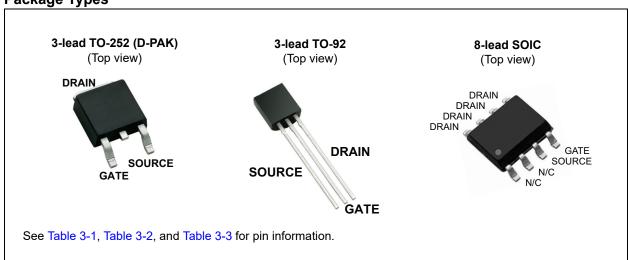
TN2640

N-Channel Enhancement-Mode Vertical DMOS FET

Features

- · 2V Maximum Low Threshold
- · High Input Impedance
- · Low Input Capacitance
- · Fast Switching Speeds
- · Low On-Resistance
- · Free from Secondary Breakdown
- · Low Input and Output Leakage

Applications


- Logic-Level Interfaces (Ideal for TTL and CMOS)
- · Solid-State Relays
- · Battery-Operated Systems
- · Photovoltaic Drives
- · Analog Switches
- · General Purpose Line Drivers
- · Telecommunication Switches

General Description

The TN2640 low-threshold Enhancement-mode (normally-off) transistor uses a vertical DMOS structure and a well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally induced secondary breakdown.

Microchip's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Drain-to-Source Voltage	BV _{DSS}
Drain-to-Gate Voltage	
Gate-to-Source Voltage	200
Operating Ambient Temperature, T _A	
Storage Temperature, T _S	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: T_A = 25°C unless otherwise specified. All DC parameters are 100% tested at 25°C unless otherwise stated. (Pulse test: 300 µs pulse, 2% duty cycle)

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Drain-to-Source Breakdown Voltage	BV _{DSS}	400	_	_	V	V _{GS} = 0V, I _D = 1 mA
Gate Threshold Voltage	V _{GS(th)}	0.8	_	2	V	$V_{GS} = V_{DS}$, $I_D = 2 \text{ mA}$
Change in V _{GS(th)} with Temperature	$\Delta V_{GS(th)}$		-2.5	-4	mV/°C	$V_{GS} = V_{DS}$, $I_D = 2 \text{ mA (Note 1)}$
Gate Body Leakage Current	I _{GSS}			100	nA	$V_{GS} = \pm 20V$, $V_{DS} = 0V$
Zero-Gate Voltage Drain Current		I		10	μA	V _{GS} = 0V, V _{DS} = Maximum rating
Zero-Gate Voltage Drain Gurrent	I _{DSS}		_	1	mA	V _{DS} = 0.8 Maximum rating, V _{GS} = 0V, T _A = 125°C (Note 1)
On-State Drain Current	I _{D(ON)}	1.5	3.5	_	Α	V_{GS} = 5V, V_{DS} = 25V
On-State Drain Current		2	4		Α	V _{GS} = 10V, V _{DS} = 25V
Static Drain-to-Source On-State	В		3.2	5	Ω	V_{GS} = 4.5V, I_{D} = 500 mA
Resistance	R _{DS(ON)}	_	3	5	Ω	$V_{GS} = 10V, I_D = 500 \text{ mA}$
Change in R _{DS(ON)} with Temperature	$\Delta_{RDS(ON)}$	_	_	0.75	%/°C	V _{GS} = 10V, I _D = 500 mA (Note 1)

Note 1: Specification is obtained by characterization and is not 100% tested.

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: T _A = 25°C unless otherwise specified. All AC parameters are not 100% sample tested.							
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	
Forward Transconductance	G _{FS}	200	330	_	mmho	V _{DS} = 25V, I _D = 100 mA	
Input Capacitance	C _{ISS}	_	210	225	pF		
Common-Source Output Capacitance	C _{OSS}	_	30	50	pF	$V_{GS} = 0V, V_{DS} = 25V, f = 1 MHz$	
Reverse Transfer Capacitance	C _{RSS}	_	8	15	pF		
Turn-On Delay Time	t _{d(ON)}	_	4	15	ns		
Rise Time	t _r	_	15	20	ns	V - 25V I - 2A B - 25O	
Turn-Off Delay Time	t _{d(OFF)}	_	20	25	ns	$V_{DD} = 25V, I_{D} = 2A, R_{GEN} = 25\Omega$	
Fall Time	t _f	_	22	27	ns		
DIODE PARAMETER							
Diode Forward Voltage Drop	V_{SD}	_	_	0.9	V	V _{GS} = 0V, I _{SD} = 200 mA (Note 1)	
Reverse Recovery Time	t _{rr}	_	300		ns	V _{GS} = 0V, I _{SD} = 1A	

Note 1: All DC parameters are 100% tested at 25°C unless otherwise stated. (Pulse test: 300 µs pulse, 2% duty cycle)

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions		
TEMPERATURE RANGE								
Operating Ambient Temperature	T _A	-55	_	+150	°C			
Storage Temperature	T _S	-55	_	+150	°C			
PACKAGE THERMAL RESISTANCE								
3-lead TO-252 (D-PAK)	θ_{JA}	_	81	_	°C/W			
8-lead SOIC	θ_{JA}	_	101	_	°C/W			
3-lead TO-92	θ_{JA}	_	132	_	°C/W			

THERMAL CHARACTERISTICS

Package	I _D (Note 1) (Continuous) (mA)	I _D (Pulsed) (A)	Power Dissipation at T _A = 25°C (W)	I _{DR} (Note 1) (mA)	I _{DRM} (A)
3-lead TO-252 (D-PAK)	500	3	2.5 (Note 2)	500	3
8-lead SOIC	260	2	1.3 (Note 2)	260	2
3-lead TO-92	220	2	0.74	220	2

Note 1: I_D (continuous) is limited by maximum T_J.

2: Mounted on an FR4 board, 25 mm x 25 mm x 1.57 mm

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

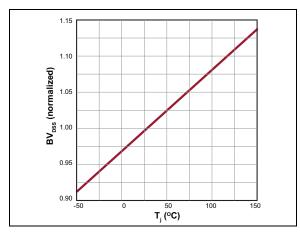


FIGURE 2-1: Temperature.

BV_{DSS} Variation with

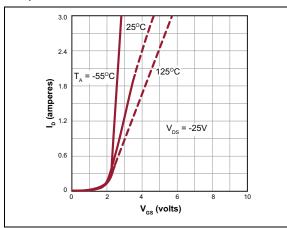
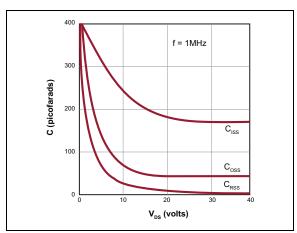



FIGURE 2-2: Transfer Characteristics.

FIGURE 2-3: Capacitance vs. Drain-to-Source Voltage.

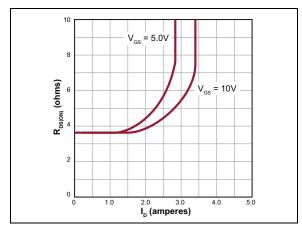
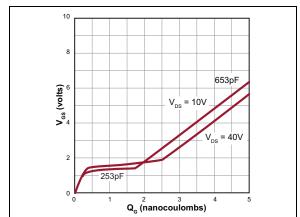



FIGURE 2-4: On-Resistance vs. Drain Current.

FIGURE 2-5: $V_{GS(th)}$ and $R_{DS(ON)}$ Variation with Temperature.

FIGURE 2-6: $V_{GS(th)}$ and $R_{DS(ON)}$ Variation with Temperature.

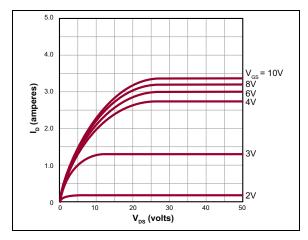
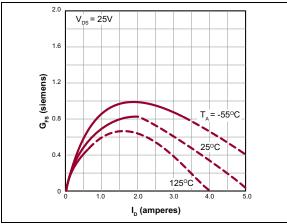
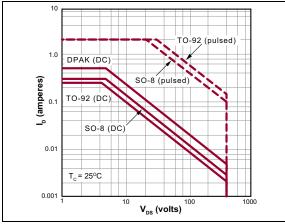




FIGURE 2-7: Output Characteristics.

FIGURE 2-8: Transconductance vs. Drain Current.

FIGURE 2-9: Maximum Rated Safe Operating Area.

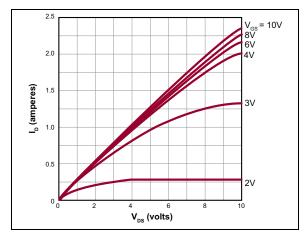
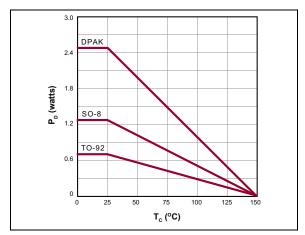



FIGURE 2-10: Saturation Characteristics.

FIGURE 2-11: Power Dissipation vs. Temperature.

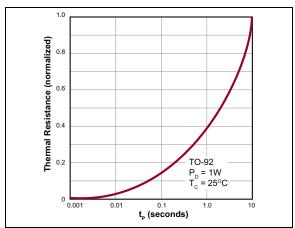


FIGURE 2-12: Thermal Characteristics.

3.0 PIN DESCRIPTION

Table 3-1, Table 3-2, and Table 3-3 show the description of pins in TN2640. Refer to **Package Types** for the location of the pins.

TABLE 3-1: 3-LEAD TO-252 (DPAK) PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	Gate	Gate
3	Source	Source
4	Drain	Drain

TABLE 3-2: 8-LEAD SOIC PIN FUNCTION TABLE

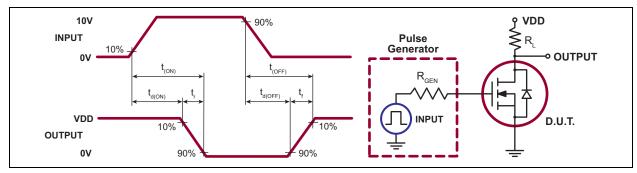
Pin Number	Pin Name	Description
1	N/C	No connect
2	N/C	No connect
3	Source	Source
4	Gate	Gate
5	Drain	Drain
6	Drain	Drain
7	Drain	Drain
8	Drain	Drain

TABLE 3-3: 3-LEAD TO-92 PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	Source	Source
2	Gate	Gate
3	Drain	Drain

4.0 FUNCTIONAL DESCRIPTION

Figure 4-1 illustrates the switching waveforms and test circuit for TN2640.



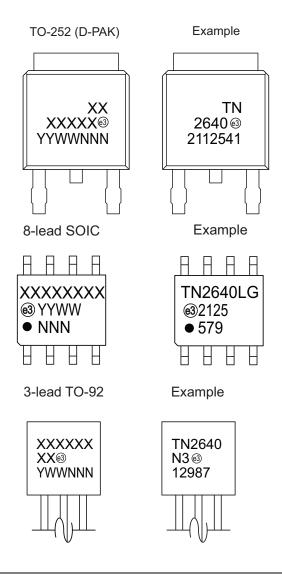
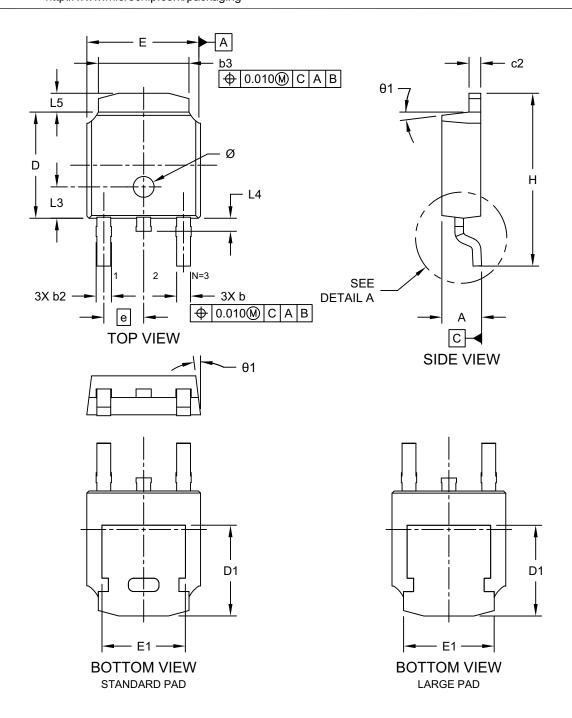

FIGURE 4-1: Switching Waveforms and Test Circuit.

TABLE 4-1: PRODUCT SUMMARY

BV _{DSS} /BV _{DGS} (V)	R _{DS(ON)} (Maximum) (Ω)	I _{D(ON)} (Minimum) (A)	V _{GS(th)} (Maximum) (V)
400	5	2	2

5.0 PACKAGING INFORMATION

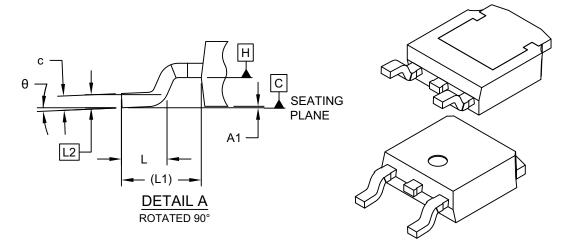
5.1 Package Marking Information


Legend: XX...X Product Code or Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

Begin Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (a)
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

3-Lead Deca-Watt Package, TO-252 (EA) - [DPAK]; Supertex Legacy Package Code K4


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-189 Rev C Sheet 1 of 2

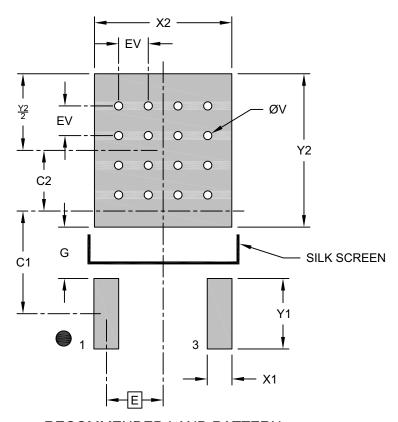
3-Lead Deca-Watt Package, TO-252 (EA) - [DPAK]; Supertex Legacy Package Code K4

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

Units		INCHES				
	MIN	NOM	MAX			
N (Leads)		3				
е		.090 BSC				
Α	.086	-	.094			
A1	.000	-	.005			
b	.028	-	.035			
b2	.030	-	.045			
С	.018	-	.024			
c2	.018	-	.035			
D	.235	.240	.245			
D1	.205	-	-			
Е	.250	-	.265			
E1	.170	-	-			
Н	.370	-	.410			
L	.055	.060	.070			
L1		.108 REF				
L2		.020 BSC				
L3	.065	-	.077			
L4	.024	-	.035			
L5	.035	-	.050			
θ	1°	-	5°			
θ1	7° REF					

Notes:

- Pin 1 visual index feature may vary, but must be located within the hatched area.
 Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

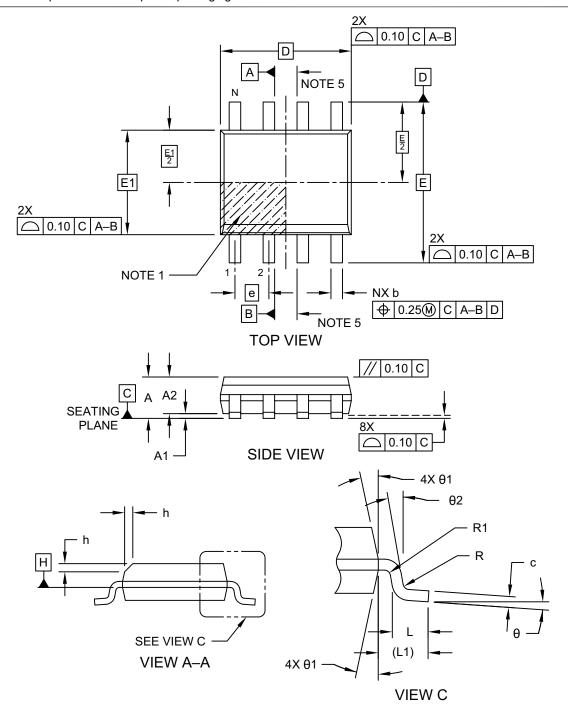
Microchip Technology Drawing C04-189 Rev C Sheet 1 of 2

3-Lead Deca-Watt Package, TO-252 (EA) - [DPAK]; Supertex Legacy Package Code K4

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

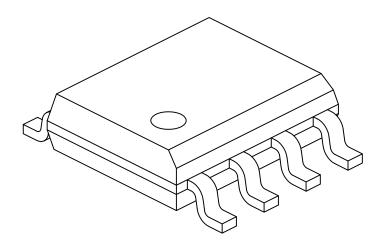
		INCHES		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		.090 BSC	
Center Pad Width	X2			.219
Center Pad Length	Y2			.244
Contact Pad Spacing	C1		.163	
Contact Pad Spacing	C2		.096	
Contact Pad Width (Xnn)	X1			.039
Contact Pad Length (Xnn)	Y1			.112
Contact Pad to Contact Pad (Xnn)	G	.412		
Thermal Via Diameter	V		.013	
Thermal Via Pitch	EV		.047	


Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2189 Rev C

8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 ln.) Body [SOIC] Atmel Legacy Global Package Code SWB


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-C2X Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 ln.) Body [SOIC] Atmel Legacy Global Package Code SWB

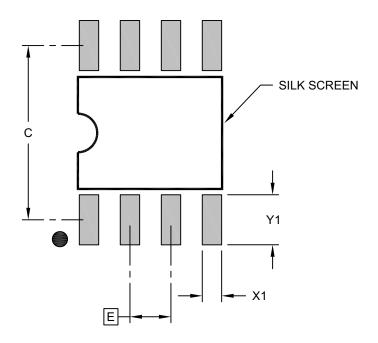
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		1.27 BSC	
Overall Height	Α	-	ı	1.75
Molded Package Thickness	A2	1.25	ı	-
Standoff §	A1	0.10	ı	0.25
Overall Width	Е		6.00 BSC	
Molded Package Width	E1		3.90 BSC	
Overall Length	D		4.90 BSC	
Chamfer (Optional)	h	0.25	ı	0.50
Foot Length	L	0.40	ı	1.27
Footprint	L1		1.04 REF	
Lead Thickness	С	0.17	ı	0.25
Lead Width	b	0.31	ı	0.51
Lead Bend Radius	R	0.07 – –		
Lead Bend Radius	R1	0.07	ı	_
Foot Angle	θ	0°	_	8°
Mold Draft Angle	θ1	5°	-	15°
Lead Angle	θ2	0°	_	_

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-C2X Rev K Sheet 2 of 2

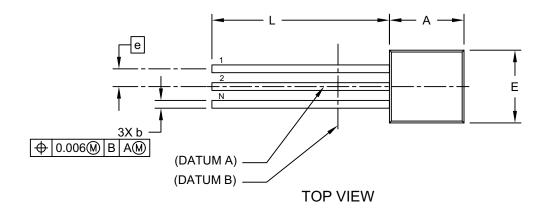
8-Lead Plastic Small Outline (C2X) - Narrow, 3.90 mm (.150 ln.) Body [SOIC]

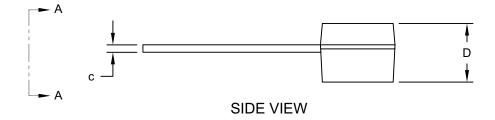
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

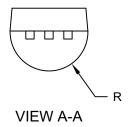
RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е	1.27 BSC		
Contact Pad Spacing	C		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

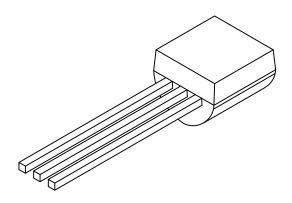

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-2057-C2X Rev K

3-Lead Plastic Transistor Outline (TO) [TO-92]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-101-TO Rev D Sheet 1 of 2

Note:

3-Lead Plastic Transistor Outline (TO) [TO-92]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES				
Dimension	MIN	NOM	MAX		
Number of Pins	Ν	3			
Pitch	е	.050 BSC			
Bottom to Package Flat	D	.125	-	.165	
Overall Width	Е	.175	-	.205	
Overall Length	Α	.170	-	.210	
Molded Package Radius	R	.080	-	.105	
Tip to Seating Plane	L	.500	ı	-	
Lead Thickness	С	.014	-	.021	
Lead Width	b	.014	-	.022	

Notes:

- 1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-101-TO Rev D Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision B (February 2024)

- Updated Figure 2-9 in Section 2.0 "Typical Performance Curves".
- Updated package drawings in Section 5.0 "Packaging Information".

Revision A (February 2021)

- Converted Supertex Doc# DSFP-TN2640 to Microchip DS20005795A.
- · Changed the package marking format.
- Updated the quantity of the 8-lead SOIC from 2500/Reel to 3300/Reel to align it with the actual BQM.
- Removed the TO-92 N3 P002, P003, P005, P013, and P015 media types to align package specifications with the actual BQM.
- Made minor text changes throughout the document.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	xx		- <u>X</u> -	<u> </u>	Examples:	
Device	Packa Optio		Environmental	Media Type	a) TN2640K4-G:	N-Channel Enhancement-Mode Vertical DMOS FET, 3-lead TO-252 (D-PAK), 2000/Reel
Device:	TN2640	=	N-Channel Enhanceme DMOS FET	ent-Mode Vertical	b) TN2640LG-G:	N-Channel Enhancement-Mode Vertical DMOS FET, 8-lead SOIC, 3300/Reel
Packages:	K4	=	3-lead TO-252 (D-PAK))		
	LG	=	8-lead SOIC		c) TN2640N3-G:	N-Channel Enhancement-Mode
	N3	=	3-lead TO-92			Vertical DMOS FET, 3-lead TO-92, 1000/Bag
Environmental:	G	=	Lead (Pb)-free/RoHS-c	ompliant Package		
Media Types:	(blank)	=	2000/Reel for a K4 Pac	kage		
		=	3300/Reel for an LG Pa	ackage		
		=	1000/Bag for an N3 Page	ckage		

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-4038-7

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune

Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910

Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286 **Netherlands - Drunen**

Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820