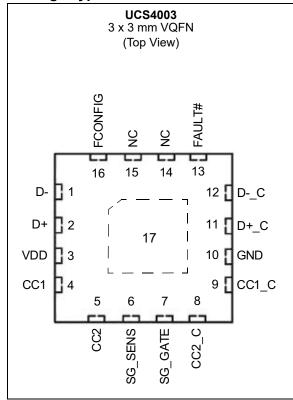


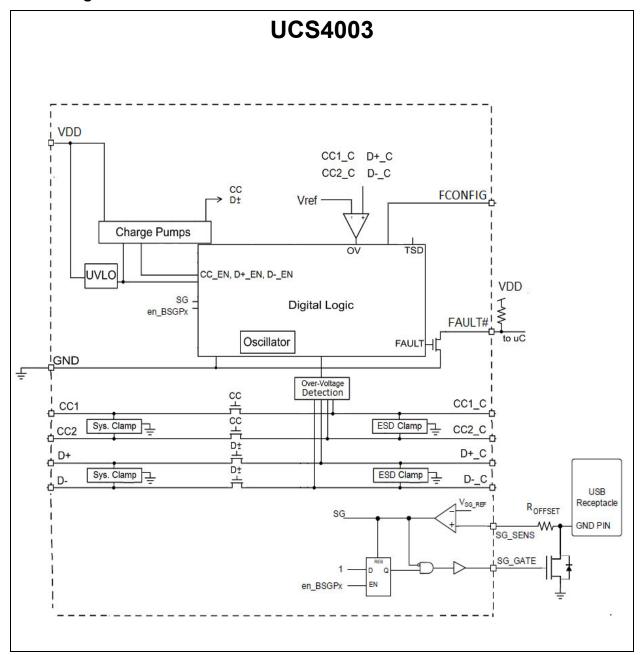
USB Type-C Power Delivery Port Protector

Description

The UCS4003 is a USB Type-C Power Delivery port protector for Configuration Channel (CC), and D+, D- (data lines). The CC, D+, D- and SG_SENS (short-to-GND) are ESD-protected to meet IEC 61000-4-2 and ISO 10605. The UCS4003 provides short-to-battery protection on CC, D+ and D-. It also provides battery short-to-GND protection for the charging port. Additionally, it is configurable to assert FAULT# in case of any fault or in case of any fault except D+/D- or CC overvoltage.


Features

- AEC-Q100 Automotive Qualified, See Product Identification System
- Short-to-Battery Protection on D+, D-, and CC (24V DC)
- Battery Short-to-GND Protection for Charging Port
- · FAULT# Assertion Configurability
- IEC 61000-4-2 and ISO 10605 ESD Protection on D+, D-, CC and SG SENS
- · Overtemperature Protection (Thermal Shutdown)
- Temperature Range: -40°C to +125°C
- · Supports Power Delivery Protocol


Applications

- USB Type-C Power Delivery
- · Consumer, Industrial and Automotive Protection

Package Type

Block Diagram

1.0 DEVICE OVERVIEW

The UCS4003 is a USB Type-C Power Delivery port protector for D+, D- and CC. The D+, D-, CC and SG_SENS (short-to-GND) are ESD-protected to meet the IEC 61000-4-2 and ISO 10605 standards. The UCS4003 provides short-to-battery protection on D+, D- and CC. The UCS4003 will also provide battery short-to-GND protection for charging ports. Additionally, the UCS4003 is configurable to assert FAULT# in case of any fault or any fault except D+/D- or CC overvoltage as defined in Section 1.4, Fault Configuration (FCONFIG).

The UCS4003 implements VDD undervoltage lockout protection. It also has a thermal shutdown circuit, which will shut the port protection device off when the junction temperature exceeds the limit.

The UCS4003 is a pass-through device that will be transparent to the application and will not affect the signal integrity of the USB data lines or the intended USB application functions, including power delivery.

1.1 D+, D- (USB DATA LINES)

The D+_C and D-_C pins are protected against short to battery and VBUS of the USB application. As shown in Figure 1-1, when the voltage on D+_C/D-_C exceeds $V_{OVP_D\pm}$, the pass FETs for D+, D-, CC1 and CC2 will turn OFF in $t_{OVP_RT_D\pm_C}$ and FAULT# pin asserted in t_{FAULT_ASSERT} . Once the voltage on D+_C/D-_C goes below $V_{OVP_D\pm}$ minus $V_{OVP_D\pm_HYST}$ and $t_{OVP_REC_D\pm_C}$ has elapsed, the UCS4003 will automatically turn all the pass FETs back ON. The FAULT# pin will then be deasserted after $t_{FAULT_DEASSERT}$ elapses.

As shown in Figure 1-2, if the overvoltage condition remains on D+_C/D-_C after $t_{OVP_REC_D\pm_C}$ elapses, all the pass FETs will remain OFF and FAULT# asserted. Once the voltage on D+_C/D-_C goes below $V_{OVP_D\pm}$ minus $V_{OVP_D\pm}$ HYST and $t_{REC_D\pm_C}$ has elapsed, the UCS4003 will automatically turn all the pass FETs back ON. The FAULT# pin will then be deasserted after $t_{FAULT_DEASSERT}$ elapses.

Additionally, the UCS4003 implements voltage clamps after the pass FETs on the D+/D- side of the protection circuit. The purpose of these clamps is to limit the voltage on the D+/D- pins for the duration of $t_{\mbox{\scriptsize OVP_RT_D\pm_C}}$ until the pass FETs are turned OFF.

1.2 CC (CONFIGURATION CHANNEL)

The CC1_C and CC2_C pins are protected against short to battery and VBUS for USB applications implementing higher than 5V on VBUS.

Figure 1-1 shows the overvoltage timing diagram for D+ and D- when the overvoltage condition is shorter than the recovery time. This also applies to CC1_C and CC2_C by replacing D± with its corresponding CCx timing and voltage parameters. When the voltage

on CC1_C/CC2_C exceeds V_{OVP_CCx} , the pass FETs for D+, D-, CC1 and CC2 will turn OFF in $t_{OVP_RT_C-Cx_C}$ and FAULT# pin asserted in t_{FAULT_ASSERT} . Once the voltage on CC1_C/CC2_C goes below V_{OVP_CCx} minus $V_{OVP_CCx_HYST}$ and $t_{OVP_REC_CCx_C}$ has elapsed, the UCS4003 will automatically turn all the pass FETs back ON. The FAULT# pin will then be deasserted after $t_{FAULT_DEASSERT}$ elapses.

Figure 1-2 shows the overvoltage timing diagram for D+ and D- when the overvoltage condition is longer than the recovery time. This also applies to CC1_C and CC2_C by replacing D± with its corresponding CCx timing and voltage parameters. If the overvoltage condition remains on CC1_C/CC2_C after tovered to the condit

Additionally, the UCS4003 implements voltage clamps after the pass FETs on the CC1/CC2 side of the protection circuit. The purpose of these clamps is to limit the voltage on the CC1/CC2 pins for the duration of $t_{\mbox{\scriptsize OVP}\mbox{\scriptsize RT}\mbox{\scriptsize CCx}\mbox{\tiny C}\mbox{\tiny FET}\mbox{\tiny C}\mbox{\tiny C}\mb$

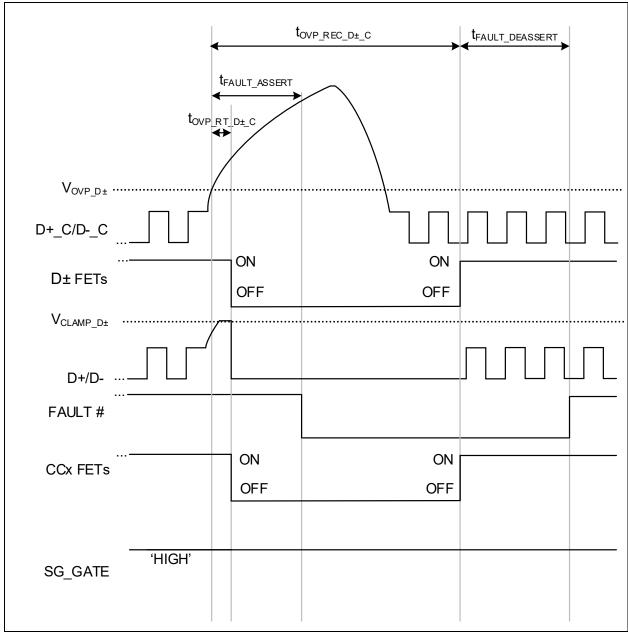


FIGURE 1-1: D+_C/D-_C Overvoltage Shorter than Recovery Time.

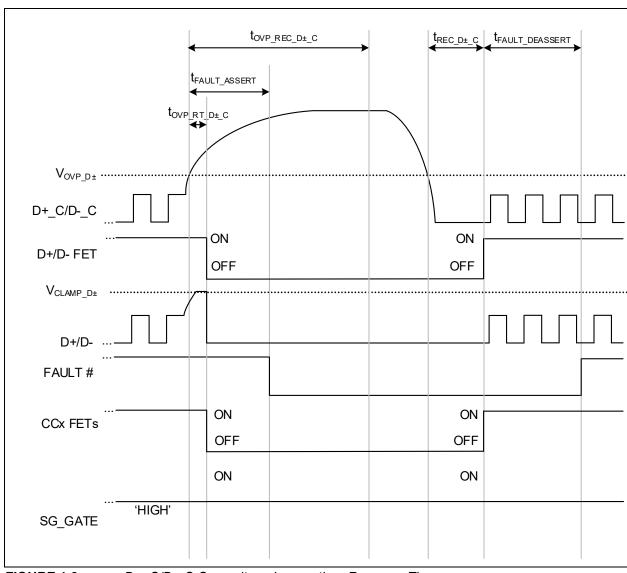


FIGURE 1-2: D+_C/D-_C Overvoltage Longer than Recovery Time.

1.3 SG_SENS, SG_GATE

The SG_SENS and SG_GATE are dedicated protection pins for short-to-GND conditions on a charging port. If this protection feature is not implemented, SG_SENS must be connected to GND and SG_GATE must be left open.

An external FET and a resistor (R_{OFFSET}) may optionally be implemented to protect against battery shorts to GND. The external FET must have an R_{dsON} ranging from 5 m Ω to 30 m Ω (R_{FET}) and must be able to sustain I_{DS} for t_{STG RT}.

The amount of current the external FET must be able to sustain can be computed using Equation 1-1.

EQUATION 1-1:

$$I_{DS} = \frac{V_{DS}}{R_{FET}}$$

The drain to source voltage (V_{DS}) on the external FET can be computed using Equation 1-2:

EQUATION 1-2:

$$V_{DS} = \frac{V_{BAT} \times R_{FET}}{R_{SHORT} + R_{CABLE} + R_{FET}}$$

The minimum voltage shorted to GND must be greater than 6V (V_{BAT}) in order to guarantee the short-to-GND detection. In addition to FET RdsON and minimum voltage shorted to GND, cable resistance (R_{CABLE})

must be taken into account, as well as the resistance of the short (R_{SHORT}). The following formula can then be used to compute the voltage on the SG SENS pin:

EQUATION 1-3:

$$V_{SG_SENS} = R_{OFFSET} \! \times \! I_{OFFSET} \! + V_{DS}$$

Please refer to Figure 1-3 for short-to-GND simplified application diagram.

As shown in Figure 1-4, when the SG_SENS pin voltage goes above V_{SG_IH} , the SG signal is asserted. The SG_GATE pin will drive low to turn OFF the external FET and the pass FETs for D+, D-, CC1 and CC2 will turn OFF in t_{STG_RT} and FAULT# pin asserted in

 $t_{\sf FAULT_ASSERT}.$ Once the voltage on SG_SENS pin goes below $V_{\sf SG_IL}$ and $t_{\sf SG_REC}$ has elapsed, the UCS4003 will automatically turn all internal pass FETs back ON and drive the SG_GATE pin high to turn the external FET back ON. The FAULT# pin will then be deasserted after $t_{\sf FAULT_DEASSERT}$ elapses.

As shown in Figure 1-5, if the short-to-GND condition is still present after t_{SG_REC} elapses, the SG_GATE pin will remain driven low, all pass FETs will remain OFF and the FAULT# asserted. Once the voltage on SG_SENS goes below V_{SG_IL} and $t_{SG_REC_LONG}$ has elapsed, the UCS4003 will automatically turn all internal pass FETs back ON and drive the SG_GATE pin high to turn the external FET back ON. The FAULT# pin will then be deasserted after $t_{FAULT_DEASSERT}$ elapses.

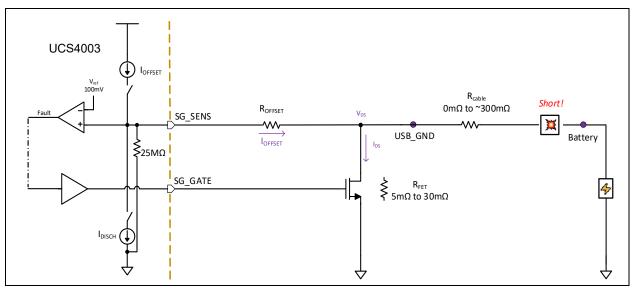


FIGURE 1-3: Short-to-GND System Protection.

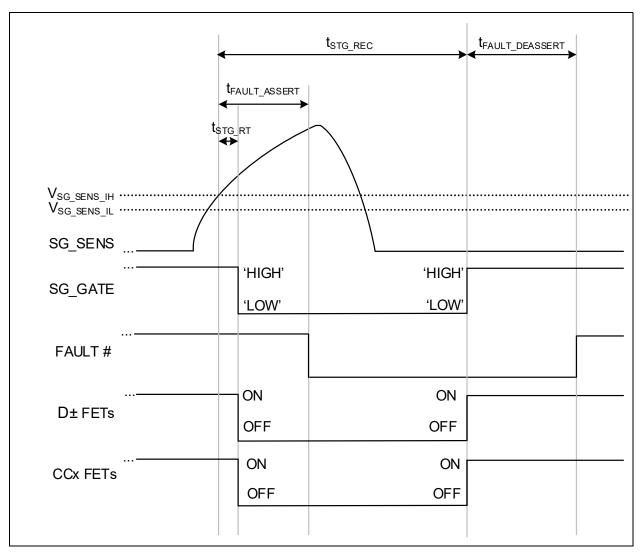


FIGURE 1-4: Short-to-GND Shorter than Recovery Time.

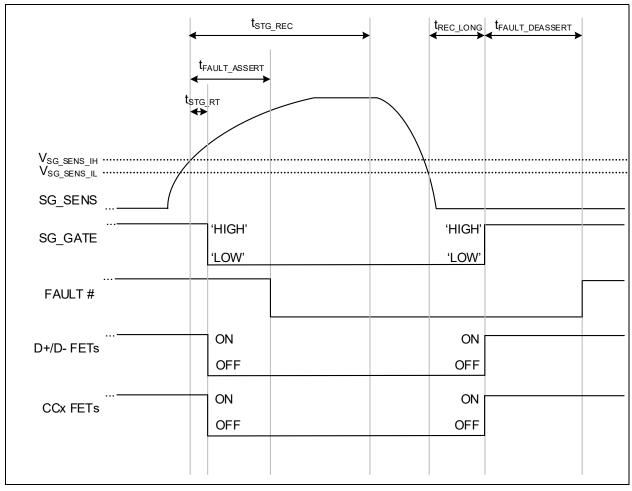


FIGURE 1-5: Short-to-GND Longer than Recovery Time.

1.4 Fault Configuration (FCONFIG)

The UCS4003 allows the user to configure the FAULT# behavior via the FCONFIG pin as follows:

- FCONFIG = GND or 'OPEN'
 Assert FAULT# in case of any fault
- FCONFIG = 'HIGH'
 Assert FAULT# in case of any fault except D+/D or CC overvoltage

Although the FAULT# may not be asserted based upon the specific FCONFIG setting, the pass FETs for D+, D-, CC1 and CC2 will still turn OFF and back ON based upon the Fault condition.

1.5 Thermal Shutdown

The thermal shutdown circuit sends the TSD signal to the digital logic when the die temperature exceeds T_{TSD} . It has a hysteresis of T_{TSD} HYST.

1.6 Operating Mode

When VDD is below the V_{DD_UVLO} threshold, the UCS4003 functionality is fully disabled except for the short-to-GND gate driver.

When VDD is higher than the V_{DD_UVLO} threshold, the D+, D- and CC MOSFETs, the short-to-GND gate driver, and the Fault detection blocks are fully enabled. The UCS4003 will remain in the same power state when a Fault condition has occurred.

1.6.1 FAULT HANDLING

A Fault state means that at least one of the following conditions has occurred:

- Overvoltage (see Figure 1-6 for D+, D- example)
- Undervoltage
- · Short-to-GND
- · Thermal Shutdown

The digital logic continuously monitors the comparators outputs. Any Fault will cause the rest of the protection circuit blocks in the UCS4003 to be enabled. Example: If there is an overvoltage on D+, all the UCS4003 pass FETs will be disabled. The only protection circuit that will remain active, if implemented, is the external FET for battery short-to-GND (keeping GND connected).

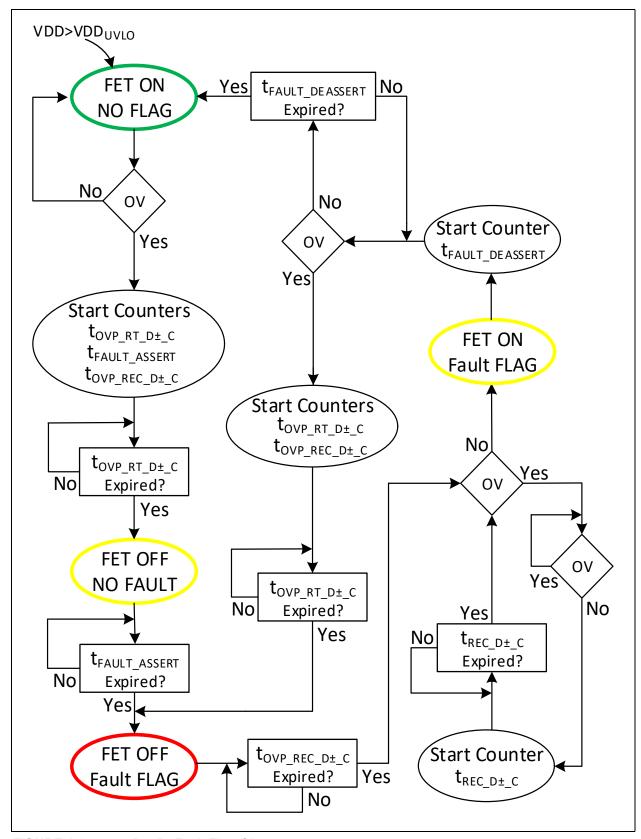


FIGURE 1-6: D+, D- Fault Flow Chart.

1.7 FUNCTIONAL PIN DESCRIPTIONS

The table below describes the function of each pin.

TABLE 1-1: PIN DESCRIPTION TABLE

Pin	Symbol	Pin Type	Description					
1	D-	I/O	Module side of the High-Speed USB data line (-). This pin connects to the D- of the USB transceiver.					
2	D+	I/O	Module side of the High-Speed USB data line (+). This pin connects to the D- of the USB transceiver.					
3	VDD	Power	Power supply					
4	CC1	I/O	Module side of the CC1 overvoltage protection FET. This pin is connected to either of the CC pins of the CC/PD Controller.					
5	CC2	I/O	Module side of the CC2 overvoltage protection FET. This pin is connected to either of the CC pins of the CC/PD Controller.					
6	SG_SENS	I	Short-to-GND protection sense input. This pin must be grounded when the protection feature is not implemented.					
7	SG_GATE	0	Short-to-GND protection gate drive. This pin must be left open when the protection feature is not implemented.					
8	CC2_C	I/O	Connector side of the CC2 overvoltage protection FET. This pin is connected to either of the CC pins of the USB connector.					
9	CC1_C	I/O	Connector side of the CC1 overvoltage protection FET. This pin is connected to either of the CC pins of the USB connector.					
10	GND	Ground	Ground for the power supply					
11	D+_C	I/O	Connector side of the High-Speed USB data line (+). This pin connects to the D+ of the USB connector.					
12	DC	I/O	Connector side of the High-Speed USB data line (-). This pin connects to the D-of the USB connector.					
13	FAULT#	Open Drain Output	A logic low state indicates a Fault condition. This pin requires an external pull-up resistor.					
14, 15	NC	Not Connected	Connect to ground					
16	FCONFIG	I	FAULT# assertion configuration pin 'low' or 'open' = FAULT# asserted in case of any Fault 'high' = FAULT# asserted in case of any Fault except D+/D- or CC overvoltage					
17	EP	Exposed Pad	Exposed pad is NOT electrically connected. It is recommended to connect the exposed pad to ground.					

1.8 Typical Applications

Figure 1-7 illustrates an example of a typical application of the UCS4003.

FIGURE 1-7: Typical Application.

2.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†]

Voltage on D+_C, DC, CC1_C, CC2_C, SG_SENS pins	0.3V to 25V
Voltage on any other pin to ground	0.3V to 6V
Current on the FAULT# pin	10 mA
Operating Junction Temperature	40°C to +125°C
Storage Temperature	55°C to +150°C
Junction-to-Ambient Thermal Resistance	62°C/W
ESD protection on D+_C, DC, CC1_C, CC2_C, SG_SENS, GND pins	
(IEC 61000-4-2: 150pF, 330Ω)	±8 kV Contact, ±15 kV Air
(IEC 61000-4-2: 150pF, 330 Ω)	
	±8 kV Contact, ±15 kV Air (1)
ESD protection on CC1_C, CC2_C, SG_SENS, GND pins (ISO 10605: 330pF, 2kΩ)	±8 kV Contact, ±15 kV Air (1)
ESD protection on CC1_C, CC2_C, SG_SENS, GND pins (ISO 10605: 330pF, $2k\Omega$) ESD protection on D+_C, DC pins (ISO 10605: 330pF, $2k\Omega$)	±8 kV Contact, ±15 kV Air ⁽¹⁾ ±7 kV Contact, ±15 kV Air ⁽¹⁾
ESD protection on CC1_C, CC2_C, SG_SENS, GND pins (ISO 10605: 330pF, 2kΩ) ESD protection on D+_C, DC pins (ISO 10605: 330pF, 2kΩ) ESD protection on D+_C, DC, CC1_C, CC2_C, SG_SENS, GND pins	±8 kV Contact, ±15 kV Air ⁽¹⁾ ±7 kV Contact, ±15 kV Air ⁽¹⁾ ±6 kV

[†] **NOTICE:** Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: System level ESD testing setup is shown in Figure 1-7.

TABLE 2-1: RECOMMENDED OPERATING CONDITIONS

Parameters	Pin/s	Min	Тур	Max	Units
Supply voltage	VDD	2.7	_	5.5	V
Supply voltage capacitance	טטע	2.2	_	10	μF
USB data lines on module side voltage range	D+, D-	0	_	3.6	V
USB data lines on connector side voltage range	D+_C, DC	0	_	3.6	V
CC lines on module and connector side voltage range	CC1, CC2, CC1_C, CC2_C	0	_	5.5	V
FAULT# Pull-up resistor power rail	FAULT#	2.7	_	5.5	V

TABLE 2-2: ELECTRICAL SPECIFICATIONS

 T_J = -40 °C to 125 °C, All typical values T_J = 25 °C. VDD = 2.7V to 5.5V, unless otherwise noted

All typical values T _J = 25 Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
	Зупівої	Wiin.	тур.	wax.	Unit	Conditions
Power		ı	T	ı	Τ	
Supply Voltage Capacitance	C_VDD	2.2	_	_	μF	Minimum capacitance required VDD
Operating Current	I _{DD}	_	1	2.5	mA	VDD = 5.5V All pins = OPEN Measure current into VDD
Undervoltage Lockout Threshold	V _{DD_UVLO}	2.1	2.3	2.5	V	Ramp-up voltage on VDD until switches turn ON.
Undervoltage Lockout Hysteresis	V _{UVLO_HYS}	100	150	200	mV	Ramp-down voltage on VDD until switches turn OFF. Calculate delta between rise and fall voltages.
Turn-ON Time	t _{ON}	_	_	3.5	ms	Time from V _{DD_UVLO} until D+, D- and CC overvoltage protection FETs are ON. Note 1
Turn-OFF Slew Rate	t _{OFF_SR}	_	_	0.5	V/µs	Highest slew rate allowed to guarantee D+, D- and CC FETs turn OFF during power OFF. Note 1
D+, D-, D+_C, DC		•		•		
On Resistance	R _{DS_ON_D±}	_	4	6.5	Ω	0 to 0.4V signal on D± 10 mA test current
Equivalent ON Capacitance	$C_{ON_D\pm}$	_	5	_	pF	Capacitance across D±_C with 0V to 0.4V bias voltage when FET is ON.
D±_C Overvoltage Protection	$V_{OVP_D\pm}$	3.6	4	4.5	V	Ramp-up voltage on D±_C from 3.3V to 4.5V until FAULT# is asserted.
D±_C Overvoltage Protection Hysteresis	$V_{OVP_Dt_HYST}$	_	50	_	mV	Ramp-down voltage on D±_C until FAULT# is deasserted. Calculate delta between rise and fall voltages.
ON Bandwidth (-3dB)	BW _{ON}	_	1000	_	MHz	Measure S ₂₁ bandwidth from D+ to D+_C or D- to DC with voltage swing = 400 mVpp. V _{CM} =0.2V
ON Bandwidth (-3dB) differential	BW _{ON_DIFF}	_	1050	_	MHz	Measure S _{DD21} bandwidth from D± to D±_C with voltage swing = 800 mVpp. V _{CM} = 0.2V
Crosstalk	X _{TALK}	_	-44	_	dB	Measure S ₂₁ bandwidth from D+ to DC or D- to D+_C with voltage swing = 400 mVpp. Be sure to terminate open sides to 50 ohms. f = 480 MHz.
D± Leakage Current (Powered or Unpowered)	I _{LEAK_D±}	_	_	3	μΑ	VDD = 5V, D±_C = 3.5V, D± pins floating, measure leakage into D±_C pins and vice-versa
D± Leakage Current (Overvoltage)	I _{LEAK_D±_} OV	_	_	±1	μΑ	VDD = GND or 5V, D±_C = 24V, D± pins = GND. Measure leakage out of D± pins
D±_C Leakage Current (Overvoltage) Powered or Unpowered	ILEAK_D±_C_OV	_	_	80	μΑ	VDD = GND or 5V, D±_C = 24V, D± pins = GND. Measure leakage into D±_C pins
Overvoltage Response Time	t _{OVP_RT_D±_} C		200		ns	Time from Over Voltage detected until OVP FETs turn OFF.

Note 1: This parameter is characterized, not 100% tested.

2: This parameter is guaranteed by design.

TABLE 2-2: ELECTRICAL SPECIFICATIONS (CONTINUED)

 T_J = -40 °C to 125 °C, All typical values $T_{.1}$ = 25 °C, VDD = 2.7V to 5.5V, unless otherwise noted.

All typical values T_J = 25 °C, VDD = 2.7V to 5.5V, unless otherwise noted.									
Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions			
Overvoltage Recovery Time	tovp_rec_d±_c	10	20	30	ms	Minimum time duration after Overvoltage condition is removed until FETs turn back ON.			
Overvoltage Recovery Time - Long	^t REC_D±_C	_	500	_	μs	Time from removal of Overvoltage condition until OVP FETs turn ON when OVP condition is longer than $t_{OVP_REC_D\pm_C}$.			
D± Overvoltage Clamp	V_{CLAMP_Dt}	_	8		V	Hot-plug 24V to D±_C with a 30Ω load on D± VDD > V _{DD_UVLO}			
CC1, CC2, CC1_C, CC	2_C					•			
On Resistance	R _{DS_ON_CC}	_	4	6.5	Ω	CCx = 3.6V 10 mA test current			
CCx Leakage Current (Powered)	I _{LEAK_CC}	_	_	15	μΑ	VDD = 5V, CCx_C = 5.65V, CCx pins floating, measure leakage into CCx_C pins and vice-versa			
CCx Leakage Current (Overvoltage)	I _{LEAK_CC_OV}	_	_	±1	μA	VDD = GND or 5V, CCx_C = 24V, CCx pins = GND. Measure leakage out of CCx pins			
CCx_C Leakage Current (Overvoltage)	I _{LEAK_CC_C_OV}	_	_	30	μA	VDD = GND or 5V, CCx_C = 24V, CCx pins = GND. Measure leakage into CCx_C pins			
CCx_C Overvoltage Protection	$V_{OVP_CCx_C}$	5.75	6	6.2	V	Ramp up voltage on CCx_C from 5.5 to 6.2V until FAULT# is asserted.			
CCx_C Overvoltage Protection Hysteresis	V _{OVP_CCx_HYST}	_	60	_	mV	Ramp down voltage on CCx_C until FAULT# is deasserted. Calculate delta between rise and fall voltages.			
ON Bandwidth (-3dB)	BW _{ON_CCx}	_	530	_	MHz	Measure -3dB bandwidth from CCx_C to CCx. Single-ended measurement, 50Ω system. $V_{cm} = 0.1V$ to $1.2V$			
Overvoltage Response Time	t _{OVP_RT_CCx_C}	_	100	_	ns	Time from Overvoltage detected until OVP FETs turn OFF.			
Overvoltage Recovery Time	^t ovp_rec_ccx_c	10	20	30	ms	Minimum time duration after Overvoltage condition is removed until FETs turn back ON.			
Overvoltage Recovery Time - Long	t _{REC_CCx_C}		500		μs	Time from removal of Overvoltage condition until OVP FETs turn ON when OVP condition is longer than tovP_REC_CCx_C.			
CCx Overvoltage Clamp	V _{CLAMP_CCx}	_	8	_	V	Hot-plug 24V to CCx_C with a 30Ω load on CCx. VDD > V _{DD_UVLO}			
FAULT									
FAULT# Low level Output Voltage	V _{OL}	_	_	0.4	V	I _{SINK_IO} = 8 mA			
FAULT# Assertion Time	t _{FAULT_} ASSERT	_	20	_	μs	Time from Overvoltage detected to FAULT# assertion.			
FAULT# Deassertion Time	^t FAULT_DEASSERT	_	5	_	ms	Time from FET turn ON after an OVP event to FAULT# deassertion.			

Note 1: This parameter is characterized, not 100% tested.

^{2:} This parameter is guaranteed by design.

TABLE 2-2: ELECTRICAL SPECIFICATIONS (CONTINUED)

 T_J = -40 °C to 125 °C, All typical values T_J = 25 °C, VDD = 2.7V to 5.5V, unless otherwise noted.

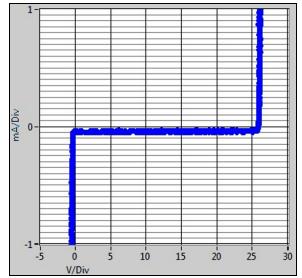
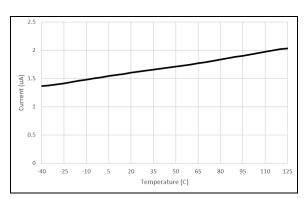
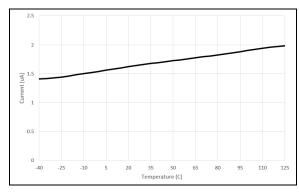
Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
FCONFIG				•		
Input High Voltage	V _{IH}	VDD – 1	_	_	V	Note 2
Input Low Voltage	V _{IL}	_	_	1	V	Note 2
Leakage Current	I _{FCONFIG_LEAK}			±20	μA	FCONFIG = 0V FCONFIG = 5.5V
SG_SENS, SG_GATE						
Short-to-GND Sense	V _{SG_SENS_IH}	100	ı	_	mV	Ramp up SG_SENS from 10 mV to 150 mV until SG_GATE < V _{SG_GATE_OL} .
Short-to-GND Release	V _{SG_SENS_IL}	_		80	mV	Ramp down SG_SENS from 120 mV to 0 mV until SG_GATE > V _{SG_GATE_OL} .
SG_SENS Bias Current	I _{OFFSET}	_	5		μA	Current coming out of SG_SENS
SG_SENS Discharge Current	I _{DISCH}	0.4	6	15	μΑ	Current coming into SG_SENS
SG_GATE Output Low Voltage	V _{SG_GATE_OL}		1	0.4	V	I _{OL} = 8 mA SG_GATE
Short-to-GND Response Time	t _{STG_RT}		500	_	ns	Time from short-to-GND detected until SG_GATE < V _{SG_GATE_OL} .
Short-to-GND Recovery Time	t _{SG_REC}	10	20	30	ms	Minimum time duration after short-to-GND removed condition is removed until SG_GATE > V _{SG_GATE_OL} .
Short-to-GND Recovery Time - Long	t _{REC_LONG}		500	_	μs	Time from removal of short-to-GND condition until SG_GATE driven 'high' when short-to-GND condition is longer than t _{SG_REC} .
Thermal						
Thermal Shutdown Threshold	T _{TSD}	_	145	_	°C	Die Temperature at which ALL of the UCS4003 switches will turn OFF Note 1.
Thermal Shutdown Hysteresis	T _{TSD_HYST}	- 14000	40	_	°C	After shutdown due to T _{TSD} being reached, die temperature drop required before the UCS4003 can be turned ON again Note 1.

Note 1: This parameter is characterized, not 100% tested.

^{2:} This parameter is guaranteed by design.

3.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables shown following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

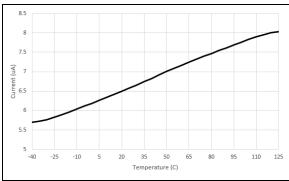

FIGURE 3-1: D±_C I-V Curve.

FIGURE 3-2: D±_C Short-to-5V across Temperature (Powered).

FIGURE 3-3: D±_C Short-to-5V across Temperature (Unpowered).

FIGURE 3-4: D±_C Short-to-20V across Temperature (Powered).

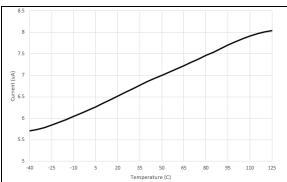


FIGURE 3-5: D±_C Short-to-20V across Temperature (Unpowered).

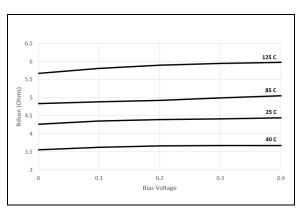


FIGURE 3-6: D± R_ON vs Bias Voltage.

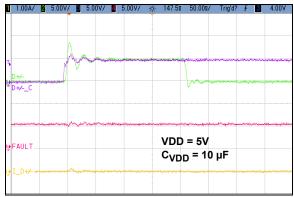
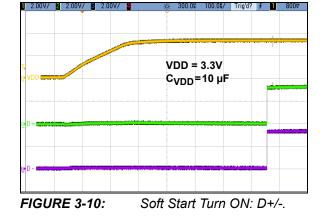



FIGURE 3-7: Waveform.

D± Short-to-5V Response

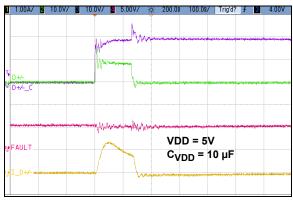
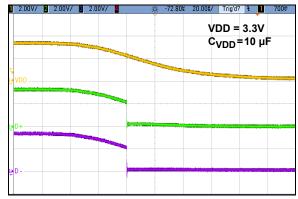



FIGURE 3-8: Waveform.

D± Short-to-20V Response

FIGURE 3-11:

Soft Start Turn OFF: D+/-.

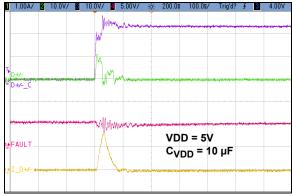


FIGURE 3-9: Waveform.

D± Short-to-24V Response

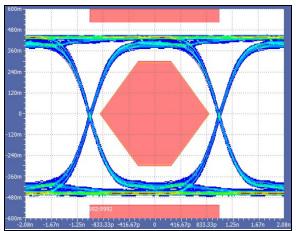


FIGURE 3-12: USB 2.0 High-Speed Eye Diagram without UCS4003.

FIGURE 3-13: D+/- Single-Ended Bandwidth.

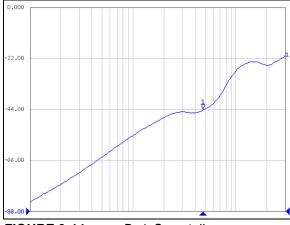


FIGURE 3-14: D+/- Crosstalk.

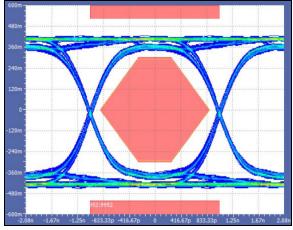


FIGURE 3-15: USB 2.0 High-Speed Eye Diagram with UCS4003.

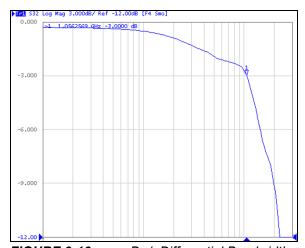


FIGURE 3-16: D+/- Differential Bandwidth.

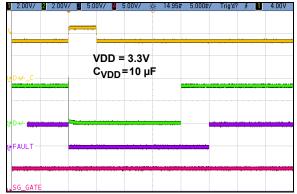


FIGURE 3-17: D+/-_C Overvoltage.

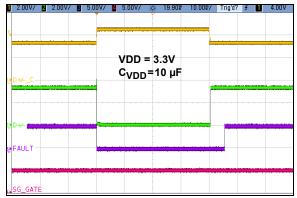


FIGURE 3-18: D+/-_C Overvoltage Long.

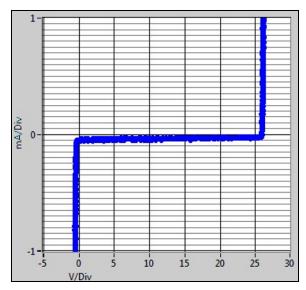


FIGURE 3-19: CC1/CC2 I-V Curve.

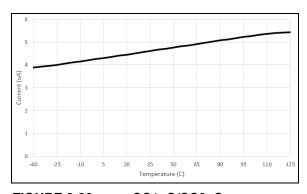


FIGURE 3-20: CC1_C/CC2_C Short-to-5.5V Across Temperature (Powered).

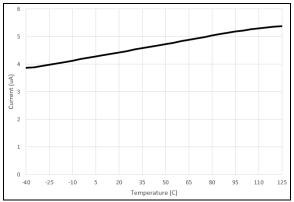


FIGURE 3-21: CC1_C/CC2_C Short-to-5.5V Across Temperature (Unpowered).

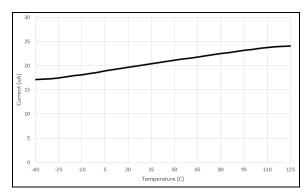
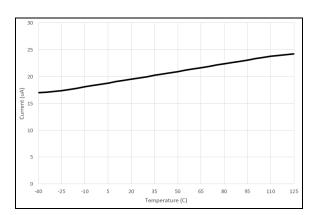
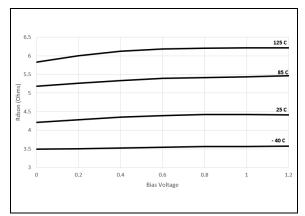


FIGURE 3-22: CC1_C/CC2_C Short-to-24V Across Temperature (Powered).

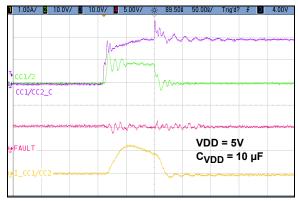

FIGURE 3-23: CC1_C/CC2_C Short-to-24V Across Temperature (Unpowered).

FIGURE 3-24: CC1, CC2 R_ON vs Bias Voltage.

FIGURE 3-25: CC1, CC2 Short-to-7V Response Waveform.

FIGURE 3-26: CC1, CC2 Short-to-20V Response Waveform.

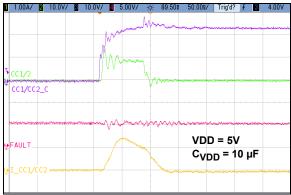


FIGURE 3-27: CC1, CC2 Short-to-24V Response Waveform.

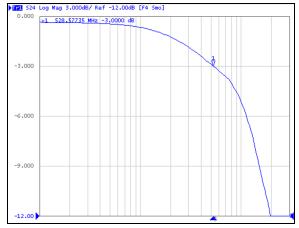
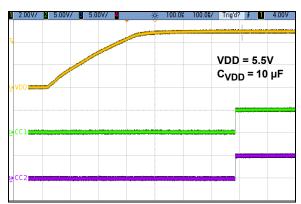
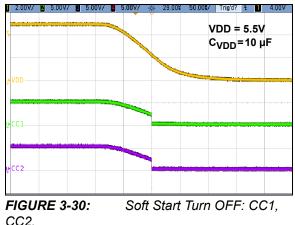
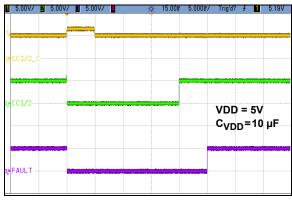
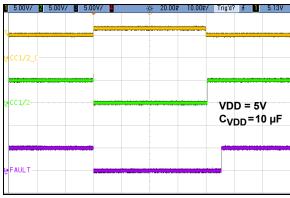
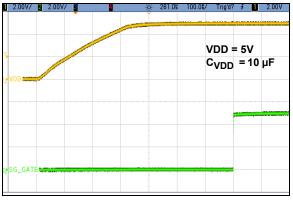
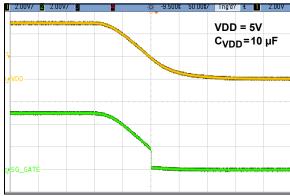


FIGURE 3-28: CC1, CC2 Bandwidth.


FIGURE 3-29: Soft Start Turn ON: CC1, CC2.


CC2.


CC1_C, CC2_C **FIGURE 3-31:** Overvoltage.

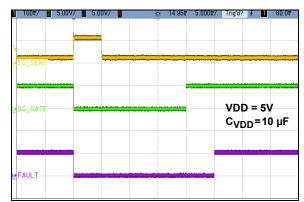

CC1_C, CC2_C **FIGURE 3-32:** Overvoltage Long.

FIGURE 3-33: Soft Start Turn ON: SG_GATE.

FIGURE 3-34: Soft Start Turn OFF: SG_GATE.

FIGURE 3-35: Battery Short-to-GND.

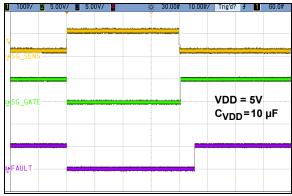
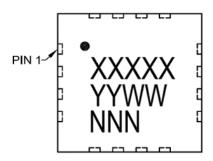
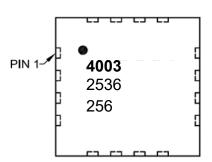



FIGURE 3-36: Battery Short-to-GND Long.


4.0 PACKAGING INFORMATION

4.1 **Package Drawing**

16-Lead VQFN, 3x3x1.0 mm (UCS4003)

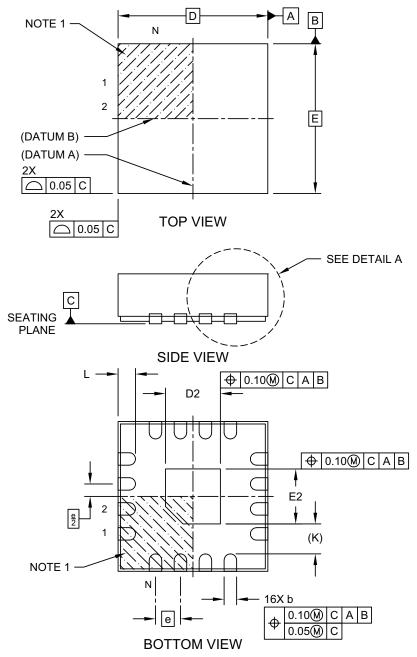
Example:

Legend: XX...X Product Code or Customer-specific information

Year code (last digit of calendar year) ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

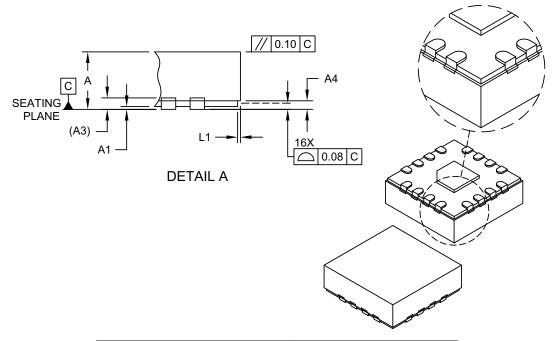
Pb-free JEDEC designator for Matte Tin (Sn) (e3)


This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or not include the corporate logo.

16-Lead Plastic Quad Flat, No Lead Package (8N) - 3x3x1.0 mm Body [VQFN] Wettable Flanks (Stepped), 0.35 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-404-8N Rev. D Sheet 1 of 2

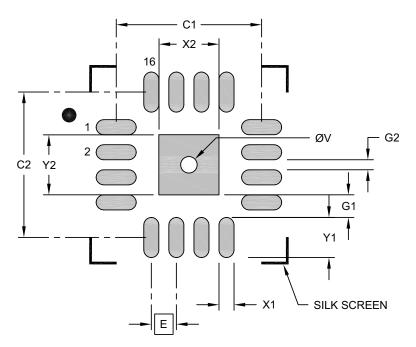
16-Lead Plastic Quad Flat, No Lead Package (8N) - 3x3x1.0 mm Body [VQFN] Wettable Flanks (Stepped), 0.35 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N		16		
Pitch	е		0.50 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00 0.02 0.05			
Terminal Thickness	A3	0.20 REF			
Step Height	A4	0.10	-	0.19	
Overall Width	Е		3.00 BSC		
Exposed Pad Width	E2	1.00 1.10 1.20			
Overall Length	D		3.00 BSC		
Exposed Pad Length	D2	1.00	1.10	1.20	
Terminal Width	b	b 0.20 0.25 0.30			
Terminal Length	Ĺ	0.25	0.35	0.45	
Step Length	L1	0.035	0.060	0.085	
Terminal-to-Exposed Pad	0.60 REF				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-404-8N Rev.D Sheet 2 of 2

16-Lead Plastic Quad Flat, No Lead Package (8N) - 3x3x1.0 mm Body [VQFN] Wettable Flanks (Stepped), 0.35 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits				
Contact Pitch	Е		0.50 BSC		
Optional Center Pad Width	X2	1.20			
Optional Center Pad Length	Y2			1.20	
Contact Pad Spacing	C1		2.90		
Contact Pad Spacing	C2		2.90		
Contact Pad Width (X16)	X1			0.30	
Contact Pad Length (X16)	Y1			0.80	
Contact Pad to Center Pad (X16)	G1	0.30			
Contact Pad to Contact Pad (X12)	G2	0.20			
Thermal Via Diameter	V	_	0.33		

Notes:

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2404-8N Rev.D

NOTES:

APPENDIX A: REVISION HISTORY

Revision B (December 2024)

• Updated Figure 1-7.

Revision A (November 2024)

• Original release of this document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

 $\begin{tabular}{ll} \textbf{To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.} \end{tabular}$

PART NO.	<u>[</u> ‡]	<u>-</u> X	/XX	xxx	Examp	les:	
Device Tap	e and Reel UCS4003:	Temperature Range	Package Delivery (PD)	Qualification port protector for	a) UCS40	003-E/8N:	USB Type-C PD port protector for D+, D- and CC, Extended Temperature, VQFN Package, Standard Packaging (tube)
Tape and Reel	(Blank) T	D+, D- and CC = Standard pace = Tape and Ree	kaging (tube:	120/tube)	b) UCS40	003T-E/8N:	USB Type-C PD port protector for D+, D- and CC, Extended Temperature, VQFN Package, Tape and Reel
Temperature Range:	E	= -40°C to +125	,		c) UCS40	03-E/8NVAO:	USB Type-C PD port protector for D+, D- and CC, Extended Temperature, VQFN Package, Standard Packaging (tube), AEC-Q100 Automotive Qualified
Package:	8N	Package, with	Wettable Fla Body with 0.3	5 mm Terminal			ALC-Q100 Administre Qualified
Qualification*:	(Blank) VAO	= Standard Part = AEC-Q100 Au	-	alified	Note 1:	catalog part r used for orde the device pa	el identifier only appears in the number description. This identifier is string purposes and is not printed on ickage. Check with your Microchip for package availability with the el option.

NOTES:

Microchip Information

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legalinformation/microchip-trademarks.

ISBN: 979-8-3371-0251-1

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code.
 Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.