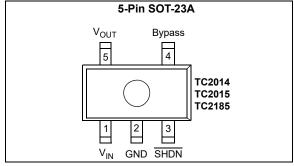


50 mA, 100 mA, 150 mA CMOS LDOs with Shutdown and Reference Bypass

Features

- AEC-Q100 Automotive Qualified, See Product Identification System
- Low Supply Current: 80 µA (Max)
- Low Dropout Voltage: 140 mV (Typ.) @ 150 mA
- High-Output Voltage Accuracy: ±0.4% (Typ.)
- Standard or Custom Output Voltages
- Power-Saving Shutdown Mode
- Reference Bypass Input for Ultra Low-Noise
 Operation
- Fast Shutdown Response Time: 60 µsec (Typ.)
- Overcurrent and Overtemperature Protection
- Space-Saving 5-Pin SOT-23A Package
- Pin-Compatible Upgrades for Bipolar Regulators
- Wide Operating Temperature Range: -40°C to +125°C
- Standard Output Voltage Options:
 - 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 5.0V

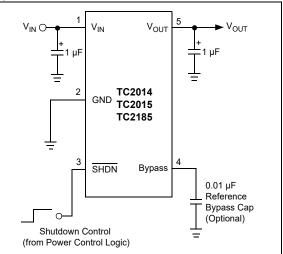

Applications

- · Battery-Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular/GSM/PHS Phones
- Linear Post-Regulator for SMPS
- Pagers

Related Literature

 Application Notes: AN765, AN766, AN776 and AN792

Package Type


General Description

The TC2014, TC2015 and TC2185 are high-accuracy (typically $\pm 0.4\%$) CMOS upgrades for bipolar Low Drop-out Regulators (LDOs), such as the LP2980. Total supply current is typically 55 μ A; 20 to 60 times lower than in bipolar regulators.

The key features of the device include low noise operation (plus bypass reference), low dropout voltage – typically 45 mV for the TC2014, 90 mV for the TC2015, and 140 mV for the TC2185, at full load – and fast response to step changes in load. Supply current is reduced to $0.5 \ \mu A$ (max) and V_{OUT} falls to zero when the shutdown input is low. These devices also incorporate overcurrent and overtemperature protection.

The TC2014, TC2015 and TC2185 are stable with an output capacitor of 1 μ F and have maximum output currents of 50 mA, 100 mA and 150 mA, respectively. For higher-output current versions, see the TC1107 (DS20001356), TC1108 (DS20001357) and TC1173 (DS20001362) (I_{OUT} = 300 mA) data sheets.

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†]

Input Voltage	
Output Voltage	(-0.3) to (V _{IN} + 0.3)
Operating Temperature	40°C < T _J < 125°C
Storage Temperature	65°C to +150°C
Maximum Voltage on Any Pin	V _{IN} +0.3V to -0.3V
Maximum Junction Temperature	150°C
ESD Protection on all pins ⁽¹⁾ :	
НВМ	±4000V
MM	±200V
CDM	±1500V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Note 1: Testing was performed per AEC-Q100 Standards. ESD CDM was tested on the 5L SOT-23 package. For additional information please contact your local Microchip sales office.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_{OUT} = 3.3 \ \mu$ F, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}$ C. **BOLDFACE** type specifications apply for junction temperature of -40°C to +125°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Operating Voltage	V _{IN}	2.7	_	6.0	V	Note 1
Maximum Output	I _{OUTMAX}	50	_	_	mA	TC2014
Current		100	_	_		TC2015
		150	_	_		TC2185
Output Voltage	V _{OUT}	V _R - 2.0%	V _R ± 0.4%	V _R + 2.0%	V	Note 2
V _{OUT} Temperature	TCV _{OUT}	_	20	_	ppm/°C	Note 3
Coefficient		_	40	_		
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	_	0.05	0.5	%	$(V_R + 1V) \le V_{IN} \le 6V$
Load Regulation	$\Delta V_{OUT}/V_{OUT}$	-1.0	0.33	+1.0	%	TC2014;TC2015: I _L = 0.1 mA to I _{OUTMAX}
(Note 4)		-2.0	0.43	+2.0		TC2185: I _L = 0.1 mA to I _{OUTMAX} (Note 4)

Note 1: The minimum V_{IN} has to meet two conditions: V_{IN} = 2.7V and V_{IN} = V_R + $V_{DROPOUT}$.

2: V_R is the regulator output voltage setting. For example: V_R = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.

3:

$$TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^{-6}}{V_{OUT} \times \Delta T}$$

- **4:** Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the Thermal Regulation specification.
- 5: Dropout Voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value.
- **6:** Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{MAX} at V_{IN} = 6V for T = 10 ms.
- 7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A, T_J, θ_{JA}).
- 8: Time required for V_{OUT} to reach 95% of V_R (output voltage setting), after V_{SHDN} is switched from 0 to V_{IN}.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise specified, $V_{IN} = V_R + 1V$, $I_L = 100 \mu A$, $C_{OUT} = 3.3 \mu F$, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$. **BOLDFACE** type specifications apply for junction temperature of -40°C to +125°C.

BOLDFACE type specifications apply for junction temperature of -40 C to +125 C.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Dropout Voltage	V _{IN} – V _{OUT}	_	2	—	mV	(Note 5) Ι _L = 100 μΑ		
			45	70		I _L = 50 mA		
			90	140		TC2015; TC2185 I _L = 100 mA		
		_	140	210		TC2185 I _L = 150 mA		
Supply Current	I _{IN}		55	80	μA	$\overline{\text{SHDN}} = V_{\text{IH}}, I_{\text{L}} = 0$		
Shutdown Supply Current	I _{INSD}	_	0.05	0.5	μA	SHDN = 0V		
Power Supply Rejection Ratio	PSRR	_	55	—	dB	$F \leq 1$ kHz, Cbypass = 0.01 μF		
Output Short Circuit Current	I _{OUTSC}	_	160	300	mA	V _{OUT} = 0V		
Thermal Regulation	$\Delta V_{OUT} / \Delta P_D$		0.04	—	V/W	Note 6, Note 7		
Thermal Shutdown Die Temperature	T _{SD}	_	160	—	°C			
Output Noise	eN	_	200	—	nV/√Hz	I _L = I _{OUTMAX} , F = 10 kHz 470 pF from Bypass to GND		
Response Time (from Shutdown Mode) (Note 8)	T _R	_	60	_	μs	V _{IN} = 4V, I _L = 30 mA, C _{IN} = 1 μF, C _{OUT} = 10 μF		
SHDN Input								
SHDN Input High Threshold	V _{IH}	60	—	—	%V _{IN}	V _{IN} = 2.5V to 6.0V		
SHDN Input Low Threshold	V _{IL}	—	—	15	%V _{IN}	V _{IN} = 2.5V to 6.0V		

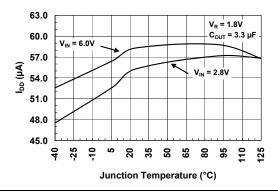
Note 1: The minimum V_{IN} has to meet two conditions: V_{IN} = 2.7V and V_{IN} = V_R + $V_{DROPOUT}$.

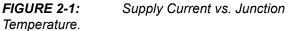
2: V_R is the regulator output voltage setting. For example: V_R = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.

3:

$$TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) \times 10^{-6}}{V_{OUT} \times \Delta T}$$

- **4:** Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the Thermal Regulation specification.
- 5: Dropout Voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value.
- 6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{MAX} at V_{IN} = 6V for T = 10 ms.
- 7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e. T_A , T_J , θ_{JA}).
- 8: Time required for V_{OUT} to reach 95% of V_R (output voltage setting), after V_{SHDN} is switched from 0 to V_{IN}.


TEMPERATURE CHARACTERISTICS


Electrical Specifications: Unless otherwise noted, V_{DD} = +2.7V to +6.0V and V_{SS} = GND.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Temperature Ranges:								
Extended Temperature Range	T _A	-40	—	+125	°C			
Operating Temperature Range	T _A	-40	—	+125	°C			
Storage Temperature Range	T _A	-65	—	+150	°C			
Thermal Package Resistances:								
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	255		°C/W			

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_{OUT} = 3.3 \ \mu$ F, SHDN > V_{IH} , $T_A = +25^{\circ}$ C.

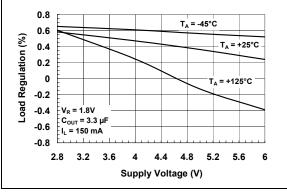
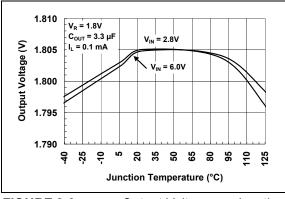
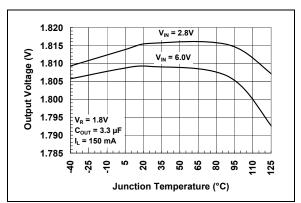




FIGURE 2-2: Load Regulation vs. Supply Voltage.

FIGURE 2-3: Output Voltage vs. Junction Temperature.

Output Voltage vs. Junction

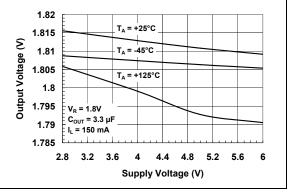
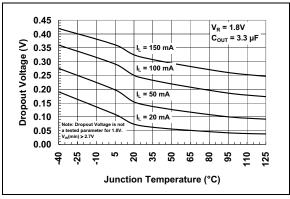



FIGURE 2-5: Voltage.

Output Voltage vs. Supply

FIGURE 2-6: Dropout Voltage vs. Junction Temperature.

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_{OUT} = 3.3 \ \mu$ F, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$.

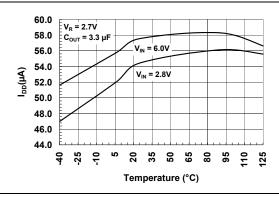


FIGURE 2-7: Supply Current vs. Junction Temperature.

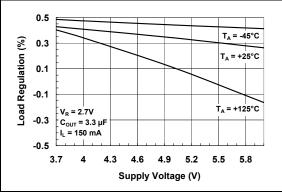


FIGURE 2-8: Load Regulation vs. Supply Voltage.

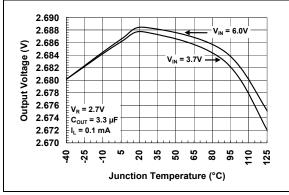
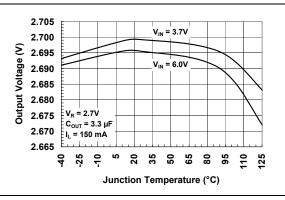



FIGURE 2-9:Output Voltage vs. JunctionTemperature.

FIGURE 2-10: Output Voltage vs. Junction Temperature.

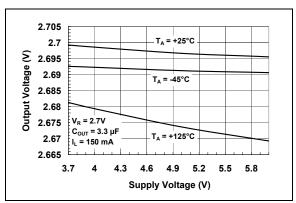
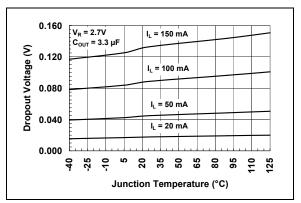
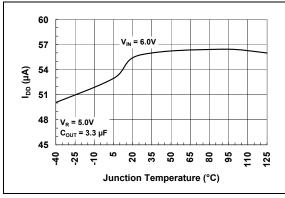
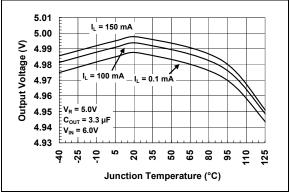
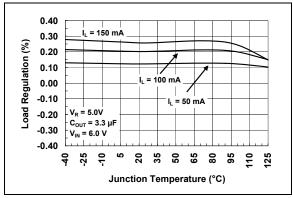
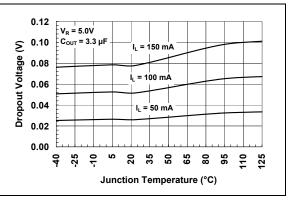




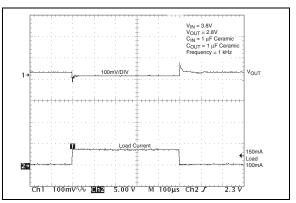
FIGURE 2-11: Output Voltage vs. Supply Voltage.

FIGURE 2-12: Dropout Voltage vs. Junction Temperature.

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \mu A$, $C_{OUT} = 3.3 \mu F$, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$.

FIGURE 2-13: Supply Current vs. Junction Temperature.


FIGURE 2-14:Output Voltage vs. JunctionTemperature.

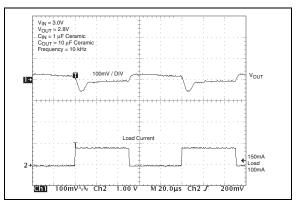

FIGURE 2-15: Load Regulation vs. Junction Temperature.

FIGURE 2-16: Dropout Voltage vs. Junction Temperature.

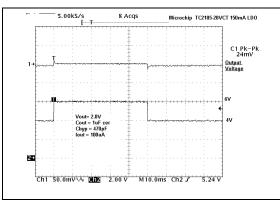


FIGURE 2-17: Load Transient Response. $(C_{OUT} = 1 \ \mu F)$.

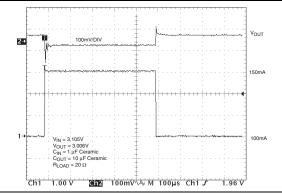


FIGURE 2-18: Load Transient Response. $(C_{OUT} = 10 \ \mu\text{F}).$

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \mu A$, $C_{OUT} = 3.3 \mu F$, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$.

FIGURE 2-19: Line Transient Response. $(C_{OUT} = 1 \ \mu F)$.

FIGURE 2-20: Load Transient Response in Dropout. ($C_{OUT} = 10 \ \mu$ F).

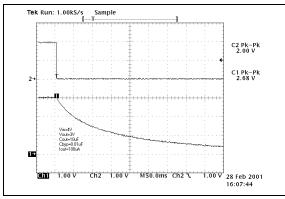
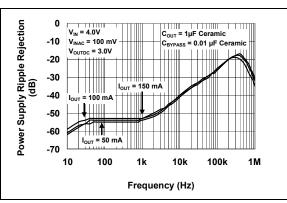
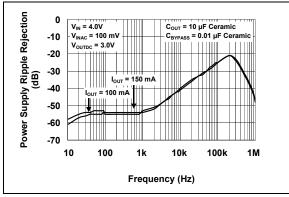




FIGURE 2-21: Shutdown Delay Time.

FIGURE 2-22: Wake-Up Response.

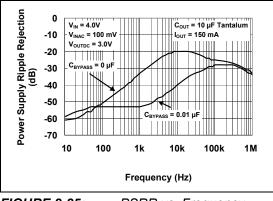


FIGURE 2-23: PSRR vs. Frequency $(C_{OUT} = 1 \ \mu F \ Ceramic)$.

FIGURE 2-24: PSRR vs. Frequency $(C_{OUT} = 10 \ \mu F \ Ceramic)$.

Note: Unless otherwise indicated, $V_{IN} = V_R + 1V$, $I_L = 100 \ \mu$ A, $C_{OUT} = 3.3 \ \mu$ F, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}$ C.

FIGURE 2-25: PSRR vs. Frequency $(C_{OUT} = 10 \ \mu F \ Tantalum).$

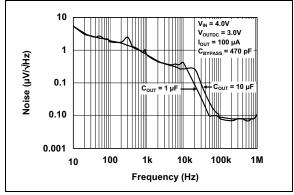


FIGURE 2-26: Output Noise vs. Frequency.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are described in Table 3-1.

Pin No.	Symbol	Description
1	V _{IN}	Unregulated supply input
2	GND	Ground terminal
3	SHDN	Shutdown control input
4	Bypass	Reference bypass input
5	V _{OUT}	Regulated voltage output

TABLE 3-1: PIN FUNCTION TABLE

3.1 Unregulated Supply Input (VIN)

Connect the unregulated input supply to the V_{IN} pin. If there is a large distance between the input supply and the LDO regulator, some input capacitance is necessary for proper operation. A 1 μ F capacitor, connected from V_{IN} to ground, is recommended for most applications.

3.2 Ground Terminal (GND)

Connect the unregulated input supply ground return to GND. Also connect one side of the 1 μ F typical input decoupling capacitor close to this pin and one side of the output capacitor C_{OUT} to this pin.

3.3 Shutdown Control Input (SHDN)

The regulator is fully enabled when a logic-high is applied to SHDN. The regulator enters shutdown when a logic-low is applied to this input. During shutdown, the output voltage falls to zero and the supply current is reduced to $0.5 \ \mu A \ (max)$.

3.4 Reference Bypass Input (Bypass)

Connecting a low-value ceramic capacitor to Bypass will further reduce output voltage noise and improve the Power Supply Ripple Rejection (PSRR) performance of the LDO. Typical values from 470 pF to 0.01 μ F are suggested. While smaller and larger values can be used, these affect the speed at which the LDO output voltage rises when input power is applied. The larger the bypass capacitor, the slower the output voltage will rise.

3.5 Regulated Voltage Output (V_{OUT})

Connect the output load to V_{OUT} of the LDO. Also connect one side of the LDO output decoupling capacitor as close as possible to the V_{OUT} pin.

4.0 DETAILED DESCRIPTION

The TC2014, TC2015 and TC2185 are precision fixedoutput voltage regulators (if an adjustable version is needed, see the TC1070, TC1071 and TC1187 (DS20001353) data sheet). Unlike bipolar regulators, the TC2014, TC2015 and TC2185 supply current does not increase with load current. In addition, the LDO's output voltage is stable using 1 μ F of ceramic or tantalum capacitance over the entire specified input voltage range and output current range.

Figure 4-1 shows a typical application circuit. The regulator is enabled anytime the shutdown input (SHDN) is at or above V_{IH}, and disabled (shutdown) when SHDN is at or below V_{IL}. SHDN may be controlled by a CMOS logic gate or I/O port of a microcontroller. If the SHDN input is not required, it should be connected directly to the input supply. While in shutdown, the supply current decreases to 0.05 μ A (typical) and V_{OUT} falls to zero volts.

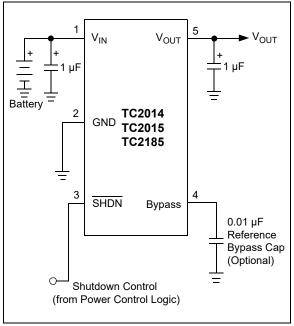


FIGURE 4-1:

Typical Application Circuit.

4.1 Bypass Input

A 0.01 μ F ceramic capacitor, connected from the Bypass input to ground, reduces noise present on the internal reference, which, in turn, significantly reduces output noise. If output noise is not a concern, this input may be left unconnected. Larger capacitor values may be used, but the result is a longer time period to rated output voltage when power is initially applied.

4.2 Output Capacitor

A 1 μ F (min) capacitor from V_{OUT} to ground is required. The output capacitor should have an Effective Series Resistance (ESR) of 0.01 Ω to 5 Ω for V_{OUT} \geq 2.5V, and 0.05 Ω . to 5 Ω for V_{OUT} < 2.5V. Ceramic, tantalum or aluminum electrolytic capacitors can be used. When using ceramic capacitors, X5R and X7R dielectric material are recommended due to their stable tolerance over temperature. However, other dielectrics can be used as long as the minimum output capacitance is maintained.

4.3 Input Capacitor

A 1 μ F capacitor should be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and this AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitors can be used (since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalum are recommended for applications operating below -25°C). When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

5.0 THERMAL CONSIDERATIONS

5.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when the die temperature exceeds approximately 160°C. The regulator remains off until the die temperature cools to approximately 150°C.

5.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input voltage, output voltage and output current.

The following equation is used to calculate worst-case power dissipation.

EQUATION 5-1:

$$P_D \approx (V_{INMAX} - V_{OUTMIN})I_{LMAX}$$

Where:

PD=Worst-case actual power dissipationVINMAX=Maximum voltage on VINVOUTMIN=Minimum regulator output voltageILMAX=Maximum output (load) current

The maximum allowable power dissipation (P_{DMAX}) is a function of the maximum ambient temperature (T_{AMAX}), the maximum allowable die temperature (T_{JMAX}) (+125°C) and the thermal resistance from junction-to-air (θ_{JA}). The 5-Pin SOT-23A package has a θ_{JA} of approximately 220°C/Watt when mounted on a typical two-layer FR4 dielectric copper-clad PC board.

EQUATION 5-2:

$$P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{IA}}$$

Where all terms are previously defined.

The P_D equation can be used in conjunction with the P_{DMAX} equation to ensure that regulator thermal operation is within limits. For example:

Given:

 $V_{\text{INMAX}} = 3.0V + 10\%$ $V_{\text{OUTMIN}} = 2.7V - 2.5\%$ $I_{\text{LOADMAX}} = 40 \text{ mA}$ $T_{\text{JMAX}} = +125^{\circ}\text{C}$ $T_{\text{AMAX}} = +55^{\circ}\text{C}$

Find:

1. Actual power dissipation

2. Maximum allowable dissipation

Actual power dissipation:

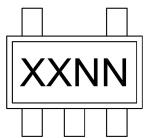
$$P_D = (V_{INMAX} - V_{OUTMIN})I_{LMAX}$$

= [(3.0 × 1.1) - (2.7 × 0.975)]40 × 10⁻³
= 26.7mW

Maximum allowable power dissipation:

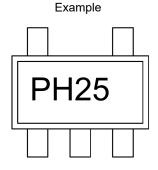
$$P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}}$$
$$= \frac{125 - 55}{220}$$
$$= 318 mW$$

In this example, the TC2014 dissipates a maximum of only 26.7 mW; far below the allowable limit of 318 mW. In a similar manner, the P_D and P_{DMAX} equations can be used to calculate maximum current and/or input voltage limits.

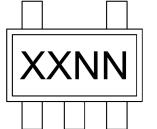

5.3 Layout Considerations

The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads and wide power supply bus lines combine to lower θ_{JA} and, therefore, increase the maximum allowable power dissipation limit.

6.0 PACKAGING INFORMATION


6.1 Package Marking Information

5-Lead SOT-23



XX - part number code and voltage (Table 6-1) NN - alphanumeric identification code

	TABLE 6-1:	PART NUMBER CODE AND TEMPERATURE RANGE							
	(V)	TC2014	TC2015	TC2185					
	1.8	PA	RA	UA					
	2.5	PB	RB	UB					
I	2.6	PH	RH	UH					
	2.7	PC	RC	UC					
	2.8	PD	RD	UD					
	2.85	PE	RE	UE					
	3.0	PF	RF	UF					
	3.3	PG	RG	UG					
	5.0	PJ	RJ	UJ					

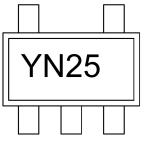
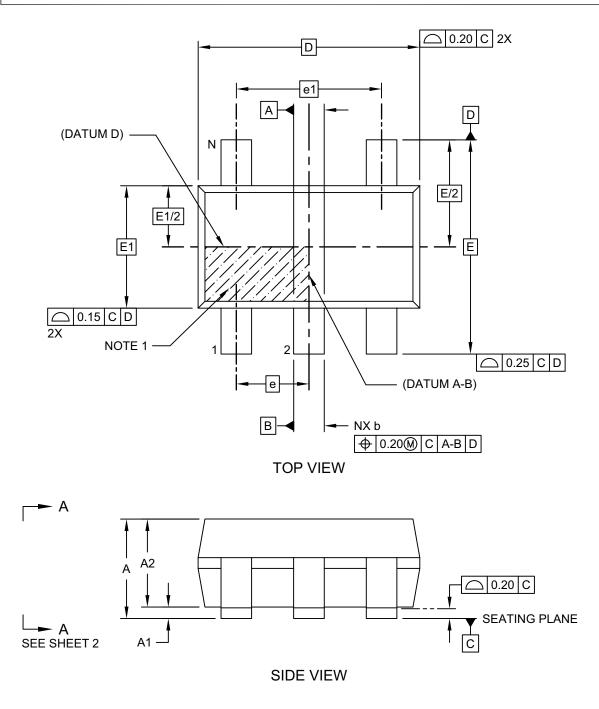

5-Lead SOT-23 NiPdAu plating

TABLE 6-2:		UMBER CO RATURE RA	
0.0	TOOMAA	TOOME	T00405

(V)	TC2014	TC2015	TC2185
2.8	Z1	_	Z2
3.3	YN		

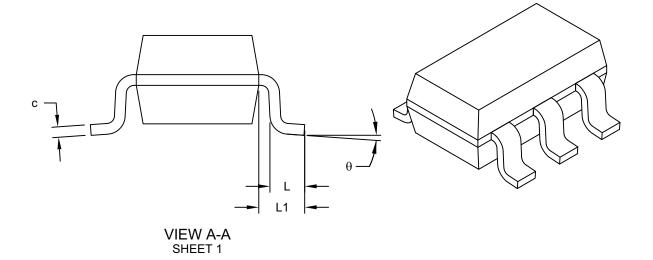
XX - part number code and voltage (Table 6-2)


NN - alphanumeric

identification code

Legend:	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN e3	Alphanumeric traceability code
	(e3)	Pb-free JEDEC [®] designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
		nt the full Microchip part number cannot be marked on one line, it will be carried over ext line, thus limiting the number of available characters for customer-specific n.

5-Lead Plastic Small Outline Transistor (6BX) [SOT-23]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

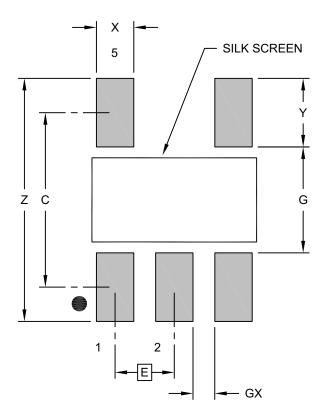
Microchip Technology Drawing C04-091-6BX Rev H Sheet 1 of 2

5-Lead Plastic Small Outline Transistor (6BX) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		5				
Pitch	е		0.95 BSC				
Outside lead pitch	e1		1.90 BSC				
Overall Height	Α	0.90	-	1.45			
Molded Package Thickness	A2	0.89	-	1.30			
Standoff	A1	-	-	0.15			
Overall Width	E	2.80 BSC					
Molded Package Width	E1	1.60 BSC					
Overall Length	D	2.90 BSC					
Foot Length	L	0.30	-	0.60			
Footprint	L1	0.60 REF					
Foot Angle	θ	0°	-	10°			
Lead Thickness	С	0.08	-	0.26			
Lead Width	b	0.20	-	0.51			

Notes:


1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

 Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

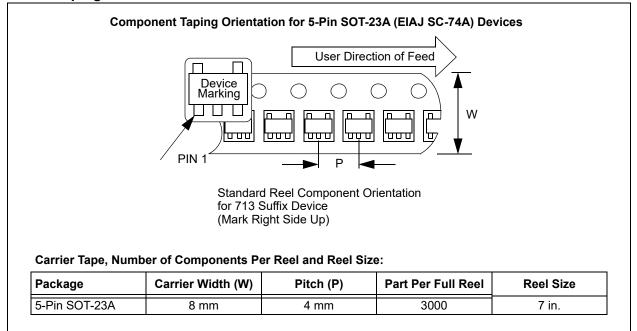
Microchip Technology Drawing C04 091 6BX Rev H Sheet 2 of 2

5-Lead Plastic Small Outline Transistor (6BX) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.95 BSC		
Contact Pad Spacing	С		2.80		
Contact Pad Width (X5)	Х			0.60	
Contact Pad Length (X5)	Y			1.10	
Distance Between Pads	G	1.70			
Distance Between Pads	GX	0.35			
Overall Width	Z			3.90	


Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-6BX Rev H

6.2 Taping Form

NOTES:

APPENDIX A: REVISION HISTORY

Revision G (July 2023)

- Added automotive qualification to "Features" and added examples to "Product Identification System".
- Updated "Absolute Maximum Ratings†" to better describe the part.
- Updated 6.0"Packaging Information".
- Minor text and format changes throughout.

Revision F (December 2012)

• Added a note to each package outline drawing.

Revision E (May 2006)

- Page 1: Added overtemperature to bullet for overcurrent protection in features and general description verbiage.
- Page 3: Added Thermal Shutdown die Temperature to electrical characteristics table.
- Page 3: Added Thermal Characteristics Table.
- Page 5: Added new section 5.1 and new verbiage.
- Page 13: Updated package outline drawing.

Revision D (November 2004)

- Page 2: Changed Absolute Maximum Ratings from 6.5V to 7.0V.
- Packaging Information: Added package codes for 2.6V and 5.0V options.
- Product Identification System: Added 2.6V and 5.0V to Output voltage options.

Revision C (December 2002)

Numerous changes

Revision B (May 2002)

Numerous changes

Revision A (May 2001)

• Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-XX</u>	<u>x</u>	XXXX ⁽¹⁾	XXX	Examples	:	
Device	Output	 Temperature	Package/	Qualification	a) TC2014-	-1.8VCTTR:	1.8V, -40°C to +125°C, 5LD SOT-23, Tape and Reel
	Voltage	Range	Tape and Re	el	b) TC2014-	-2.85VCTTR:	2.85V, -40°C to +125°C, 5LD SOT-23, Tape and Reel
Device:	TC2015:	50 mA LDO with 100 mA LDO wit	th Shutdown and	d V _{REF} Bypass	c) TC2015-	-1.8VCTTR:	1.8V, -40°C to +125°C, 5LD SOT-23, Tape and Reel
	TC2185:	150 mA LDO wit	th Shutdown and	d V _{REF} Bypass	d) TC2015-	-2.85VCTTR:	2.85V, -40°C to +125°C, 5LD SOT-23, Tape and Reel
Output Voltage:	XX = 2	2.5V			e) TC2185-	-1.8VCTTR:	1.8V, -40°C to +125°C, 5LD SOT-23, Tape and Reel
	$\begin{array}{rcl} XX &=& 2\\ XX &=& 2\\ XX &=& 2\\ XX &=& 2 \end{array}$	2.7V			f) TC2185-	-2.8VCTTR:	2.8V, -40°C to +125°C, 5LD SOT-23, Tape and Reel
	$\begin{array}{rcl} XX &= 2\\ XX &= 3\\ XX &= 3 \end{array}$	3.0V			g) TC2185-	-2.8VCTTRY:	2.8V, -40°C to +125°C, 5LD SOT-23, Tape and Reel
	XX = 8	5.0V			h) TC2185-	-3.0VCTTR-VA	D: 3.0V, -40°C to +125°C, 5LD SOT-23, Tape and Reel, AEQ-Q100 Automotive Qualifie
Temperature Range:	V =	-40°C to +125°C			i) TC2185-	-3.3VCTTR-VA	O:3.3V, -40°C to +125°C, 5LD SOT-23, Tape and Reel,
Package:		 Plastic Small O 5-lead, Tape an Plastic Small O 	nd Reel				AEQ-Q100 Automotive Qualified
			nd Reel, NiPdAu		Note 1:	catalog part is used for or	eel identifier only appears in the number description. This identifier dering purposes and is not printer
Qualification*:		 Standard Part AEQ-Q100 Auto 	omotive Qualifie	d		Microchip Sa	ice package. Check with you ales Office for package availabilit and Reel option.
	*All curre example	ently available VA0 s.	O variants are sł	nown in the		, i	·

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\textcircled{\mbox{\sc op}}$ 2001-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2801-9

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820