output Logic Level Low (Note 3)	V _{OL}	V _{DD} – 1.810	_	V _{DD} – 1.620	V		

- Note 1: The VC-830 power supply should be filtered. For example, a 10 μ F, 0.1 μ F, and 0.01 μ F capacitor.
 - 2: Includes calibration tolerance, operating temperature, supply voltage variations, aging, and IR reflow.
 - 3: Figure 1-1 defines the test circuit and Figure 1-2 defines these parameters.
 - 4: Output rise and fall time will be 600 ps (max.) for -40°C to +105°C operating temperature range.
 - 5: Duty Cycle is measured as On/Time Period.
 - **6:** Measured using an Agilent E5052 Signal Source Analyzer at 25°C.
 - **7:** Outputs will be enabled if Enable/Disable is left open. There is an oscillation detection circuit that ensures glitch free output upon power-up or enable.
 - 8: In order to reduce current, the pull-up resistance is higher when V_{DD} is set to ground.

ELECTRICAL CHARACTERISTICS, LVPECL OPTION (CONTINUED)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Output Rise and Fall Time (Note 3)	t _r /t _f	_	_	400	ps	Note 4
Load	_	50Ω	into V _{DD} –	2.0V	_	_
Duty Cycle (Note 5)	DC	45	_	55	%	_
		_	-79	_		10 Hz
		_	-110	_		100 Hz
		_	-130	_		1 kHz
Phase Noise, 3.3V, 156.25 MHz		_	-154	_	-ID - /I I -	10 kHz
(Note 6)	Φ _N	_	-160	_	dBc/Hz	100 kHz
		_	-163	_		1 MHz
		_	-163	_		10 MHz
		_	-167	_		20 MHz
Phase Jitter, 156.25 MHz, 12 kHz to 20 MHz (Note 6)	φЈ	_	40	60	fs	_
Enable/Disable						
Outputs Enabled (Note 7)	V _{IH}	0.7 * V _{DD}	_	_	V	_
Outputs Disabled	V _{IL}	_	_	0.3 * V _{DD}	V	_
Disable Time	t _D	_	_	200	ns	_
E/D Pull-Up Resistance (Note 8)	_	0.5	_	2	М	E/D = GND
E/D Pull-Up Resistance	_	30	_	150	kΩ	E/D = V _{DD}
Start-Up Time	t _{SU}	_	_	10	ms	_
		-10	_	70		
Operating Temperature	T_{OP}	-40	_	85	°C	Ordering Option
		-40	_	105		

- Note 1: The VC-830 power supply should be filtered. For example, a 10 μF, 0.1 μF, and 0.01 μF capacitor.
 - 2: Includes calibration tolerance, operating temperature, supply voltage variations, aging, and IR reflow.
 - 3: Figure 1-1 defines the test circuit and Figure 1-2 defines these parameters.
 - 4: Output rise and fall time will be 600 ps (max.) for -40°C to +105°C operating temperature range.
 - 5: Duty Cycle is measured as On/Time Period.
 - **6:** Measured using an Agilent E5052 Signal Source Analyzer at 25°C.
 - **7:** Outputs will be enabled if Enable/Disable is left open. There is an oscillation detection circuit that ensures glitch free output upon power-up or enable.
 - 8: In order to reduce current, the pull-up resistance is higher when V_{DD} is set to ground.

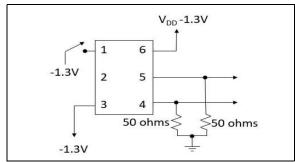


FIGURE 1-1: Test Circuit.

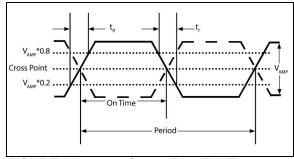


FIGURE 1-2: Output Rise/Fall Time.

ELECTRICAL CHARACTERISTICS, LVDS OPTION

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
Complex Velta as (Neta 4)	1/	2.375	2.5	2.625	.,	Ordering Option		
Supply Voltage (Note 1)	V_{DD}	3.135	3.3	3.465	V			
0				29		2.5V		
Current Consumption	I_{DD}	_	_	30	mA	3.3V		
requency								
Nominal Frequency	f _N	100	_	200	MHz	Ordering Option		
		_	_	±25				
Ctability (Nata O)		_	_	±30		Ondonina Ontion		
Stability (Note 2)	_	_	_	±50	ppm	Ordering Option		
		_	_	±100				
Outputs						•		
Output Logic Level High (Note 3)	V_{OH}	_	1.43	1.6	V			
Output Logic Level Low (Note 3)	V_{OL}	0.9	1.10	_	V	_		
Output Amplitude	_	±247	±350	±454	mV	_		
Differential Output Error	_	_	_	50	mV	_		
Offset Voltage	_	1.125	1.25	1.375	V	_		
Offset Voltage Error	_	_	_	50	mV	_		
Output Leakage Current, Outputs Disabled	_	_	_	30	μΑ	_		
Output Rise and Fall Time (Note 3)	t _r /t _f	_	_	300	ps	Note 4		
Load	_	10	00Ω Differen	tial	_	_		
Duty Cycle (Note 5)	DC	45	_	55	%	_		
		_	-79	_		10 Hz		
		_	-110	_		100 Hz		
		_	-130	_		1 kHz		
Phase Noise, 3.3V, 156.25 MHz			-154		dDa/L!-	10 kHz		
(Note 6)	φ _N		-160		dBc/Hz	100 kHz		
			-162			1 MHz		
			-163			10 MHz		
		_	-164	_		20 MHz		
Phase Jitter, 156.25 MHz, 12 kHz to 20 MHz (Note 6)	фЈ	_	43	64	fs	_		

- Note 1: The VC-830 power supply should be filtered. For example, a 10 μ F, 0.1 μ F, and 0.01 μ F capacitor.
 - 2: Includes calibration tolerance, operating temperature, supply voltage variations, aging, and IR reflow.
 - 3: Figure 1-3 defines the test circuit and Figure 1-2 defines these parameters.
 - 4: Output rise and fall time will be 600 ps (max.) for -40°C to +105°C operating temperature range.
 - 5: Duty Cycle is measured as On/Time Period.
 - **6:** Measured using an Agilent E5052 Signal Source Analyzer at 25°C.
 - 7: Outputs will be enabled if Enable/Disable is left open. There is an oscillation detection circuit that ensures glitch free output upon power-up or enable.
 - 8: In order to reduce current, the pull-up resistance is higher when V_{DD} is set to ground.

ELECTRICAL CHARACTERISTICS, LVDS OPTION (CONTINUED)

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions
Enable/Disable						
Outputs Enabled (Note 7)	V _{IH}	0.7 * V _{DD}	1	_	٧	_
Outputs Disabled	V_{IL}	_	1	0.3 * V _{DD}	V	_
Disable Time	t _D	_		200	ns	_
E/D Pull-Up Resistance (Note 8)	_	0.5	1	2	М	E/D = GND
E/D Pull-Up Resistance	_	30	1	150	kΩ	$E/D = V_{DD}$
Start-Up Time	t _{SU}	_		10	ms	_
		-10	1	70		
Operating Temperature	T _{OP}	-40	_	85	°C	Ordering Option
		-40	_	105		

- Note 1: The VC-830 power supply should be filtered. For example, a 10 μF, 0.1 μF, and 0.01 μF capacitor.
 - 2: Includes calibration tolerance, operating temperature, supply voltage variations, aging, and IR reflow.
 - 3: Figure 1-3 defines the test circuit and Figure 1-2 defines these parameters.
 - 4: Output rise and fall time will be 600 ps (max.) for -40°C to +105°C operating temperature range.
 - 5: Duty Cycle is measured as On/Time Period.
 - **6:** Measured using an Agilent E5052 Signal Source Analyzer at 25°C.
 - **7:** Outputs will be enabled if Enable/Disable is left open. There is an oscillation detection circuit that ensures glitch free output upon power-up or enable.
 - 8: In order to reduce current, the pull-up resistance is higher when V_{DD} is set to ground.

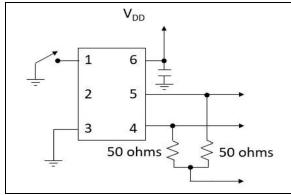


FIGURE 1-3: LVDS Test Circuit.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description			
1	E/D	Enable/Disable.			
2	NC	No internal connection is made.			
3	GND	Electrical and lid ground.			
4	f _O	Output frequency.			
5	Cf _O	Complementary output frequency.			
6	V_{DD}	Supply voltage.			

TABLE 2-2: ENABLE/DISABLE FUNCTION

E/D Pin	Output
High	Clock Output
Open	Clock Output
Low	High Impedance

3.0 APPLICATION DIAGRAMS

3.1 LVPECL Application Diagrams

The VC-830 incorporates a standard PECL output scheme, which are unterminated FET drains. There are numerous application notes on terminating and interfacing PECL logic and the two most common methods are a single resistor to ground (Figure 3-1) and a pull-up/pull-down scheme as shown in Figure 3-2. AC-coupling capacitors are optional, depending on the application and the input logic requirements of the next stage.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left unterminated because if one of the two outputs is left open, it will result in excessive jitter on both. PCB layout must take this and 50Ω impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

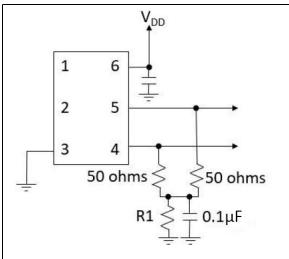


FIGURE 3-1: Pull-Down Resistor Termination Scheme.

Figure 3-1 shows one option to terminate LVPECL outputs and is optimized to reduce common mode noise. R1 is 50Ω for 3.3V supply voltage and 18Ω for 2.5V.

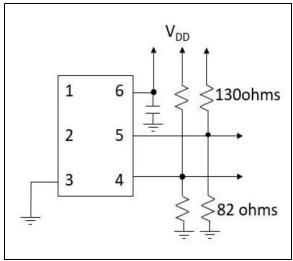
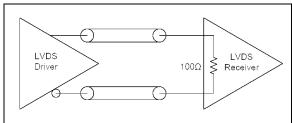



FIGURE 3-2: Pull-Up/Pull-Down Termination.

Resistor values shown are typical for 3.3V operation. For 2.5V operation, the resistor to ground is 62Ω and the resistor to supply is 250Ω .

3.2 LVDS Application Diagrams

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left unterminated because if one of the two outputs is left open, it will result in excessive jitter on both. PCB layout must take this and 50Ω impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

FIGURE 3-3: LVDS-to-LVDS Connection, Internal 100Ω Resistor.

Some LVDS structures have an internal 100Ω resistor on the input and do not need additional components. AC blocking capacitors can be used if the DC levels are incompatible.

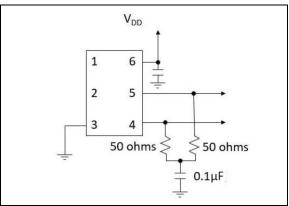


FIGURE 3-4: LVDS-to-LVDS Connection.

Some input structures may not have an internal 100Ω resistor on the input and will need an external 100Ω resistor located at the receiver for impedance matching. Figure 3-4 is optimized to reduce common mode noise. Additionally, the input may have an internal DC bias that may not be compatible with LVDS levels. AC blocking capacitors, such as $0.1~\mu F$, should be used in this case.

4.0 RELIABILITY

Microchip qualification will include aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The VC-830 family is capable of meeting the following qualification tests.

TABLE 4-1: ENVIRONMENTAL COMPLIANCE

Parameter	Conditions				
Mechanical Shock	MIL-STD-883, Method 2002				
Mechanical Vibration	MIL-STD-883, Method 2007				
Temperature Cycle	MIL-STD-883, Method 1010				
Solderability	MIL-STD-883, Method 2003				
Gross and Fine Leak	MIL-STD-883, Method 1014				
Resistance to Solvents	MIL-STD-883, Method 2015				
Moisture Sensitivity Level	MSL 1				
Contact Pads	Gold (0.3 µm min., 1.0 µm max.) over Nickel				
θ _{JC} (Bottom of Case)	28°C/W				
Maximum Junction Temperature	150°C				
Weight	23 mg				

5.0 IR REFLOW

Devices are built using lead-free epoxy and can be subjected to standard lead-free IR reflow conditions shown in Table 5-1. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220°C.

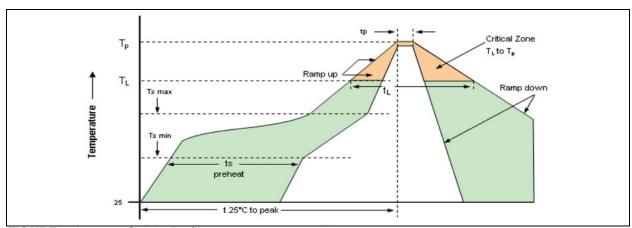
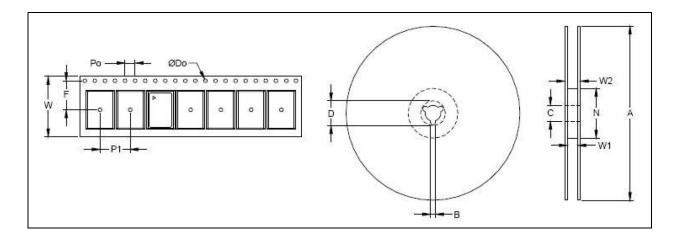
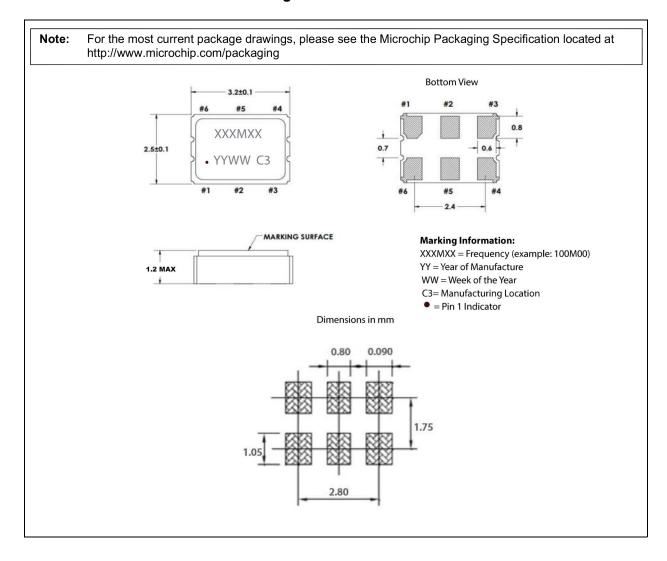


FIGURE 5-1: Solder Profile.


TABLE 5-1: REFLOW PROFILE

Parameter	Symbol	Value
Pre-Heat Time	t _S	200 seconds maximum
Ramp Up	R _{UP}	3°C/sec. maximum
Time above 217°C	t _L	150 seconds maximum
Time to Peak Temperature	T _{AMB-P}	480 seconds maximum
Time at 260°C	t _P	30 seconds maximum
Time at 240°C	t _{P2}	60 seconds maximum
Ramp Down	R _{DN}	6°C/sec. maximum

6.0 TAPE AND REEL


TABLE 6-1: TAPE AND REEL DIMENSIONS

	Tape D	imensi	ons (mn	n)				Ree	l Dimen	sions (ı	nm)		
Dimension	W	F	Do	Ро	P1	Α	В	С	D	N	W1	W2	# per
Tolerance	Тур	Тур	Тур	Тур	Тур	Тур	Тур	Тур	Тур	Тур	Тур	Max	Reel
VC-830	8	3.5	1.5	4	4	178	2	13	21	60	10	14	3000

7.0 PACKAGING INFORMATION

6-Lead 3.2 mm x 2.5 mm VDFN Package Outline and Recommended Land Pattern

V		-8	2	Λ
V	C'	•О	J	U

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (May 2021)

- Converted Vectron document VC-830 to Microchip data sheet template DS20006510A.
- · Minor grammatical text changes throughout.

Revision B (August 2021)

- Added a plus/minus (±) symbol to each value listed for Output Amplitude in the Electrical Characteristics, LVDS Option table.
- Updated maximum package height to 1.2 mm.

1	I	\frown	(0	2	0
V	A	L	=	0	J	U

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

<u>Device</u>	- <u>x</u>	<u>x</u>	<u>x</u>	- <u>x</u>	<u>x</u>	<u>x</u>	<u>x</u>	- <u>xxxxxxxxxx</u>	<u>xx</u>
Part No.	Power Supply	Output	Temp. Range	Stability	E/D Logic	E/D Pin	Custom Options	Frequency	Packaging
Device:	VC-830		ECL, LVDS Cread 3.2 mm x 2	ystal Oscillator ir .5 mm VDFN		,	CF-GAAN-15	6M250000TR: 'DC, LVPECL Out	put, –40°C to
Power Supply:	E = H =	3.3VDC ±5 2.5VDC ±5					Output Enable	Range, ±30 ppm ed, Pin 1 Enable/I ion, 156.25 MHz,	Disable,
Output:	C = D =	LVPECL LVDS				b) VC-830-F	VC-830, 2.5V +70°C Temp	25M000000TR: /DC, LVDS Output Range, ±50 ppm 9 ed, Pin 1 Enable/I	Stability,
Temperature Range:	E = F = W =		+105°C			No. 4	Standard Opt	tion, 125 MHz, 300	00/Reel
Stability:	F = G = K = S =	_00 pp				ca us th S	atalog part num sed for ordering se device packa	dentifier only appea ber description. Th g purposes and is n age. Check with you backage availability ption.	is identifier is ot printed on ur Microchip
Enable/Disable Logic:	. A =	Output En	abled with a Lo	ogic High or Oper	n				
Enable/Disable Pin:	A =	Pin 1 (Pin	2 = No Connec	ct)					
Custom Options:	N =	Standard of	option						
Frequency:	xxxMxx	xxxx=Frequer	xxx=Frequency in MHz						
Packaging:	TR = <blank< th=""><th>3,000/Ree >= Cut Tape/</th><th>ıl non-TR quantii</th><th>ties</th><th></th><th></th><th></th><th></th><th></th></blank<>	3,000/Ree >= Cut Tape/	ıl non-TR quantii	ties					

Note: Not all combinations of options are available. Other specifications may be available upon request.

\/		-8	2	$\mathbf{\Omega}$
V	U	- 0	J	U

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- · Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBiox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-8791-3

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-598 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Tel: 408-436-4270 **Canada - Toronto** Tel: 905-695-1980

Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

\text{VC-830-0001-156M250000TR} \text{VC-830-ECE-FAAN-156M250000} \text{VC-830-ECE-FAAN-156M250000TR} \text{VC-830-ECE-KAAN-156M250000TR} \text{VC-830-ECE-KAAN-156M250000} \text{VC-830-ECE-KAAN-156M250000} \text{VC-830-ECE-KAAN-156M250000TR} \text{VC-830-ECE-KAAN-156M250000TR} \text{VC-830-EDE-FAAN-156M250000TR} \text{VC-830-EDE-FAAN-156M250000TR} \text{VC-830-EDF-GAAN-156M250000TR} \tex