

High-Speed Inter-Chip (HSIC) USB 2.0 Hub and Flash Media Controller

General Description

The Microchip USB4640/USB4640i is a Hi-Speed HSIC USB hub and card reader combo solution with an upstream port that is compliant to HSIC 1.0 (supplement to the *USB 2.0 Specification*). The two downstream ports are compliant with the *USB 2.0 Specification*.

High-Speed Inter-Chip (HSIC) is a digital interconnect bus that enables the use of USB technology as a low-power chip-to-chip interconnect at speeds up to 480 Mb/s. The HSIC interface is an industry standard 2-pin digital interface which uses standard USB software. The USB4640/USB4640i provides an ultra fast interface between an HSIC enabled host and several popular flash media formats. The controller allows read/write capability to flash media from the following families:

- Secure DigitalTM (SD)
- MultiMediaCardTM (MMC)
- Memory Stick® (MS)
- xD-Picture Card (xD)1

The USB4640/USB4640i combo solution leverages Microchip's innovative technology that delivers industry-leading data throughput in mixed-speed USB environments. Average sustained transfer rates exceeding 35 MB/s are possible.²

Highlights

- Upstream HSIC port and 2 exposed Hi-Speed USB 2.0 downstream ports for external peripheral expansion
- Dedicated flash media reader internally attached to a 3rd downstream port of the hub as a USB compound device
 - single or multiplexed flash media reader interface
- PortMap Flexible port mapping and disable sequencing
- PortSwap Programmable USB differential-pair pin locations ease PCB design by aligning USB signal lines directly to connectors
- PHYBoost Programmable USB signal drive strength for recovering signal integrity using 4level driving strength resolution

Features

- Compliance with the following flash media card specifications SD 2.0; MMC 4.2; MS 1.43; MS-Pro 1.02; MS-Pro-HG 1.01; MS-Duo 1.10; and xD 1.2
- Low-power digital HSIC interface offers a replacement for onboard host and device connection for analog USB bus cable
- HSIC interface enables printers, mobile PCs, ultra-mobile PCs, and cell phone products to reduce the total power budget
- HSIC interface provides use of USB connectivity and compatibility with existing USB drivers and software
- External 1.2 V reference allows upstream/downstream HSIC links to use the same voltage reference
- Supports a single external 3.3 V supply source; internal regulators provide 1.8 V internal core voltage for additional bill of materials and power savings
- The hub transaction translator (TT) supports Full-Speed and Low-Speed peripheral operation
- 9 KB RAM | 64 KB on-chip ROM
- Enhanced EMI rejection and ESD protection performance
- Hub and flash media reader/writer configuration from a single source:
 - Configures internal code using an external I²C EEPROM
 - Supports external code using an SPI Flash EEPROM
 - Customizable vendor ID, product ID, and language ID if using an external EEPROM
- The USB4640 supports the commercial temperature range of 0°C to +70°C
- The USB4640i supports the industrial temperature range of -40°C to +85°C
- 48-pin QFN (7 x 7 mm) RoHS compliant package

Applications

- 3G/4G handsets, smartphones, cell phones, and other mobile devices
- · Desktop and mobile PCs
- Printers
- · GPS navigation systems
- · Media players/viewers
- Consumer A/V
- Set-top boxes
- Industrial products

Obtain user license from the x-D-Picture Card License Office.

^{2.} Host and Media dependent.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Table of Contents

1.0 Overview	4
2.0 Block Diagram	7
3.0 Pinning Information	8
4.0 Configuration Options	. 21
5.0 AC Specifications	. 41
5.0 AC Specifications	. 43
7.0 Temperature Specifications	. 48
7.0 Temperature Specifications 8.0 Package Specifications Appendix A: Acronyms Appendix B: References	. 49
Appendix A: Acronyms	. 53
Appendix B: References	. 54
Appendix C: Data Sheet Revision History	. 55
The Microchip Website	. 57
Customer Change Notification Service	. 57
Customer Support	
Product Identification System	

1.0 OVERVIEW

The USB4640/USB4640i is a Hi-Speed HSIC USB hub and card reader combo solution with an upstream port compliant to the *High-Speed Inter-Chip USB Electrical Specification Revision 1.0* [2]. The two downstream ports are USB 2.0 compliant, and the dedicated flash media reader/writer is internally attached to a 3rd downstream port as a USB compound device.

High-Speed Inter-Chip (HSIC) is a digital interconnect bus that enables the use of USB technology as a low-power chip-to-chip interconnect at speeds up to 480 Mb/s (see the *High-Speed Inter-Chip USB Electrical Specification Revision 1.0*). This combo solution supports several multi-format flash media cards. This multi-format flash media controller and USB hub combo features two exposed downstream USB ports available for external peripheral expansion.

The USB4640/USB4640i can attach to an upstream port as a Full- or Full/Hi-Speed hub. The hub supports Low-Speed, Full-Speed, and Hi-Speed downstream devices (if operating as a Hi-Speed hub) on all of the enabled downstream ports.

All required resistors on the USB ports are integrated into the hub, including all series termination resistors on D+ and D- pins and all required pull-down and pull-up resistors. The over-current sense inputs for the downstream facing ports have internal pull-up resistors.

The USB4640/USB4640i includes programmable features, such as:

- PortMap: provides flexible port mapping and disable sequences. The downstream ports of a USB4640/USB4640i hub can be reordered or disabled in any sequence to support multiple platform designs with minimum effort. For any port that is disabled, the USB4640/USB4640i hub controllers automatically reorder the remaining ports to match the USB host controller's port numbering scheme.
- PortSwap: adds per-port programmability to USB differential-pair pin locations.
 PortSwap also allows direct alignment of USB signals (D+/D-) to connectors to avoid uneven trace length or crossing of the USB differential signals on the PCB.

 PHYBoost: enables 4 programmable levels of USB signal drive strength in downstream port transceivers. PHYBoost will also attempt to restore USB signal integrity.

Note: PHYBoost is only available on the two USB downstream ports.

1.1 Hardware Features

- · Single-chip HSIC hub and flash media controller combo
- USB4640/USB4640i supports the commercial temperature range of 0°C to +70°C.
- USB4640/USB4640i supports the industrial temperature range of -40°C to +85°C.
- Transaction translator (TT) in the hub supports operation of FS and LS peripherals
- · Full power management with individual or ganged power control of each downstream port
- · Optional support for external firmware access via SPI interface
- Onboard 24 MHz crystal driver circuit
- Optional external 24 MHz clock input (must be a 1.8 V signal)
- Code execution via SPI ROM which must meet the following criteria:2013-2018
 - 30 MHz or 60 MHz operation support
 - Single-bit or dual-bit mode support
 - Mode 0 or Mode 3 SPI support
- Compliance with the following flash media card specifications:
 - Secure Digital 2.0 and MultiMediaCard 4.2
 - SD 2.0, SD-HS, SD-HC
 - TransFlash™ and reduced form factor media
 - 1/4/8 bit MMC 4.2
 - Memory Stick 1.43
 - Memory Stick Pro Format 1.02

- Memory Stick Pro-HG Duo Format 1.01
 - Memory Stick, MS Duo, MS-HS, MS Pro-HG, MS Pro
- Memory Stick Duo 1.10
 - xD-Picture Card 1.2
- 8051 8-bit microprocessor
 - 60 MHz single-cycle execution
 - 64 KB ROM | 9 KB RAM
- Integrated regulator for 1.8 V core operation

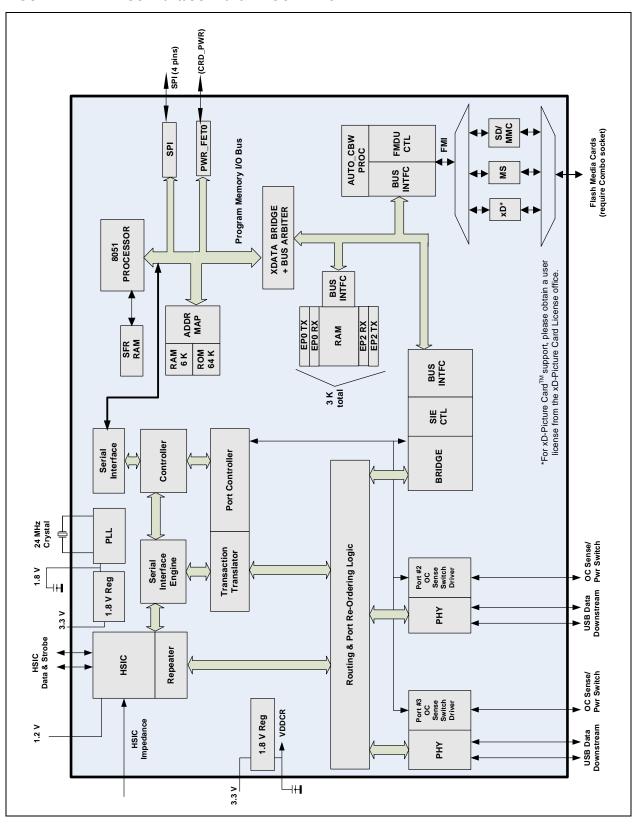
1.2 Software Features

- Hub and flash media reader/writer configuration from a single source: External I²C ROM or external SPI ROM, where the following features are then available:
 - Customizable vendor ID, product ID, and device ID
 - 12-hex digits maximum for the serial number string
 - 28-character manufacturer ID and product strings for the flash media reader/writer

1.3 OEM Selectable Hub Features

The USB4640/USB4640i provides a default configuration that may be sufficient for most applications following a reset. The USB4640/USB4640i can instead be configured by an external I²C EEPROM or SPI ROM.

- · Compound device support on a port-by-port basis
 - a port is permanently hardwired to a downstream USB peripheral device
- Select over-current sensing and port power control on an individual or ganged (all ports together) basis to match the OEM's choice of circuit board component selection
- Port power control and over-current detection/delay features
- · Configure the delay time for filtering the over-current sense inputs
- · Configure the delay time for turning on downstream port power
- Bus-powered or self-powered selection
- Hub port disable or non-removable configurations
- · Flexible port mapping and disable sequencing supports multiple platform designs
- Programmable USB differential-pair pin location eases PCB layout by aligning USB signal lines directly to connectors
- · Programmable USB signal drive strength recovers USB signal integrity using 4 levels of signal drive strength
- Indicate the maximum current that the 2-port hub consumes
- Indicate the maximum current required for the hub controller

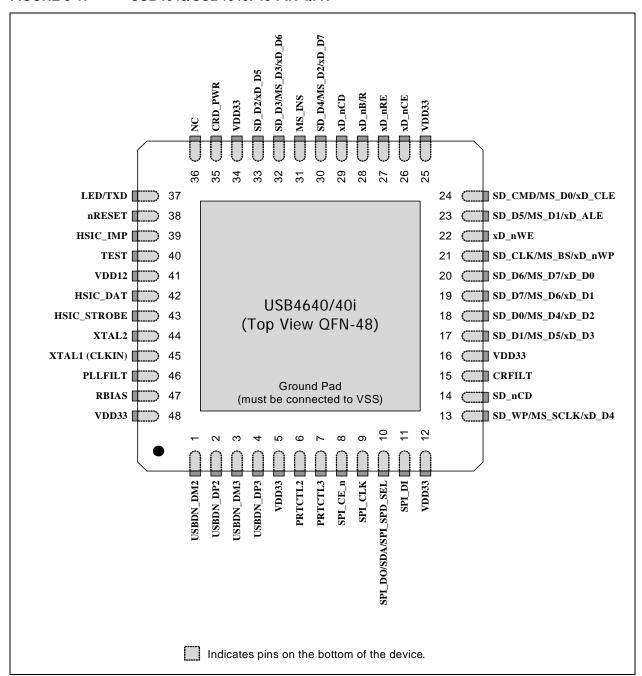

Conventions

Within this manual, the following abbreviations and symbols are used to improve readability.

Example	Description	
BIT	Name of a single bit within a field	
FIELD.BIT	Name of a single bit (BIT) in FIELD	
xy	Range from x to y, inclusive	
BITS[m:n] Groups of bits from m to n, inclusive		
PIN	Pin name	
zzzzb	Binary number (value zzzz)	
0xzzz	Hexadecimal number (value zzz)	
zzh	Hexadecimal number (value zz)	
rsvd	Reserved memory location. Must write 0, read value indeterminate	
code	code Instruction code, or API function or parameter	
Multi Word Name	Used for multiple words that are considered a single unit, such as: *Resource Allocate message, or Connection Label, or Decrement Stack Pointer instruction.	
Section Name	Section or document name.	
VAL	Over-bar indicates active low pin or register bit	
Х	Don't care	
<parameter></parameter>	<> indicate a parameter is optional or is only used under some conditions.	
{,Parameter}	Braces indicate parameter(s) that repeat one or more times.	
[Parameter]	Brackets indicate a nested parameter. This parameter is not real and actually decodes into one or more real parameters.	

2.0 BLOCK DIAGRAM

FIGURE 2-1: USB4640/USB4640I BLOCK DIAGRAM



3.0 PINNING INFORMATION

This chapter outlines the pinning configuration, followed by a corresponding pin list grouped by function. The detailed pin descriptions are listed then outlined in Section 3.3, "Pin Descriptions," on page 10.

3.1 Pin Configurations

FIGURE 3-1: USB4640/USB4640I 48-PIN QFN

3.2 48-Pin List

TABLE 3-1: USB4640/USB4640I 48-PIN LIST

	UPSTREAM HSIC I	NTERFACE (3 PINS)	
HSIC_IMP	HSIC_DAT	HSIC_STROBE	
	DOWNSTREAM USB	INTERFACE (3 PINS)	
XTAL1 (CLKIN)	XTAL2	RBIAS	
	DOWNSTREAM 2-PORT	USB INTERFACE (6 PINS)	
USBDN_DP2	USBDN_DM2	PRTCTL2	PRTCTL3
USBDN_DP3	USBDN_DM3		
SE	CURE DIGITAL/MEMORY S	STICK/xD INTERFACE (18 PIN	IS)
SD_D7/ MS_D6/ xD_D1	SD_D6/ MS_D7/ xD_D0	SD_D5/ MS_D1/ xD_ALE	SD_D4/ MS_D2/ xD_D7
SD_D3/ MS_D3/ xD_D6	SD_D2/ xD_D5	SD_D1/ MS_D5/ xD_D3	SD_D0/ MS_D4/ xD_D2
SD_CLK/ MS_BS/ xD_nWP	SD_CMD/ MS_D0/ xD_CLE	SD_nCD	MS_INS
SD_WP/ MS_SCLK/ xD_D4	xD_nCD	xD_nWE	xD_nB/R
xD_nRE	xD_nCE		
	SPI INTERF	ACE (4 PINS)	
SPI_CE_N	SPI_CLK/ SCL	SPI_DO/ SDA/ SPI_SPD_SEL	SPI_DI
	MISC ((5 PINS)	
nRESET	TEST	LED	NC
(CRD_PWR)			
	POWER	(9 PINS)	
(6) VDD33	VDD12	CRFILT	PLLFILT
	тот	AL 48	

3.3 Pin Descriptions

This section provides a detailed description of each pin. The pins are arranged in functional groups according to their associated interface. The pin descriptions below are applied when using the internal default firmware and can be referenced in Section 4.0, "Configuration Options," on page 21. See Appendix A:, "Acronyms," on page 53 for details.

An n in the signal name indicates that the active (asserted) state occurs when the signal is at a low-voltage level. When the n is not present, the signal is asserted when it is at a high-voltage level. The terms assertion and negation are used exclusively in order to avoid confusion when working with a mixture of active-low and active-high signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation indicates that a signal is inactive.

TABLE 3-2: USB4640/USB4640I PIN DESCRIPTIONS

Symbol	48-Pin QFN	Buffer Type	Description		
UPSTREAM HSIC INTERFACE					
HSIC_IMP	39	I	HSIC Impedance Control		
			Selects the driver impedance of HSIC_DAT and HSIC_STROBE		
			1 : Approximately 50 Ω impedance 0 : Approximately 40 Ω impedance		
HSIC_DAT	42	I/O	HSIC Data		
			Bi-directional double data rate (DDR) data signal that is synchronous to the HSIC_STROBE signal as defined in the <i>High-Speed Inter-Chip USB Specification, Version 1.0.</i>		
HSIC_STROBE 43 I/O HSIC Strobe					
			Bi-directional data strobe signal defined in the <i>High-Speed Inter-Chip USB Specification, Version 1.0.</i>		
		DO	WNSTREAM USB INTERFACE		
USBDN_DM	3	I/O-U	USB Bus Data		
[3:2] USBDN_DP [3:2]	1 4 2		Connect to the downstream USB bus data signals and can be swapped using the PortSwap feature (See Section 4.4.4.20, "F1h: Port Swap," on page 36).		
PRTCTL[3:2]	7	I/OD6PU	USB Power Enable, when used as an:		
	6		Output: enables power to downstream USB peripheral devices and have weak internal pull-up resistors. (See Section 3.5, "Port Power Control," on page 15 for diagram and usage instructions.)		
			 Input: monitor the Over-current condition (when the power is enabled). When an Over-current condition is detected, the pins turn the power off. 		
RBIAS	47	I-R	USB Transceiver Bias		
			Sets the transceiver's internal bias currents using a 12.0 k Ω , \pm 1.0% resistor attached from VSS.		
XTAL1 (CLKIN)	45	ICLKx	24 MHz Crystal Input or External Clock Input		
			Can be connected to one terminal of the crystal or connected to an external 24 MHz clock when a crystal is not used.		
XTAL2	44	OCLKx	24 MHz Crystal Output		
			The other terminal of the crystal, or it is left open when an external clock source is used to drive XTAL1(CLKIN).		

TABLE 3-2: USB4640/USB4640I PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin QFN	Buffer Type	Description			
	SECURE DIGITAL INTERFACE					
SD_D[7:0]	19	I/O8PU	Secure Digital Data 7-0			
	20 23 30 32 33 17 18		Bi-directional data signals SD_D0 - SD_D7 with weak pull-up resistor.			
SD_CLK	21	08	Secure Digital Clock			
			The output clock signal to the SD/MMC device			
SD_CMD	24	I/O8PU	Secure Digital Command			
			Bi-directional signal that connects to the CMD signal of the SD/MMC device. The bi-directional signal has a weak internal pull-up resistor.			
SD_nCD	14	I/O8PU	Secure Digital Card Detect			
			Designates as the Secure Digital card detection pin and has an internal pull-up.			
SD_WP	13	I/O8	Secure Digital Write Protected			
			Designates as the Secure Digital card interface mechanical write protect detect pin.			
		M	EMORY STICK INTERFACE			
MS_BS	21	08	Memory Stick Bus State			
			Connected to the bus state pin of the MS device. It is used to control the Bus States 0, 1, 2, and 3 (BS0, BS1, and BS3) of the MS device.			
MS_INS	31	IPU	Memory Stick Card Insertion			
			Designates as the Memory Stick card detection pin and has a weak internal pull-up resistor.			
MS_SCLK	13	O8	Memory Stick System Clock			
			Output clock signal to the MS device.			
MS_D[7:0]	20 19	I/O8PD	Memory Stick System Data In/Out			
	17 18 32		Bi-directional data signals for the MS device. In Serial mode, the most significant bit (MSB) of each byte is transmitted first by either the memory stick controller MSC or the MS device on MS_D0.			
	30 23 24		MS_D0, MS_D2, and MS_D3 have weak pull-down resistors. MS_D1 has a pull-down resistor when in Parallel mode. Otherwise, it is disabled. In 4-bit or 8-bit Parallel modes, all MS_D7 - MS_D0 signals have weak pull-down resistors.			
		xD-	PICTURE CARD INTERFACE			
xD_D[7:0]	30	I/O8PD	xD-Picture Card Data 7-0			
	32 33 13 17 18 19 20		Bi-directional data signals xD_D7 - xD_D0 and have weak internal pull-down resistors.			
xD_ALE	23	O8PD	xD-Picture Card Address Strobe			
			Active-high Address Latch Enable (ALE) signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.			

TABLE 3-2: USB4640/USB4640I PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin QFN	Buffer Type	Description
xD_nB/R	28		
xD_nCE	26	O8PU	xD-Picture Card Chip Enable
			Active-low chip enable signal for the xD-Picture Card device.
			When using the internal FET, this pin has weak internal pull-up resistor that is tied to the output of the internal power FET.
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).
xD_CLE	24	O8PD	xD-Picture Card Command Strobe
			An active-high Command Latch Enable signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.
xD_nCD	29	I/O8	xD-Picture Card Detection
			Designates as the xD-Picture Card detection pin and has an internal pull-up.
xD_nRE	27	O8PU	xD-Picture Card Read Enable
			Active-low read strobe signal for the xD-Picture Card device.
			When using the internal FET, this pin has a weak internal pull-up resistor that is tied to the output of the internal power FET.
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).
xD_nWE	22	O8PU	xD-Picture Card Write Enable
			Active-low write strobe signal for the xD-Picture Card device.
			When using the internal FET, this pin has a weak internal pull-up resistor that is tied to the output of the internal power FET.
			If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).
xD_nWP	21	O8PD	xD-Picture Card Write Protect
			An active-low write-protect signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.
	1	.	SPI INTERFACE
SPI_CE_n	8	O12	SPI Chip Enable
			An active-low chip enable output. If the SPI interface is enabled, this pin must be driven high in power down states.
SPI_CLK/	9	I/O12	SPI Clock Out
			Clock signal out to the serial ROM. See Section 3.6, "ROM BOOT Sequence," on page 17 for diagram and usage instructions. During reset, this pin must be driven low.
SCL		I/O6	Serial Clock
			The I ² C EEPROM clock pin when the device is connected to the optional I ² C EEPROM.

TABLE 3-2: USB4640/USB4640I PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin QFN	Buffer Type	Description		
SPI_DO/	10	I/O12	SPI Serial Data Out		
			The output for the SPI port. See Section 3.6, "ROM BOOT Sequence" for diagram and usage instructions.		
SDA/		I/O6	Serial Data Line		
			The I ² C EEPROM data pin when the device is connected to the optional I ² C EEPROM.		
SPI_SPD_SEL		I/O12	SPI Speed Select		
			Selects the speed of the SPI interface. During nRESET assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality, where the internal pull-down will be disabled.		
			0: 30 MHz (no external resistor should be applied) 1: 60 MHz (a 10 k Ω external pull-up resistor must be applied)		
			If the latched value is 1, then the pin is tri-stated when the chip is in the suspend state.		
			If the latched value is 0, then the pin is driven low during a suspend state.		
SPI_DI	11	I/O12PD	SPI Serial Data In		
			The SPI data in to the controller from the ROM. This pin has a weak internal pull-down applied at all times to prevent floating.		
			MISC		
LED	37	I/O6	Can be used as an LED output.		
NC	36				
CRD_PWR	35	I/O200	Card Power Drive: 3.3 V (100 mA or 200 mA)		
			This must be the only FET used to power devices. Failure to do this will violate voltage specifications on device pins.		
			Please see Section 4.4.2.3, "A4h-A5h: Smart Media Device Power Configuration," on page 28 for more information.		
nRESET	38	IS	Reset Input		
			The system uses this active low signal to reset the chip. The active low pulse should be at least 1 μs wide.		
TEST	40	I	Test Input		
			Tie to ground for normal operation.		
			DIGITAL/POWER/GROUND		
CRFILT	15		VDD Core Regulator Filter Capacitor		
			Requires a 1.0 μF (or greater) \pm 20% (ESR <0.1 Ω) capacitor to VSS.		
PLLFILT	46		Phase-Locked Loop Regulator Filter Capacitor		
			Requires a 1.0 μ F (or greater) \pm 20% (ESR < 0.1 Ω) capacitor to VSS.		
VDD12	41		1.2 V Power		
			For HSIC pads and buffers		

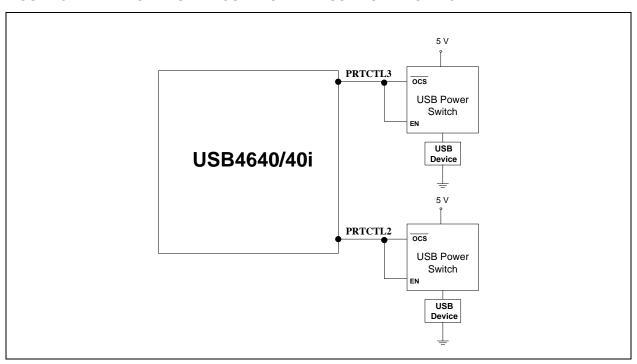
TABLE 3-2: USB4640/USB4640I PIN DESCRIPTIONS (CONTINUED)

Symbol	48-Pin QFN	Buffer Type	Description
VDD33	5 12 16 25 34		3.3 V Power and Regulator Input See Section 6.0, "DC Parameters," on page 43 for more information. Pins 16 and 48 each require an external bypass capacitor of 4.7 μ F minimum.
VSS	48 ePad		Ground Pad/ePad
			The package slug is the only VSS for the device and must be tied to ground with multiple vias.
IPU	Connecte When usi of the into	ng the internal ernal power FE	RDY pin of the xD-Picture Card device. FET, this pin has a weak internal pull-up resistor that is tied to the output
		nal pull-up is re	

3.4 Buffer Type Descriptions

TABLE 3-3: USB4640/USB4640I BUFFER TYPE DESCRIPTIONS

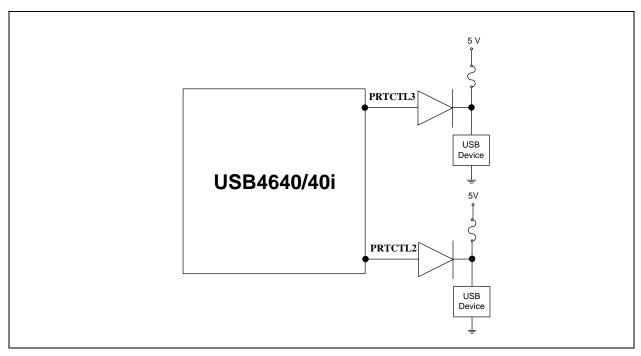
Buffer	Description
I	Input
I/O	Input/output
IPU	Input with weak internal pull-up
IS	Input with Schmitt trigger
I/O6	Input/output buffer with 6 mA sink and 6 mA source
I/OD6PU	Input/open drain output buffer with a 6 mA sink
O8	Output buffer with an 8 mA sink and an 8 mA source
O8PD	Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor
O8PU	Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor
I/O8	Input/output buffer with an 8 mA sink and an 8 mA source
I/O8PD	Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor
I/O8PU	Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor
O12	Output buffer with a 12 mA sink and a 12 mA source
I/O12	Input/output buffer with 12 mA sink and 12 mA source
I/O12PD	Input/output buffer with 12 mA sink and 12 mA source with a weak internal pull-down resistor
I/O200	Input/output buffer 12 mA with FET disabled, 100/200 mA source only when the FET is enabled
ICLKx	XTAL clock input
OCLKx	XTAL clock output
I/O-U	Analog input/output as defined in the USB 2.0 Specification
I-R	RBIAS


3.5 Port Power Control

3.5.1 PORT POWER CONTROL USING A USB POWER SWITCH

The USB4640/USB4640i has a single port power control and over-current sense signal for each downstream port. When disabling port power, the driver will actively drive a 0. To avoid unnecessary power dissipation, the internal pull-up resistor will be disabled at that time. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled creating an open drain output.

If there is an over-current situation, the USB Power Switch will assert the open drain OCS signal. The Schmitt trigger input will detect this event as a low. The open drain output does not interfere. The internal over-current sense filter handles the transient conditions, such as low voltage, while the device is powering up.


FIGURE 3-2: PORT POWER CONTROL WITH USB POWER SWITCH

3.5.2 PORT POWER CONTROL USING A POLY FUSE

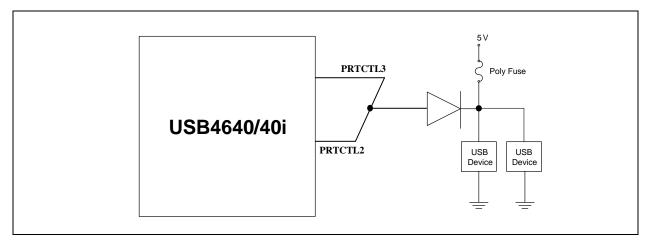

When using the USB4640/USB4640i with a poly fuse, an external diode must be used (see Figure 3-3). When disabling port power, the USB4640/USB4640i will drive a 0. This procedure will have no effect since the external diode will isolate the pin from the load. When port power is enabled, the USB4640/USB4640i output driver is disabled, and the pull-up resistor is enabled which creates an open drain output. This open drain output condition means that the pull-up resistor is providing 3.3 volts to the anode of the diode. If there is an over-current situation, the poly fuse will open. This will cause the cathode of the diode to go to zero volts. The anode of the diode will be at 0.7 volts, and the Schmitt trigger input will register this as a low resulting in an over-current detection. The open drain output does not interfere.

FIGURE 3-3: PORT POWER CONTROL WITH A SINGLE POLY FUSE AND MULTIPLE LOADS

When using a single poly fuse to power all devices, note that for the ganged situation, all power control pins must be tied together.

FIGURE 3-4: PORT POWER WITH GANGED CONTROL WITH POLY FUSE

3.6 ROM BOOT Sequence

After power-on reset, the internal firmware checks for an external SPI flash device that contains a valid signature of *2DFU* (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM is enabled and code execution begins at address 0x0000 in the external SPI device. Otherwise, code execution continues from the internal ROM.

If there is no SPI ROM detected, the internal firmware then checks for the presence of an I²C ROM. The firmware looks for the signature *ATA2* at the offset of FCh-FFh and *ecf1* at the offset of 17Ch-17Fh in the I²C ROM. The firmware reads in the I²C ROM to configure the hardware and software internally. Please refer to Section 4.3.2, "EEPROM Data Descriptor," on page 21 for the details of the configuration options.

The SPI ROM required for the USB4640/USB4640i is a recommended minimum of 1 Mb and support either 30 MHz or 60 MHz. The frequency used is set using the SPI_SPD_SEL. For 30 MHz operation, this pin must be pulled to ground through a 100 k Ω resistor. For 60 MHz operation, this pin must pulled up through a 100 k Ω resistor.

The SPI_SPD_SEL pin is used to choose the speed of the SPI interface. During nRESET assertion, this pin will be tristated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality. The internal pull-down will be disabled.

The firmware can determine the speed of operation on the SPI port by checking the SPI_CTL.SPI_SPEED bit (0x2400 - RESET = 0x02). Both 1-bit and 2-bit SPI operation is supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI ROMS are also supported.

FIGURE 3-5: SPI ROM CONNECTION

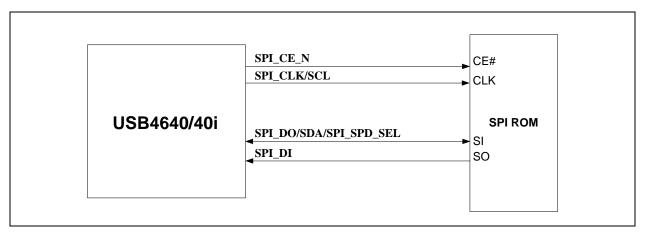
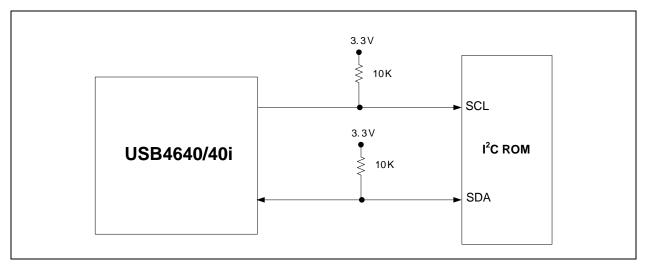



FIGURE 3-6: I²C CONNECTION

3.7 Pin Reset States

FIGURE 3-7: PIN RESET STATES

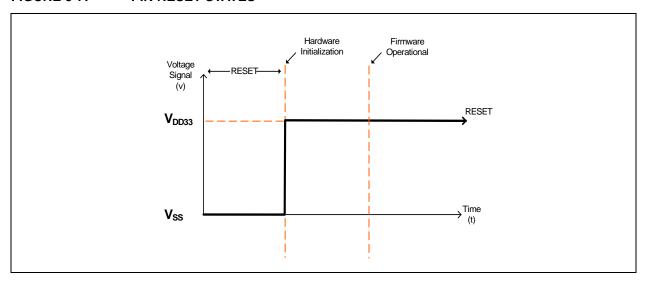


TABLE 3-4: LEGEND FOR PIN RESET STATES TABLE

Symbol	Description
0	Output driven low
1	Output driven high
IP	Input enabled
PU	Hardware enables pull-up.
PD	Hardware enables pull-down.
none	Hardware disables pad.
	Hardware disables function.
Z	Hardware disables pad. Both output driver and input buffers are disabled.

TABLE 3-5: USB4640/USB4640I RESET STATES TABLE

		Reset	State	
Pin	Pin Name	Function	Input/ Output	PU/ PD
1	USBDN_DM2	USBDN_DM2	IP	PD
2	USBDN_DP2	USBDN_DP2	IP	PD
3	USBDN_DM3	USBDN_DM3	IP	PD
4	USBDN_DP3	USBDN_DP3	IP	PD
6	PRTCTL2	PRTCTL	0	
7	PRTCTL3	PRTCTL	0	

TABLE 3-5: USB4640/USB4640I RESET STATES TABLE (CONTINUED)

		Reset State			
Pin	Pin Name	Function	Input/ Output	PU/ PD	
8	SPI_CE_n	SPI_CE_n	1		
9	SPI_CLK/SCL	none	0		
10	SPI_DO/SDA/SPI_SPD_SEL	none	0		
11	SPI_DI	SPI_DI	IP	PD	
13	SD_WP/MS_SCLK/xD_D4	none	0		
14	SD_nCD	none	IP	PU	
17	SD_D1/MS_D5/xD_D3	none	Z		
18	SD_D0/MS_D4/xD_D2	none	Z		
19	SD_D7/MS_D6/xD_D1	none	Z		
20	SD_D6/MS_D7/xD_D0	none	Z		
21	SD_CLK/MS_BS/xD_nWP	none	Z		
22	xD_nWE	xD_nWE	Z		
23	SD_D5/MS_D1/xD_ALE	none	Z		
24	SD_CMD/MS_D0/xD_CLE	none	Z		
26	xD_nCE	xD_nCE	Z		
27	xD_nRE	xD_nRE	Z		
28	xD_nB/R	xD_nB/R	Z		
29	xD_nCD	none	IP	PU	
30	SD_D4/MS_D2/xD_D7	none	Z		
31	MS_INS	none	IP	PU	
32	SD_D3/MS_D3/xD_D6	none	Z		
33	SD_D2/xD_D5	none	Z		
35	CRD_PWR	none	Z		
36	NC	none	0		
37	LED	none	0		
38	nRESET	nRESET	IP		
39	HSIC_IMP	HSIC_IMP	Z		

TABLE 3-5: USB4640/USB4640I RESET STATES TABLE (CONTINUED)

		Reset S	State	
Pin	Pin Name	Function	Input/ Output	PU/ PD
40	TEST	TEST	IP	PD
42	HSIC_DAT	HSIC_DAT	IP	
43	HSIC_STROBE	HSIC_STROBE	IP	

4.0 CONFIGURATION OPTIONS

4.1 Hub

Microchip's USB 2.0 hub is fully compliant to the Universal Serial Bus Specification [1].

The hub provides 1 transaction translator (TT) that is shared by both downstream ports defined as a single-TT configuration. The TT contains 4 non-periodic buffers. The hub supports a large number of features (some are mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. There are two principal ways to configure the hub:

- · Internal default settings
- · External EEPROM or SPI Flash device

Note: See Chapter 11 (Hub Specification) of the USB specification for general details regarding hub operation and functionality.

4.2 Card Reader

The Microchip USB4640/USB4640i is fully compliant with the following flash media card reader specifications:

- Secure Digital 2.0/MultiMediaCard 4.2
 - SD 2.0, HS-SD, HC-SD
 - TransFlash™ and reduced form factor media
 - 1/4/8 bit MMC 4.2
- · Memory Stick 1.43
- Memory Stick Pro Format 1.02
- Memory Stick Pro-HG Duo Format 1.01
 - Memory Stick, MS Duo, HS-MS, MS Pro-HG, MS Pro
- Memory Stick Duo 1.10
- xD-Picture Card 1.2

4.3 System Configurations

4.3.1 EEPROM/SPI INTERFACE

The USB4640/USB4640i can be configured via a 2-wire I²C EEPROM (512x8) or an external SPI flash device containing the USB4640/USB4640i firmware. If an external configuration device does not exist, the internal default values will be used. If one of the external devices is used for configuration, the USB4640/USB4640i values can be updated through the USB interface. The hub will then attach to the upstream USB host.

The USBDM tool set is available in the USB264x Hub Card reader combo software release package. To download the software package from Microchip's website, visit:

http://www.microchip.com/search/searchapp/searchhome.aspx?id=2&q=mkt/CW_SFT_PUB.nsf/Agree-ments/OBJ+Hub+Card+Reader

Review the license and select the *I agree* checkbox, followed by the *Confirm* button. Download the *USB264x Hub Card reader combo Release Package* zip file with the USBDM tool set will then be available for download.

4.3.2 EEPROM DATA DESCRIPTOR

TABLE 4-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
00h	USB_SER_LEN	USB Serial String Descriptor Length	1Ah
01h	USB_SER_TYP	USB Serial String Descriptor Type	03h
02h-19h	USB_SER_NUM	USB Serial Number	000008264001 (Note 4-1)
1Ah-1Bh	USB_VID	USB Vendor Identifier	0424

TABLE 4-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS (CONTINUED)

Address	Register Name	Description	Internal Default Value
1Ch-1Dh	USB_PID	USB Product Identifier	4040
1Eh	USB_LANG_LEN	USB Language String Descriptor Length	04h
1Fh	USB_LANG_TYP	USB Language String Descriptor Type	03h
20h	USB_LANG_ID_LSB	USB Language Identifier Least Significant Byte	09h (Note 4-3)
21h	USB_LANG_ID_MSB	USB Language Identifier Most Significant Byte	04h (Note 4-3)
22h	USB_MFR_STR_LEN	USB Manufacturer String Descriptor Length	10h
23h	USB_MFR_STR_TYP	USB Manufacturer String Descriptor Type	03h
24h-31h	USB_MFR_STR	USB Manufacturer String	Generic (Note 4-1)
32h-5Dh	rsvd		00h
5Eh	USB_PRD_STR_LEN	USB Product String Descriptor Length	30h
5Fh	USB_PRD_STR_TYP	USB Product String Descriptor Type	03h
60h-99h	USB_PRD_STR	USB Product String	Ultra Fast Media Reader — (Note 4-1)
9Ah	USB_BM_ATT	USB BmAttribute	80h
9Bh	USB_MAX_PWR	USB Max Power	30h (96 mA)
9Ch	ATT_LB	Attribute Lo byte	40h (reverse SD_WP only)
9Dh	ATT_HLB	Attribute Hi Lo byte	80h (reverse SD2_WP only)
9Eh	ATT_LHB	Attribute Lo Hi byte	00h
9Fh	ATT_HB	Attribute Hi byte	00h
A0h	MS_PWR_LB	Memory Stick Device Power Lo byte	00h
A1h	MS_PWR_HB	Memory Stick Device Power Hi byte	0Ah
A2h-A3h	N/A		00h
A4h	SM_PWR_LB	Smart Media Device Power Lo byte	00h (Note 4-2)
A5h	SM_PWR_HB	Smart Media Device Power Hi byte	0Ah (Note 4-2)
A6h	SD_PWR_LB	Secure Digital Device Power Lo byte	00h
A7h	SD_PWR_HB	Secure Digital Device Power Hi byte	0Ah
A8h	LED_BLK_INT	LED Blink Interval	02h
A9h	LED_BLK_DUR	LED Blink After Access	28h
AAh - B0h	DEV0_ID_STR	Device 0 Identifier String	N/A
B1h - B7h	DEV1_ID_STR	Device 1 Identifier String	MS
B8h - BEh	DEV2_ID_STR	Device 2 Identifier String	SM (Note 4-2)
BFh - C5h	DEV3_ID_STR	Device 3 Identifier String	SD/MMC
C6h - CDh	INQ_VEN_STR	Inquiry Vendor String	Generic
CEh - D2h	INQ_PRD_STR	Inquiry Product String	82640

TABLE 4-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS (CONTINUED)

Address	Register Name	Description	Internal Default Value
D3h	DYN_NUM_LUN	Dynamic Number of LUNs	01h
D4h - D7h	DEV_LUN_MAP	Device to LUN Mapping	FFh, 00h, 00h, 00h
D8h - DAh			00h, 06h, 0Dh
DBh - DDh			59h, 56h, 97h

- Note 4-1 This value is a UNICODE UTF-16LE encoded string value that meets the USB 2.0 Specification [1].
- Note 4-2 A value of SM will be overridden with xD once an xD-Picture Card has been identified.
- Note 4-3 Current 16-bit language IDs are defined by the USB-IF, see *The Unicode Standard, Worldwide Character Encoding* [4].

TABLE 4-2: HUB CONTROLLER CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
DEh	VID_LSB	Vendor ID Least Significant Byte	24h
DFh	VID_MSB	Vendor ID Most Significant Byte	04h
E0h	PID_LSB	Product ID Least Significant Byte	40h
E1h	PID_MSB	Product ID Most Significant Byte	26h
E2h	DID_LSB	Device ID Least Significant Byte	A1h
E3h	DID_MSB	Device ID Most Significant Byte	08h
E4h	CFG_DAT_BYT1	Configuration Data Byte 1	8Bh
E5h	CFG_DAT_BYT2	Configuration Data Byte 2	28h
E6h	CFG_DAT_BYT3	Configuration Data Byte 3	00h
E7h	NR_DEVICE	Non-Removable Devices	02h
E8h	PORT_DIS_SP	Port Disable (Self)	00h
E9h	PORT_DIS_BP	Port Disable (Bus)	00h
EAh	MAX_PWR_SP	Max Power (Self)	01h
EBh	MAX_PWR_BP	Max Power (Bus)	32h
ECh	HC_MAX_C_SP	Hub Controller Max Current (Self)	01h
EDh	HC_MAX_C_BP	Hub Controller Max Current (Bus)	32h
EEh	PWR_ON_TIME	Power-on Time	32h
EFh	BOOST_UP	Boost_Up	00h
F0h	BOOST_3:0	Boost_3:0	00h
F1h	PRT_SWP	Port Swap	00h
F2h	PRTM12	Port Map 12	00h
F3h	PRTM3	Port Map 3	00h

TABLE 4-3: OTHER INTERNAL CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
F4h			00h
F5h			66h
F6h			00h
F7-FAh	N/A		N/A
FBh	N/A		00h
FCh-FFh	NVSTORE_SIG	Non-Volatile Storage Signature	ata2

4.4 Internal Flash Media Controller Extended Configurations

Set bit 7 of bmAttribute to enable these extended configuration registers.

TABLE 4-4: INTERNAL FLASH MEDIA CONTROLLER EXTENDED CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
100h - 106h	CLUN0_ID_STR	Combo LUN 0 Identifier String	COMBO
107h- 129h	N/A		N/A
12Ah-145h	N/A		00h
146h	N/A		01h
147h - 14Bh	N/A		01h, FFh, FFh, FFh, FFh
14Ch	N/A		0Ah
14Dh-17Bh	N/A		00h
17Ch-17Fh	NVSTORE_SIG2	Non-Volatile Storage Signature	ecf1

4.4.1 EEPROM DATA DESCRIPTOR REGISTER DESCRIPTIONS

4.4.1.1 00h: USB Serial String Descriptor Length

Byte	Name	Description
0	USB_SER_LEN	USB serial string descriptor length as defined by Section 9.6.7: <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> , which describes the size of the string descriptor (in bytes).

4.4.1.2 01h: USB Serial String Descriptor Type

By	te	Name	Description
1		USB_SER_TYP	USB serial string descriptor type as defined by Section 9.6.7: <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bDescriptorType</i> , a constant value associated with a string descriptor type.

4.4.1.3 02h-19h: USB Serial Number Option

Byte	Name	Description
25:2	USB_SER_NUM	Maximum string length is 12 hex digits. Must be unique to each device.

4.4.1.4 1Ah-1Bh: USB Vendor ID Option

Byte	Name	Description
1:0	USB_VID	This ID is unique for every vendor. The vendor ID is assigned by the USB Implementer's Forum.

4.4.1.5 1Ch-1Dh: USB Product ID Option

Byte	Name	Description
1:0	USB_PID	The product ID: assigned by the vendor; unique for every product.

4.4.1.6 1Eh: USB Language Identifier Descriptor Length

Byte	Name	Description
0		USB language ID string descriptor length as defined by Section 9.6.7: <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> , which describes the size of the string descriptor (in bytes).

4.4.1.7 1Fh: USB Language Identifier Descriptor Type

Byte	Name	Description
1		USB language ID string descriptor type as defined by Section 9.6.7: String of the USB 2.0 Specification [1]. This field is the bDescriptorType, a constant value associated with a string descriptor type.

4.4.1.8 20h: USB Language Identifier Least Significant Byte

Byte	Name	Description
2	USB_LANG_ID _LSB	English language code = 0409. See Note 4-3 for additional language IDs defined by the USB-IF.

4.4.1.9 21h: USB Language Identifier Most Significant Byte

Byte	Name	Description
3		English language code = 0409. See Note 4-3 for additional language IDs defined by the USB-IF.

4.4.1.10 22h: USB Manufacturer String Descriptor Length

Byte	Name	Description
0	LEN	USB manufacturer string descriptor length as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> which describes the size of the string descriptor (in bytes).

4.4.1.11 23h: USB Manufacturer String Descriptor Type

Byte	Name	Description
1	_TYP	USB manufacturer string descriptor type as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bDescriptorType</i> , a constant value associated with a string descriptor type.

4.4.1.12 24h-31h: USB Manufacturer String Option

Byte	Name	Description
15:2	USB_MFR_STR	The maximum string length is 28 characters.

4.4.1.13 32h-5Dh: Reserved

Byte	Name	Description
59:16	rsvd	

4.4.1.14 5Eh: USB Product String Descriptor Length

Byte	Name	Description
0	_LEN	USB product string descriptor length as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> , which describes the size of the string descriptor (in bytes).

4.4.1.15 5Fh: USB Product String Descriptor Type

Byte	Name	Description
1	USB_PRD_STR _TYP	USB product string descriptor type as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bDescriptorType</i> , a constant value associated with a string descriptor type.

4.4.1.16 60h-99h: USB Product String Option

Byte	Name	Description
59:2	USB_PRD_STR	This string will be used during the USB enumeration process in the Windows® operating system. Maximum string length is 28 characters.

4.4.1.17 9Ah: USB BmAttribute (1 Byte)

Bit	Name	Description
7:0	USB_BM_ATT	Self-Power or Bus-Power: selects between self-powered and bus-powered operation.
		The hub is either self-powered (draws less than 2 mAor bus-powered (limited to 100 mA maximum power prior to being configured by the host controller).
		When configured as a bus-powered device, the hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-powered Microchip hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of current. The current consumption is system dependent and must follow the <i>USB 2.0 Specification</i> requirements.
		When configured as a self-powered device, <1 mA of current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.
		80 : (default) Bus-powered operation C0 : Self-powered operation A0 : Bus-powered operation with remote wake-up E0 : Self-powered operation with remote wake-up

4.4.1.18 9Bh: USB MaxPower (1 Byte)

Bit	Name	Description
7:0	USB_MAX_PWR	USB Max Power per the USB 2.0 Specification [1]. Do NOT set this value greater than 100 mA.

4.4.1.19 9Ch-9Fh: Attribute Byte Descriptions

Byte	Byte Name	Bit	Description
0	ATT_LB	3:0	Always read as 0
		4	Inquire Manufacturer and Product ID Strings
			i. use the Inquiry Manufacturer and Product ID Strings i. (default) use the USB Descriptor Manufacturer and Product ID Strings
		5	Always read as 0
		6	Reverse SD Card Write Protect Sense
			1 : (default) SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			0 : SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high.
		7	Extended Configuration Enable
			1 : enables editing, updating, and reading from registers 100h-17Fh.
			0 : internal configuration is loaded, where it will not read from registers 100h-17Fh.
1	ATT_HLB	3:0	Always read as 0
		4	Activity LED True Polarity
			1 : activity LED to low true 0 : (default) - activity LED polarity to high true
		5	Common Media Insert/Media Activity LED
			1 : activity LED will function as a common media inserted/media access LED.
			0 : (default) - activity LED will remain in its idle state until media is accessed.
		6	Always read as 0
		7	Reverse SD2 Card Write Protect Sense
			1 : (default) - SD cards in LUN 1 will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			0 : SD cards in LUN 1 will be write protected when SW_nWP is low, and writable when SW_nWP is high.
2	ATT_LHB	0	Attach on Card Insert/Detach on Card Removal
			1 : attach on insert is enabled 0 : (default) - attach on insert is disabled
		1	Always read as 0
		2	Enable Device Power Configuration
			Custom Device Power Configuration stored in the NVSTORE is used (default) - Default Device Power Configuration is used
		7:3	Always read as 0
3	ATT_HB	6:0	Always read as 0
		7	xD Player Mode

4.4.2 A0H-A7H: DEVICE POWER CONFIGURATION

The USB4640/USB4640i has one internal FET which can be utilized for card power. This section describes the default internal configuration. The settings are stored in **NVSTORE** and provide the following features:

- 1. A card can be powered by an external FET or by an internal FET.
- 2. The power limit can be set to 100 mA or 200 mA (default) for the internal FET.

Each media uses two bytes to store its device power configuration. Bit 3 selects between internal or external card power FET options. For internal FET card power control, bits 0 through 2 are used to set the power limit. The *Device Power Configuration* bits are ignored unless the Enable Device Power Configuration bit is set. See Section 4.4.1.19 on page 27.

4.4.2.1 A0h-A1h: Memory Stick Device Power Configuration

FET	Name	Bits	Bit Type	Description
0	MS_PWR_LB	3:0	Low Nibble	FET Lo Byte
1		7:4	High Nibble	0000 : disabled
2	MS_PWR_HB	3:0	Low Nibble	FET Hi Byte
				0000 : disabled 0001 : external FET enabled 1000 : internal FET - 100 mA power limit 1010 : (default) internal FET - 200 mA power limit
3		7:4	High Nibble	0000 : disabled

4.4.2.2 A2h-A3h: Not Applicable

Byte	Name	Description
1:0	N/A	

4.4.2.3 A4h-A5h: Smart Media Device Power Configuration

FET	Name	Bits	Bit Type	Description
0		3:0	Low Nibble	FET Lo Byte:
1	SM_PWR_LB	7:4	High Nibble	0000 : disabled
2	SM_PWR_HB	3:0	Low Nibble	FET Hi Byte
				0000 : disabled 0001 : external FET enabled 1000 : internal FET - 100 mA power limit 1010 : (default) internal FET - 200 mA power limit
3		7:4	High Nibble	0000 : disabled

4.4.2.4 A6h-A7h: Secure Digital Device Power Configuration

FET	Name	Bits	Bit Type	Description
0	SD_PWR_LB	3:0	Low Nibble	FET Lo Byte:
1		7:4	High Nibble	0000 : disabled
2	SD_PWR_HB	3:0	Low Nibble	FET Hi Byte
				0000 : disabled 0001 : external FET enabled 1000 : internal FET - 100 mA power limit 1010 : (default) internal FET - 200 mA power limit
3		7:4	High Nibble	0000b : disabled

4.4.2.5 A8h: LED Blink Interval

Byte	Name	Description
0	LED_BLK_INT	The blink rate is programmable in 50 ms intervals. The high bit (7) indicates an idle state:
		0 : off 1 : on
		The remaining bits (6:0) are used to determine the blink interval up to a max of 128 x 50 ms.

4.4.2.6 A9h: LED Blink Duration

Byte	Name	Description
1		LED Blink After Access: designates the number of seconds that the LED will continue to blink after a drive access. Setting this byte to 05 will cause the LED to blink for 5 seconds after a drive access.

4.4.3 DEVICE ID STRINGS

These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the device to LUN mapping bytes in applications where the LUNs need to be reordered and renamed. If multiple devices are mapped to the same LUN (a COMBO LUN), then the **CLUN#_ID_STR** will be used to name the COMBO LUN instead of the individual device strings. When applicable, the SM value will be overridden with xD once an xD-Picture Card has been identified.

4.4.3.1 AAh-B0h: Device 0 Identifier String

Byte	Name	Description
6:0	DEV0_ID_STR	N/A

4.4.3.2 B1h-B7h: Device 1 Identifier String

Byte	Name	Description
6:0	DEV1_ID_STR	ID string is associated with the Memory Stick device.

4.4.3.3 B8h-BEh: Device 2 Identifier String

Byte	Name	Description
6:0	DEV2_ID_STR	ID string is associated with the Smart Media (Note 4-2) device.

4.4.3.4 BFh-C5h: Device 3 Identifier String

Byte	Name	Description
6:0	DEV3_ID_STR	ID string is associated with the Secure Digital/MultiMediaCard device.

4.4.3.5 C6h-CDh: Inquiry Vendor String

Byt	е	Name	Description
7:0)	INQ_VEN_STR	If bit 4 of the first attribute byte is set, the device will use these strings in response to a USB inquiry command instead of the USB descriptor manufacturer and product ID strings.

4.4.3.6 CEh-D2h: Inquiry Product String

Byte	Name	Description
4:0	INQ_PRD_STR	If bit 4 of the first attribute byte is set, the device will use these strings in response to a USB inquiry command instead of the USB descriptor manufacturer and product ID strings.

4.4.3.7 D3h: Dynamic Number of LUNs

Bit	Name	Description
7:0	DYN_NUM_LUN	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket with only a single icon displayed for one or more interfaces. If this field is set to FF, the program assumes that you are using the default value and icons will be configured per the default configuration.

4.4.3.8 D4h-D7h: Device to LUN Mapping

Byte	Name	Description
3:0	DEV_LUN_MAP	These registers map a device controller (SD/MMC, SM (Note 4-2), and MS) to a Logical Unit Number (LUN). The device reports the mapped LUNs to the USB host in the USB descriptor during enumeration. The icon installer associates custom icons with the LUNs specified in these fields.
		Setting a register to FF indicates that the device is not mapped. Setting all of the DEV_LUN_MAP registers for all devices to FF forces the use of the default mapping configuration. Not all configurations are valid. Valid configurations depend on the hardware, packaging, and the board layout. The number of unique LUNs mapped must match the value in the Section 4.4.3.7 on page 30.

4.4.3.9 D8h-DDh: Reserved

Byte	Name	Description
2:0	rsvd	

4.4.4 HUB CONTROLLER CONFIGURATIONS

4.4.4.1 DEh: Vendor ID (LSB)

Bit	Name	Description
7:0	VID_LSB	Least Significant Byte of the Vendor ID: a unique 16-bit value that identifies the vendor of the user device (assigned by USB Implementer's Forum).

4.4.4.2 DFh: Vendor ID (MSB)

Bit	Name	Description
7:0	VID_MSB	Most Significant Byte of the Vendor ID: a unique 16-bit value that identifies the vendor of the user device (assigned by USB Implementer's Forum).

4.4.4.3 E0h: Product ID (LSB)

Bit	Name	Description
7:0		Least Significant Byte of the Product ID: a unique 16-bit value that identifies a particular product (vendor assigned).

4.4.4.4 E1h: Product ID (MSB)

Bit	Name	Description
7:0	PID_MSB	Most Significant Byte of the Product ID. a unique 16-bit value that identifies a particular product (vendor assigned).

4.4.4.5 E2h: Device ID (LSB)

Bit	Name	Description
7:0	DID_LSB	Least Significant Byte of the Device ID: a 16-bit device release number in BCD (binary coded decimal) format.

4.4.4.6 E3h: Device ID (MSB)

Bit	Name	Description
7:0	DID_MSB	Most Significant Byte of the Device ID: a 16-bit device release number in BCD format.

4.4.4.7 E4h: Configuration Data Byte 1 (CFG_DAT_BYT1)

Bit	Name	Description
7	SELF_BUS_PWR	Self-Powered or Bus-Powered: Selects between self-powered and bus-powered operation.
		The hub is either self-powered (draws less than 2 mAor bus-powered (limited to 100 mA maximum power prior to being configured by the host controller).
		When configured as a bus-powered device, the Microchip hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-powered hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of current. The current consumption is system dependent, and the USB 2.0 specifications must not be violated.
		When configured as a self-powered device, <1 m A of current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.
		0 : Bus-powered operation 1 : Self-powered operation
6	rsvd	
2:1	CURRENT_SNS	Over-Current Sense
		Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a per port or ganged basis is dependent upon the hardware implementation.
		00 : Ganged sensing (all ports together) 01 : individual (port-by-port) 1x : over-current sensing not supported (must only be used with bus-powered configurations)

Bit	Name	Description
0	PORT_PWR	Port Power Switching
		Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port-by-port basis (individual). The ability to support power enabling on a port or ganged basis is dependent upon the hardware implementation.
		0 : ganged switching (all ports together) 1 : individual port-by-port switching

4.4.4.8 E5h: Configuration Data Byte 2 (CFG_DAT_BYT2)

Bit	Name	Description
7:6	rsvd	
5:4	OC_TIMER	OverCurrent Timer: over-current timer delay 00 : 50 ns 01 : 100 ns 10 : 200 ns 11 : 400 ns
3	COMPOUND	Compound Device: allows OEM to indicate that the hub is part of a compound device (per the USB 2.0 Specification). The applicable port(s) must also be defined as having a "non-removable device". When configured via strapping options, declaring a port as non-removable automatically causes the hub controller to report that it is part of a compound device. 0: no 1: yes, the hub is part of a compound device
2:0	rsvd	

4.4.4.9 E6h: Configuration Data Byte 3 (CFG_DAT_BYT3)

Bit	Name	Description
7:4	rsvd	
3	PRTMAP_EN	Port Mapping Enable: selects the method used by the hub to assign port numbers and disable ports.
		0 : Standard Mode. Strap options or the following registers are used to define which ports are enabled, and the ports are mapped as port 'n' on the hub is reported as port 'n' to the host, unless one of the ports is disabled, then the higher numbered ports are remapped in order to report contiguous port numbers to the host.
		Register 300Ah: Port disable for self-powered operation (Reset = 0x00) Register 300Bh: Port disable for bus-powered operation (Reset = 0x00)
		1 : Port Map mode. The mode enables remapping via the registers defined below.
		Register 30FBh: Port Map 12 (Reset = 0x00) Register 30FCh: Port Map 3 (Reset = 0x00)
2:0	rsvd	

4.4.4.10 E7h: Non-Removable Device

Bit	Byte Name	Description
7:0	NR_DEVICE	Indicates which port(s) include non-removable devices.
		0 : Port is removable 1 : Port is non-removable
		Informs the host if one of the active ports has a permanent device that is undetachable from the hub. The device must provide its own descriptor data.
		When using the internal default option, NON_REM[1:0] designates the appropriate ports as being non-removable.
		Bit 7: rsvd Bit 6: rsvd Bit 5: rsvd Bit 4: rsvd Bit 3: controls physical port 3 Bit 2: controls physical port 2 Bit 1: controls physical port 1 Bit 0: rsvd
		Note: Bit 1 must be set to a 1 by the firmware for proper identification of the card reader as a non-removable device.

4.4.4.11 E8h: Port Disable For Self-Powered Operation

Bit	Byte Name	Description
7:0	PORT_DIS_SP	Disables 1 or more ports.
		0 : port is available 1 : port is disabled
		During self-powered operation this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order since the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		Bit 7 : rsvd Bit 6 : rsvd Bit 5 : rsvd Bit 4 : rsvd Bit 3 : controls physical port 3 Bit 2 : controls physical port 2 Bit 1 : controls physical port 1 Bit 0 : rsvd

4.4.4.12 E9h: Port Disable For Bus-Powered Operation

Bit	Byte Name	Description
7:0	PORT_DIS_BP	Disables 1 or more ports.
		0 : port is available 1 : port is disabled
		During self-powered operation, this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a host controller. The ports can be disabled in any order, the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		When using the internal default option, PRT_DIS[1:0] disable the appropriate ports.
		Bit 7: rsvd Bit 6: rsvd Bit 5: rsvd Bit 4: rsvd Bit 3: controls physical port 3 Bit 2: controls physical port 2 Bit 1: controls physical port 1 Bit 0: rsvd

4.4.4.13 EAh: Max Power For Self-Powered Operation

Bit	Byte Name	Description
7:0	MAX_PWR_SP	Value in 2 mA increments that the hub consumes when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.
		Note: Per USB 2.0 Specification: this value cannot exceed 100 mA.

4.4.4.14 EBh: Max Power For Bus-Powered Operation

Bit	Byte Name	Description
7:0	MAX_PWR_BP	Value in 2 mA increments that the hub consumes when operating as a buspowered hub. This value includes the hub silicon along with the combined power consumption of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.

4.4.4.15 ECh: Hub Controller Max Current For Self-Powered Operation

Bit	Byte Name	Description
7:0	HC_MAX_C_SP	Value in 2 mA increments that the hub consumes when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption of all associated circuitry on the board. This value does NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device.
		Note: Per USB 2.0 Specification: this value cannot exceed 100 mA.
		A value of 50 (decimal) indicates 100 mA, which is the default value.

4.4.4.16 EDh: Hub Controller Max Current For Bus-Powered Operation

Bit	Byte Name	Description
7:0	HC_MAX_C_BP	Value in 2 mA increments that the hub consumes when operating as a buspowered hub. This value will include the hub silicon along with the combined power consumption of all associated circuitry on the board. This value will NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device.
		A value of 50 (decimal) would indicate 100 mA, which is the default value.

4.4.4.17 EEh: Power-On Time

Bit	Byte Name	Description
7:0	PWR_ON_TIME	The length of time that it takes (in 2 ms intervals) from the time the host initiated power-on sequence begins on a port until power is adequate on that port. If the host requests the power-on time, the system software uses this value to determine how long to wait before accessing a powered-on port.

4.4.4.18 EFh: Boost_Up

Bit	Name	Description
7:2	rsvd	
1:0	BOOST_IOUT	USB electrical signaling drive strength boost bit for the upstream port A.
		00 : Normal electrical drive strength - no boost 01 : Elevated electrical drive strength - low (approximately 4% boost) 10 : Elevated electrical drive strength - medium (approximately 8% boost) 11 : Elevated electrical drive strength - high (approximately 12% boost)
		Note: Boost could result in non-USB compliant parameters. Therefore, a value of 00 should be implemented unless specific implementation issues require additional signal boosting to correct for degraded USB signaling levels.

4.4.4.19 F0h: Boost_3:0

Bit	Name	Description		
7:6	rsvd			
5:4	BOOST_IOUT_3	Upstream USB electrical signaling drive strength boost bit for downstream port 3.		
		00 : normal electrical drive strength - no boost 01 : elevated electrical drive strength - low (approximately 4% boost) 10 : elevated electrical drive strength - medium (approximately 8% boost) 11 : elevated electrical drive strength - high (approximately 12% boost)		
3:2	BOOST_IOUT_2	Upstream USB electrical signaling drive strength boost bit for downstream port 2.		
		00 : normal electrical drive strength - no boost 01 : elevated electrical drive strength - low (approximately 4% boost) 10 : elevated electrical drive strength - medium (approximately 8% boost) 11 : elevated electrical drive strength - high (approximately 12% boost)		
		Note: Boost could result in non-USB compliant parameters. Therefore, a value of 00 should be implemented unless specific implementation issues require additional signal boosting to correct for degraded USB signaling levels.		
1:0	rsvd	Always read as 0		

4.4.4.20 F1h: Port Swap

Bit	Byte Name	Description		
7:0	PRT_SWP	Port Swap: swaps the upstream and downstream USB DP and DM pins for ease of board routing to devices and connectors.		
		0 : USB D+ functionality is associated with the DP pin, and D- functionality is associated with the DM pin.		
		${\tt 1}$: USB D+ functionality is associated with the DM pin, and D- functionality is associated with the DP pin.		
		Bit 7: rsvd Bit 6: rsvd Bit 5: rsvd Bit 4: rsvd Bit 3: controls physical port 3 Bit 2: controls physical port 2 Bit 1: rsvd Bit 0: controls physical port 0		

4.4.4.21 F2h: Port Map 12

Bit	Byte Name	Description					
7:0	PRTM12	PortMap Register for Ports 1 and 2: when a hub is enumerated by a USB host controller, the hub is only permitted to report how many ports it has; the hub is not permitted to select a numerical range or assignment. The host controller will number the downstream ports of the hub starting with the number 1, up to the number of ports that the hub reports having.					
		The host's port number is called the Logical Port Number and the physical port on the hub is the Physical Port Number. When mapping mode is enabled (see PORTMAP12.PRTMAP_EN) the hub's downstream port numbers can be mapped to different logical port numbers (assigned by the host).					
		Note: Contiguous logical port numbers must be implemented, starting number 1 up to the maximum number of enabled ports. This ensurement that the hub's ports are numbered in accordance with the way a will communicate with the ports.					
		TABLE 4-5: PORT MAP REGISTER FOR PORTS 1 ANI					
		Bit [7:4]	0000	Physical port 2 is disabled			
			0001	Physical port 2 is mapped to logical port 1			
			0010	Physical port 2 is mapped to logical port 2			
			0011	Physical port 2 is mapped to logical port 3			
			0100 to 1111	Illegal; do not use			
		Bit [3:0]	0000	Physical port 1 is disabled			
			0001	Physical port 1 is mapped to logical port 1			
			0010	Physical port 1 is mapped to logical port 2			
			0011	Physical port 1 is mapped to logical port 3			
			0100 to 1111	Illegal; do not use			

4.4.4.22 F3h: Port Map 3

Bit	Byte Name	Description						
7:0	PRTM3	PortMap Register for Ports 1 and 2: when a hub is enumerated by a USB host controller, the hub is only permitted to report how many ports it has; the hub is not permitted to select a numerical range or assignment. The host controller will number the downstream ports of the hub starting with the number 1, up to the number of ports that the hub reports having.						
		The host's port number is called the Logical Port Number and the physical port on the hub is the Physical Port Number. When mapping mode is enabled (see PORTMAP12.PRTMAP_EN: Configuration Data Byte 3) the hub's downstream port numbers can be remapped to different logical port numbers (assigned by the host).						
		Note: Contiguous logical port numbers must be implemented, starting from number 1 up to the maximum number of enabled ports. This ensures that the hub's ports are numbered in accordance with the way a host will communicate with the ports.						
		TABLE 4-6: PORT MAP REGISTER FOR PORT 3						
		Bit [7:4] 0000 rsvd						
			0001	rsvd				
			0010	rsvd				
		0011 rsvd						
		0100 Illegal; do not use to 1111						
		Bit [3:0] 0000 Physical port 3 is disabled						
		0001 Physical port 3 is mapped to logical port 1						
		0010 Physical port 3 is mapped to logical port 2						
			0011	Physical port 3 is mapped to logical port 3				
			0100 to 1111	Illegal; do not use				

4.4.4.23 F4h-: Reserved

Byte	Byte Name	Description
6:0	rsvd	

4.4.4.24 F7h-FBh: Not Applicable

Bit	Byte Name	Description
7:0	N/A	

4.4.4.25 FCh-FFh: Non-Volatile Storage Signature

Byte	Name	Description	
3:0		This signature is used to verify the validity of the data in the first 256 bytes of the configuration area. The signature must be set to ATA2 for USB4640/USB4640i.	

4.4.5 INTERNAL FLASH MEDIA CONTROLLER EXTENDED CONFIGURATIONS

Enable registers 100h-17Fh by setting bit 7 of bmAttribute.

4.4.5.1 100h-106h: Combo LUN 0 Identifier String

Byte	Name	Description
6:0	CLUN0_ID_STR	If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings.

4.4.5.2 107h-17Bh: **Not Applicable**

Byte	Name	Description
116:0	N/A	

4.4.5.3 17Ch -17Fh: Non-Volatile Storage Signature for Extended Configuration

Byte	Name	Description	
3:0	_	This signature is used to verify the validity of the data in the upper 256 bytes if a 512 byte EEPROM is used, otherwise this bank is a read-only configuration area. The signature must be set to ecf1.	

4.4.6 I²C EEPROM

The I^2C EEPROM interface implements a subset of the I^2C Master Specification (refer to I^2C -Bus Specification [6] for I^2C bus protocols). The device's I^2C EEPROM interface is designed to attach to a single dedicated I^2C EEPROM, and it conforms to the Standard-mode I^2C Specification (100 kbps transfer rate and 7-bit addressing) for protocol and electrical compatibility.

Note:	Extensions to the ${}^{\beta}C$ Specification are not supported. The device acts as the master and generates the
	serial clock SCL, controls the bus access (determines which device acts as the transmitter and which
	device acts as the receiver), and generates the START and STOP conditions.

4.4.6.1 Protocol Implementation

The hub will only access an EEPROM using the sequential read protocol as outlined in Chapter 8 of the *Microchip 24AA02/24LC02B Data Sheet* [8].

4.4.6.2 Pull-Up Resistor

The circuit board designer is required to place external pull-up resistors (10 k Ω recommended) on the SPI_DO/SDA/SPI_SPD_SEL and SPI_CLK/SCL lines (per SMBus 1.0 Specification [7] and EEPROM manufacturer guidelines) to VDD33 in order to assure proper operation.

4.5 Default Configuration Option

The Microchip device can be configured via its internal default configuration. Please see Section 4.3.2 on page 21 for specific details on how to enable default configuration. Please refer to Table 4-1 for the internal default values that are loaded when this option is selected.

4.5.1 EXTERNAL HARDWARE NRESET

A valid hardware reset is defined as assertion of **nRESET** for a minimum of 1 μ s after all power supplies are within operating range. While reset is asserted, the device (and its associated external circuitry) consumes less than 500 μ A of current.

Assertion of nRESET (external pin) causes the following:

- 1. All downstream ports are disabled and PRTCTL power to downstream devices is removed
- 2. The PHYs are disabled and the differential pairs will be in a high-impedance state
- 3. All transactions immediately terminate; no states are saved
- 4. All internal registers return to the default state (in most cases, 00h)
- 5. The external crystal oscillator is halted
- 6. The PLL is halted

4.5.1.1 nRESET for EEPROM Configuration

FIGURE 4-1: NRESET TIMING FOR EEPROM MODE

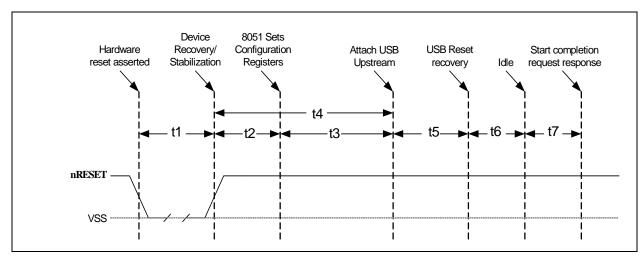


TABLE 4-7: NRESET TIMING FOR EEPROM MODE

Name	Description	MIN	TYP	MAX	Units
t1	nRESET asserted	1			μsec
t2	Device recovery/stabilization			500	μsec
t3	8051 programs device configuration		20	50	msec
t4	USB attach (Note)			100	msec
t5	Host acknowledges attach and signals USB reset	100			msec
t6	USB idle		Undefined		msec
t7	Completion time for requests (with or without data stage)			5	msec

Note: All power supplies must have reached the operating levels mandated in Section 6.0 on page 43, prior to (or coincident with) the assertion of **nRESET**.

4.5.2 USB BUS RESET

In response to the upstream port signaling a reset to the device, the device does the following:

- Sets default address to 0
- 2. Sets configuration to: Unconfigured

- 3. Negates PRTCTL[3:2] to all downstream ports
- 4. Clears all TT buffers
- 5. Moves device from suspended to active (if suspended)
- 6. Complies with Section 11.10 of the USB 2.0 Specification for behavior after completion of the reset sequence

Note: The device does not propagate the upstream USB reset to downstream devices.

The host then configures the device and the device's downstream port devices in accordance with the USB 2.0 Specification.

5.0 AC SPECIFICATIONS

5.1 Oscillator/Crystal

Parallel Resonant, Fundamental Mode, 24 MHz \pm 350 ppm.

FIGURE 5-1: TYPICAL CRYSTAL CIRCUIT

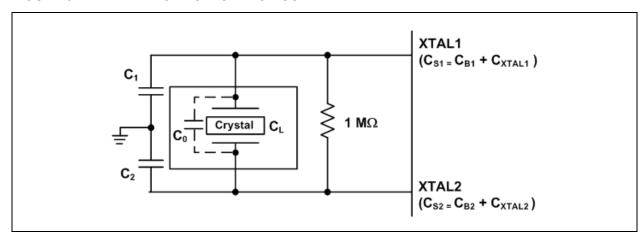
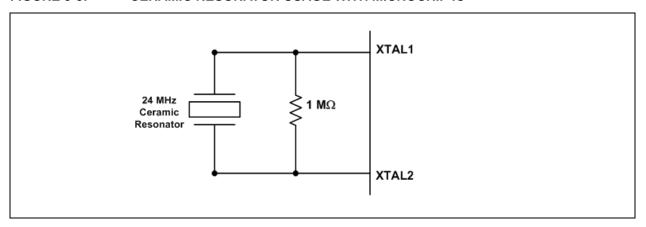


TABLE 5-1: CRYSTAL CIRCUIT LEGEND

Symbol	Description	In Accordance With				
C ₀	Crystal shunt capacitance	Crystal manufacturaria anglification (Coa Note E 1)				
CL	Crystal load capacitance	Crystal manufacturer's specification (See Note 5-1)				
C _B	Total board or trace capacitance	OEM board design				
C _S	Stray capacitance	Microchip IC and OEM board design				
C _{XTAL}	XTAL pin input capacitance	Microchip IC				
C ₁ C ₂	Load capacitors installed on OEM board	Calculated values based on Figure 5-2, "Capacitance Formulas" (See Note 5-2)				

FIGURE 5-2: CAPACITANCE FORMULAS


$$C_1 = 2 \times (C_L - C_0) - C_{S1}$$

 $C_2 = 2 \times (C_L - C_0) - C_{S2}$

- Note 5-1 \mathbf{C}_0 is usually included (subtracted by the crystal manufacturer) in the specification for \mathbf{C}_L and should be set to '0' for use in the calculation of the capacitance formulas in Figure 5-2, "Capacitance Formulas". However, the PCB may present a parasitic capacitance between XTAL1 and XTAL2. For an accurate calculation of \mathbf{C}_1 and \mathbf{C}_2 , take the parasitic capacitance between traces XTAL1 and XTAL2 into account.
- Note 5-2 Each of these capacitance values is typically approximately 18 pF.

5.2 Ceramic Resonator

24 MHz \pm 350 ppm

FIGURE 5-3: CERAMIC RESONATOR USAGE WITH MICROCHIP IC

5.3 External Clock

50% Duty cycle \pm 10%, 24 MHz \pm 350 ppm, Jitter < 100 ps rms.

The external clock is recommended to conform to the signaling level designated in the *JESD76-2 Specification* on 1.8 V CMOS Logic. **XTAL2** should be treated as a no connect.

5.3.1 I^2C EEPROM

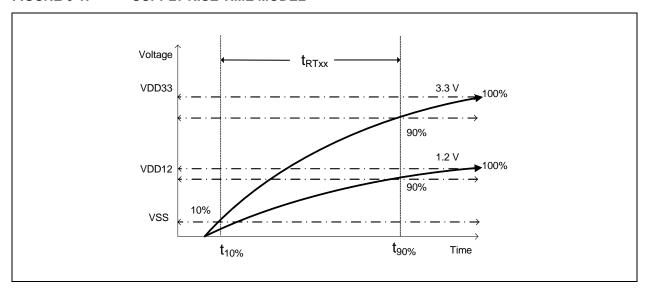
Frequency is fixed at 58.6 kHz \pm 20%

5.3.2 USB 2.0

The Microchip device conforms to all voltage, power, and timing characteristics and specifications as set forth in the USB 2.0 Specification. Please refer to the USB 2.0 Specification for more information.

6.0 DC PARAMETERS

6.1 Maximum Ratings


Parameter	Symbol	MIN	MAX	Units	Comments
Storage Temperature	T _{STOR}	-55	150	°C	
Lead Temperature				°C	Refer to JEDEC Specification J-STD-020D [5]
1.2 V supply voltage	VDD12	-0.5	1.5	V	
3.3 V supply voltage	VDD33	-0.5	4.0	V	
Voltage on USB+ and USB- pins		-0.5	(3.3 V supply voltage + 2) ≤ 6	V	
Voltage on CRD_PWR		-0.5	VDD33 + 0.3	V	When internal power FET operation of these pins are enabled, these pins may be simultaneously shorted to ground or any voltage up to 3.63 V indefinitely, without damage to the device as long as VDD33 is less than 3.63 V and T _A is less than 70°C.
Voltage on any signal pin		-0.5	VDD33 + 0.3	V	
Voltage on XTAL1		-0.5	3.6 V		
Voltage on XTAL2		-0.5	2.0 V		

- **Note 1:** Stresses above the specified parameters could cause permanent damage to the device. This is a stress rating only. Therefore, functional operation of the device at any condition above those indicated in the operation sections of this specification are not implied.
 - 2: When powering this device from laboratory or system power supplies, it is important that the absolute maximum ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. When this possibility exists, it is suggested that a clamp circuit be used.

6.2 Operating Conditions

Parameter	Symbol	MIN	MAX	Units	Comments
Commercial USB4640 Operating Temperature	T _A	0	70	°C	Ambient temperature in still air.
Industrial USB4640i Operating Temperature	T _A	-40	85	°C	Ambient temperature in still air.
1.2 V supply voltage	VDD12	1.1	1.3	V	The ripple on VDD12 must be less than 50 mV peak to peak.
1.2 V supply rise time	t _{RT12}	0	400	μS	Under all conditions the voltage on the 1.2 V supply must be below the 3.3 V supply. (Figure 6-1)
3.3 V supply voltage	VDD33	3.0	3.6	V	A 3.3 V regulator with an output tolerance of 1% must be used if the output of the internal power FET's must support a 5% tolerance.
3.3 V supply rise time	t _{RT}	0	400	μS	(Figure 6-1)
Voltage on USB+ and USB- pins		-0.3	5.5	V	If any 3.3 V supply voltage drops below 3.0 V, then the MAX becomes: (3.3 V supply voltage) + 0.5 ≤ 5.5
Voltage on any signal pin		-0.3	VDD33	V	
Voltage on XTAL1		-0.3	2.0	V	
Voltage on XTAL2		-0.3	2.0	V	

FIGURE 6-1: SUPPLY RISE TIME MODEL

6.3 DC Electrical Characteristics

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
I, IPU, IPD Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TLL Levels
High Input Level	V _{IHI}	2.0			V	
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
IS Type Input Buffer						
Low Input Level	V_{ILI}			0.8	V	TTL Levels
High Input Level	V_{IHI}	2.0			V	
Hysteresis	V _{HYSI}		420		mV	
ICLK Input Buffer						
Low Input Level	V _{ILCK}			0.5	V	
High Input Level	V _{IHCK}	1.4			V	
Input Leakage	I _{IL}	-10		+10	μΑ	$V_{IN} = 0$ to VDD33
Input Leakage (All I and IS buffers)						
Low Input Leakage	I _{IL}	-10		+10	μΑ	$V_{IN} = 0$
High Input Leakage	I _{IH}	-10		+10	μΑ	$V_{IN} = VDD33$
I/O6, I/OD6PU Type Buffers						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 6 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} -0.4			V	I _{OH} = -6 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μА	V _{IN} = 0 to VDD33 (Note 6-1)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
O8, O8PD, 08PU, I/O8, I/O8PD, and I/O8PU Type Buffers						
Low Output Level	V _{OL}				V	I _{OL} = 8 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -8 mA @ VDD33 = 3.3 V
Output Leakage	l _{OL}	-10		+10	μА	V _{IN} = 0 to VDD33 (Note 6-1)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
O12, I/O12, and I/O12PD Type Buffers						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 12 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -12 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μА	V _{IN} = 0 to VDD33 (Note 6-1)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	

Parameter	Symbol	MIN	TYP	MAX	Units	Comments
IO-U						(Note 6-2)
I-R						(Note 6-3)
I/O200 Integrated Power FET for CRD_PWR						
High Output Current	I _{OUT}	200			mA	$Vdrop_{FET} = 0.46 V$
Low Output Current (Note 6-4)	I _{OUT}	100			mA	$Vdrop_{FET} = 0.23 V$
On Resistance (Note 6-4)	R _{DSON}			2.1	Ω	$I_{FET} = 70 \text{ mA}$
Output Voltage Rise Time	t _{DSON}			800	μS	$C_{LOAD} = 10 \mu F$
Integrated Power FET Set to 100 mA						
Output Current (Note 6-4)	I _{OUT}	100			mA	$Vdrop_{FET} = 0.22 V$
Short Circuit Current Limit	I _{SC}			140	mA	Vout _{FET} = 0 V
On Resistance (Note 6-4)	R _{DSON}			2.1	Ω	$I_{FET} = 70 \text{ mA}$
Output Voltage Rise Time	t _{DSON}			800	μS	$C_{LOAD} = 10 \mu F$
Integrated Power FET Set to 200 mA						
Output Current (Note 6-4)	I _{OUT}	200			mA	$Vdrop_{FET} = 0.46 V$
Short Circuit Current Limit	I _{SC}			181	mA	$Vout_{FET} = 0 V$
On Resistance (Note 6-4)	R _{DSON}			2.1	Ω	$I_{FET} = 70 \text{ mA}$
Output Voltage Rise Time	t _{DSON}			800	μS	$C_{LOAD} = 10 \mu F$
Supply Current Unconfigured						(Note 6-6)
USB4640	I _{CCINTHS}		58	60	mA	
USB4640i	I _{CCINTHS}		58	62	mA	
Supply Current Configured 1 downstream port						(Note 6-6)
USB4640	I _{HCH1}		155	160	mA	
USB4640i	I _{HCH1}		155	165	mA	
Supply Current Configured Each additional downstream port						(Note 6-6)
USB4640			30	35	mA	
USB4640i			30	40	mA	
HSIC_DAT, HSIC_STROBE Driver Impedance	I _D	40	46	60	Ω	(Note 6-5)
Supply Current Suspend						(Note 6-6)
USB4640	I _{CSBY}		210	375	μΑ	
USB4640i	I _{CSBY}		210	450	μΑ	
Supply Current Reset						(Note 6-6)
USB4640	I _{RST}		220	400	μΑ	
USB4640i	I _{RST}		220	500	μΑ	

- **Note 6-1** Output leakage is measured with the current pins in high impedance.
- Note 6-2 See the USB 2.0 Specification, Chapter 7, for USB DC electrical characteristics
- **Note 6-3** RBIAS is a 3.3 V tolerant analog pin.
- **Note 6-4** Output current range is controlled by program software. The software disables the FET during short circuit condition.
- Note 6-5 Refer to the High-Speed Inter-Chip USB Electrical Specification Revision 1.0 [2].
- Note 6-6 Typical and maximum values were characterized using the following temperature ranges: The USB4640 supports the commercial temperature range of 0°C to +70°C.

The USB4640i supports the industrial temperature range of -40°C to +85°C.

6.4 Capacitance

 $T_A = 25$ °C; fc = 1 MHz; VDD33 = 3.3 V

TABLE 6-1: PIN CAPACITANCE

Parameter	Symbol		Limits		Unit	Test Condition
	Symbol	MIN	TYP	MAX	Oille	lest Condition
Clock Input Capacitance	C _{XTAL}			2	pF	All pins (except USB pins and pins under test) are tied to AC ground.
Input Capacitance	C _{IN}			10	pF	
Output Capacitance	C _{OUT}			20	pF	

7.0 TEMPERATURE SPECIFICATIONS

TABLE 7-1: TEMPERATURE SPECIFICATIONS

Parameter		Symbol	Limitations		l lasia	To at Oom disting a	
			MIN	TYP	MAX	Unit	Test Conditions
TEMPERATURE SPECIFICATI	ONS						
Operating Junction Temperature	Э	TJ	0	_	+125	°C	
Ambient Temperature	Commercial	T _A	0	_	+70	°C	Ambient temperature in still air
	Industrial	T _A	-40	_	+85	°C	Ambient temperature in still air
Storage Temperature		T _S	-55	_	+150	°C	
PACKAGE THERMAL RESIST	ANCE						
	0 m/s	θ_{JA}	_	27	_	°C/W	
48-pin QFN (7 X 7)	1 m/s		_	24	_	°C/W	
	2.5 m/s		_	21	_	°C/W	
48-pin QFN (7 X 7) (Junction to Case)		θ_{JC}	_	2.1	_	°C/W	
48-pin QFN (7 X 7) (Junction to Board)		θ_{JB}	_	15	_	°C/W	

8.0 PACKAGE SPECIFICATIONS

FIGURE 8-1: USB4640/USB4640i 48-Pin QFN, 7 x 7mm Body, 0.4mm Lead Length

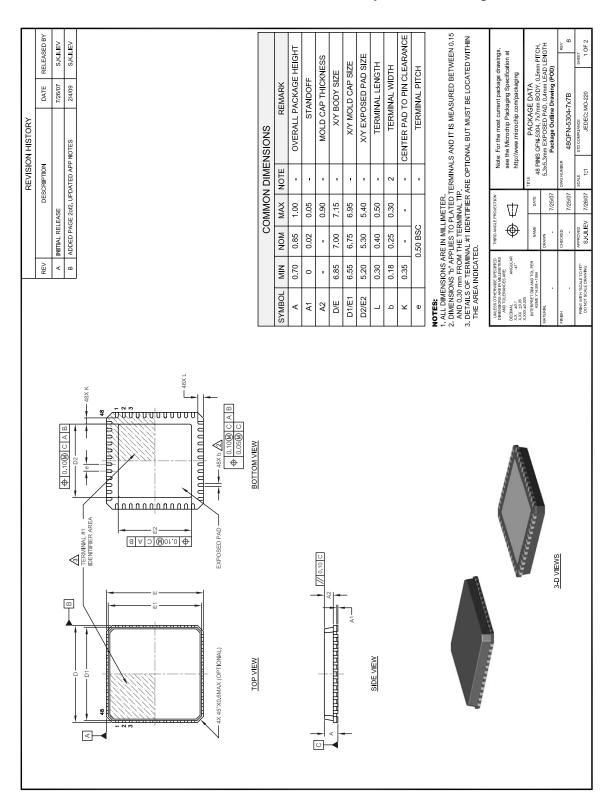
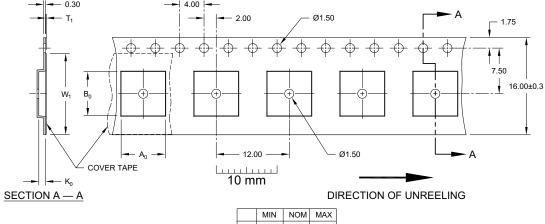



FIGURE 8-1: USB4640/USB4640i 48-Pin QFN, 7 x 7mm Body, 0.4mm Lead Length (CONTINUED)

REVISION HISTORY	REV	D PATTERN DIMENSIONS SYMBOL MIN NOM MAX GOOGLE - 6.10 D2/IGE - 6.10 D2/I	1. THE USER MAY MODIFY THE PCB LAND PATTERN DIMENSIONS BASED ON THEIR EXPERIENCE AND/OR PROCESS CAPABILITY. 2. THE LAND PATTERN CORRESPONDING TO THE PACKAGE EXPOSED PAD (IN THE CENTER) CAN BE LARGER, AND WITH DIFFERENT SHAPE THAN THE (IN THE CENTER) CAN BE LARGER, AND WITH DIFFERENT SHAPE THAN THE EXPOSED PAD ON THE PACKAGE. HOWEVER, THE SOLDERABLE AREA, AS DEFINED BY THE SOLDER MASK (SMD), OR NON-SOLDER MASK DEFINED (NSMD), SHOULD BE AS SHOWN FOR THE BEST THERMAL & ELECTRICAL PERFORMANCE. 3. MAXIMUM THERMAL AND ELECTRICAL PERFORMANCE IS ACHIEVED WHEN ARRAY OF SOLID VIAS IS INCORPORATED IN THE CENTER LAND PATTERN. (See Options 1 & 2) 4. THE VIAS SHOULD BE AT 0.8 to 1.2MM PITCH WITH 0.30 TO 0.40MM DIAMETER, AND 1 OZ COPPER VIA BARREL PLATING. 5. NON SOLDER MASK DEFINED (NSMD) PAD DESIGN IS RECOMMENDED FOR PERIMETER LANDS. 6. A LASER-CUT STANILESS STEEL STENCIL IS RECOMMENDED WITH ELECTRO POLISHED TRAPEZOIDAL WALLS. THE RECOMMENDED STENCIL THICKNESS IS 0.125 mm FOR PITCHES 0.4 and 0.5 mm. 7. RECOMMENDED STENCIL AREA & ASPECT RATIOS ARE 0.66 & 1.5 (MIN) RESPECTIVELY. 8. RECOMMENDED STENCIL APERTURES ARE AS SHOWN. 9. TIS RECOMMENDED TO USE "NO-CLEAN" TYPE 3 SOLDER PASTE. 9. TIS RECOMMENDED TO USE "NO-CLEAN" TYPE 3 SOLDER PASTE.	THE REFLOW PKOFILE DEFENDS ON THE EXACT SOLDER PASTE USED AND THE PA
	• GD • • r see detail 'W see detail' - GD • • r see detail 'W see detail' - GD • • GD	CE EZ CEECRIL "B' FOR CRITER PAD DESIGN CENTRAL "B' FOR CENTRE PAD DESIGN CENTRAL "	SOUGER MASK 0.05 MILL RADIUS FULL RADIUS IS OPTIONAL OPTIONAL STENCIL OPENING - PERIMETER LANDS OPTION 3 WORNEL LOGGED THERMAL WAS WORNEL LOGGED THERMAL WAS OPTION 3 WORNEL LOGGED THERMAL WAS WORNEL LOGGED THERMA	Thermal Vise: 00.30mm, 55.5 Martic @ 1.50mm Plats 55.5 Martic @ 1.50mm P

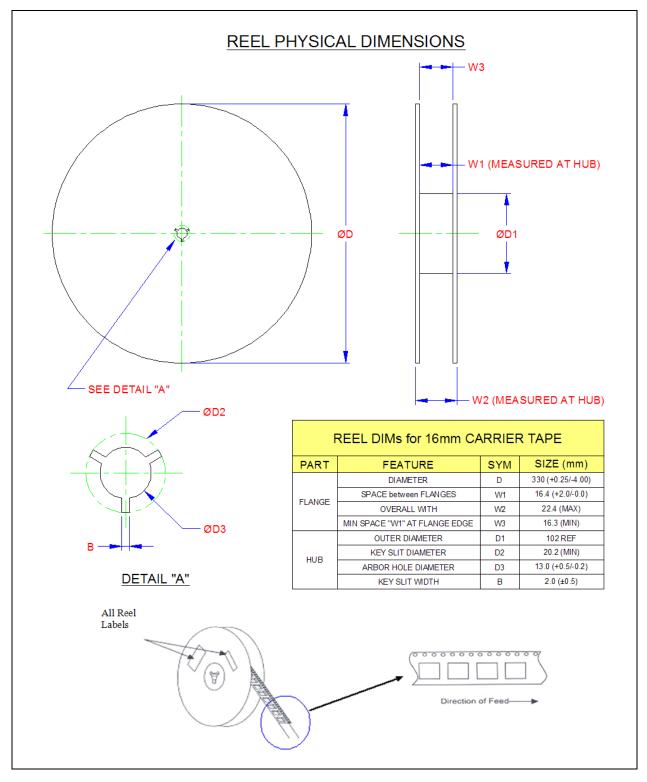

8.1 Tape and Reel Specifications

FIGURE 8-2: 48-PIN PACKAGE TAPE SPECIFICATIONS

	MIN	NOM	MAX
A ₀	7.25	7.25	7.35
B ₀	7.25	7.25	7.35
K ₀	1.00	1.10	1.20
W ₁	13.20	13.30	13.40
T ₁	-	-	0.10

FIGURE 8-3: 48-PIN PACKAGE REEL SPECIFICATIONS

APPENDIX A: ACRONYMS

ACK: Handshake packet (positive acknowledgment)

EOF: End of (micro) Frame

FM: Flash Media

FMC: Flash Media Controller FS: Full-Speed Device LS: Low-Speed Device HS: Hi-Speed Device

I²C[®]: Inter-Integrated Circuit¹

MMC: MultiMediaCard MS: Memory Stick

MSC: Memory Stick Controller ocs: Over-current Sense PHY: Physical Layer PLL:

SD: Secure Digital

SDC: Secure Digital Controller TXD: Transmit eXchange Data

Phase-Locked Loop

UART: Universal Asynchronous Receiver-Transmitter

UCHAR: **Unsigned Character** UINT: **Unsigned Integer**

^{1.} I²C is a registered trademark of Philips Corporation.

APPENDIX B: REFERENCES

- Universal Serial Bus Specification, Version 2.0, April 27, 2000 (12/7/2000 and 5/28/2002 Errata)
 USB Implementers Forum, Inc. http://www.usb.org
- USB 2.0 Supplement High-Speed Inter-Chip USB Electrical Specification Revision 1.0. 09/23/07.
 USB Implementers Forum, Inc. http://www.usb.org/developers/docs/
- 3. HSIC ECN. May 25, 2010
 - USB Implementers Forum, Inc. http://www.usb.org/developers/docs/
- 4. The Unicode Standard, Worldwide Character Encoding Version 4.0 The Unicode Consortium. http://www.unicode.org
- 5. JEDEC Specification J-STD-020D
 - JEDEC Global Standards for the Microelectronics Industry.http://www.jedec.org/standards-documents
- 6. I²C-Bus Specification Version 1.1 NXP (formerly a division of Philips). http://www.nxp.com/products/interface_control/i2c/
- System Management Bus Specification, version 1.0 SMBus. http://smbus.org/specs/
 - Microchip 24AA02/24LC02B
 - Microchip Technology Inc. http://www.microchip.com/

APPENDIX C: DATA SHEET REVISION HISTORY

TABLE C-1: REVISION HISTORY

Revision	Section/Figure/Entry	Correction			
DS00001922B (11-14-18)	Table 4-3	Changed "ATA2" to "ata2"			
	Section 4.4 "Internal Flash Media Controller Extended Configurations"	Removed subsection,"4.4.7 IN-CIRCUIT EEPROM PROGRAMMING"			
DS00001922A (05-01-15)	Throughout document	GPIOs and SDIO support removed			
	REV A replaces previous SMSC version Rev. 1.3 (03-13-13)				

NOTES:

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	I T	E :
Device:	USB4640, USB4640i	b)
Temperature Range:	Blank = 0°C to +70°C (Extended Commercial) i = -40°C to +85°C (Industrial)	c) d)
Package:	HZH = 48-pin QFN	
Tape and Reel Option:	Blank = Standard packaging (tray) TR = Tape and Reel ⁽¹⁾	N

Examples:

- a) USB4640-HZH-03 48-pin QFN, 7 x 7mm RoHS Compliant Package, Tray
- USB4640-HZH-03-TR 48-pin QFN, 7 x 7mm
 - RoHS Compliant Package, Tape & Reel
- c) USB4640i-HZH-03 48-pin QFN, 7 x 7mm RoHS Compliant Package, Tray
- d) USB4640i-HZH-03-TR 48-pin QFN, 7 x 7mm RoHS Compliant Package, Tape & Reel

ote 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape & Reel option.

Reel size is 2,500.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-3860-1

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou

Tel: 86-186-6233-1526 China - Wuhan

Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

USB4640-HZH-03 USB4640I-HZH-03 USB4640-HZH-03-TR USB4640I-HZH-03-TR