SY89872U

2.5V, 2 GHz Any Differential In-to-LVDS Programmable Clock Divider/Fanout Buffer with Internal Termination

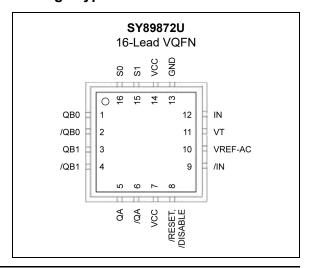
Features

- Guaranteed AC Performance Over Temperature and Voltage:
 - > 2 GHz f_{MAX}
 - < 750 ps t_{pd} (Matched Delay between Banks)
 - < 15 ps Within-device Skew
 - $< 200 \text{ ps } t_r/t_f$
- · Low Jitter Design:
 - 265 fs RMS Phase Jitter
- Unique input termination and VT pin for DC-coupled and AC-coupled inputs: any differential inputs (LVPECL, LVDS, CML, HTSL)
- · Precision Differential LVDS outputs
- Matched Delay: All Outputs Have Matched Delay, Independent of Divider Setting
- · TTL/CMOS Inputs for Select and Reset/Disable
- · Two Output Banks (Matched Delay)
 - Bank A: Buffered Copy of Input Clock (Undivided)
 - Bank B: Divided Output (÷2, ÷4, ÷8, ÷16),
 Two Copies
- · 2.5V Power Supply
- Wide Operating Temperature Range: –40°C to +85°C
- Available in 3 mm × 3 mm 16-lead VQFN Package

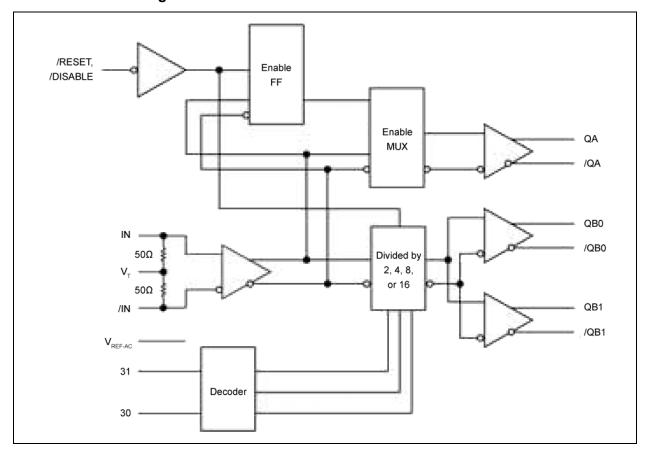
Applications

- · OC-3 to OC-192 SONET/SDH Applications
- Transponders
- Oscillators
- · SONET/SDH Line Cards

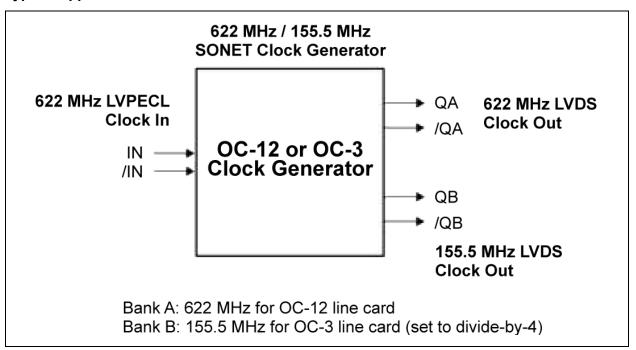
General Description


This 2.5V low-skew, low-jitter, precision LVDS output clock divider accepts any high-speed differential dock input (either AC-coupled or DC-coupled) CML, LVPECL, HSTL, or LVDS and divides down the frequency by using a programmable divider ratio to create a frequency-locked, lower speed version of the input clock.

The SY89872U includes two output banks. Bank A Is an exact copy of the input dock (pass through) with matched propagation delay to Bank B, the divided output bank. Available divider ratios are 2, 4, 8, and 16. In a typical 622 MHz clock system, this would provide availability of 311 MHz, 155 MHz, 77 MHz, or 38 MHz auxiliary clock components.


The differential input buffer has a unique internal termination design that allows access to the termination network through a $V_{\rm T}$ pin. This feature allows the device to easily interface to different logic standards. A $V_{\rm REF-AC}$ reference is included for AC-coupled applications.

The SY89872U is part of Microchip's high-speed Precision Edge[®] timing and distribution family. For 3.3V applications, consider the SY89873L. For applications that require an LVPECL output, consider the SY89872U. The /RESET input asynchronously resets the divider outputs (Bank B). In the pass-through function (Bank A) the /RESET synchronously enables or disables the outputs on the next falling edge of IN (rising edge of /IN). Refer Section 7.0, Timing Diagram:


Package Type

Functional Block Diagram

Typical Application

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†]

Supply Voltage (V _{CC})	
Input Voltage (V _{IN})	
LVDS Output Current (I _{OUT})	
Input Current IN, /IN (I _{IN})	
V _{REF-AC} Input Sink/Source Current (I _{VREF-AC}), Note 1	

Operating Ratings^{††}

Supply Voltage (V_{CC})+2.375V to +2.625V

Note 1: Due to the limited drive capability, use for input of the same package only.

TABLE 1-1: DC ELECTRICAL CHARACTERISTICS

All values applicable for when T _A = -40°C to +85°C unless otherwise noted. (Note 1, Note 2)								
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Power Supply Voltage	V _{CC}	2.375	2.5	2.625	V	_		
Power Supply Current	I _{CC}	_	75	110	mA	No load, max. V _{CC}		
Differential Input Resistance (IN to /IN)	R _{IN}	90	100	110	Ω	_		
Input HIGH Voltage (IN, /IN)	V _{IH}	0.1	_	V _{CC} + 0.3	٧	Note 3		
Input LOW Voltage (IN, /IN)	V _{IL}	-0.3	_	V _{IH} – 0.1	٧	Note 3		
Input Voltage Swing (IN, /IN)	V _{IN}	0.1	_	V _{CC}	٧	Note 3 and Note 4		
Differential Input Voltage Swing IN – /IN	V _{DIFF_IN}	0.2	_	_	٧	Note 3, Note 4, and Note 5		
Input Current IN, /IN	I _{IN}	_	_	45	mA	Note 3		
Reference Voltage	V _{REF-AC}	V _{CC} – 1.525	V _{CC} – 1.425	V _{CC} – 1.325	V	Note 6		

- **Note 1:** The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
 - 2: Specification for packaged product only.
 - 3: Due to the internal termination (see Section 8.0, Input Buffer Structure) the input current depends on the applied voltages at IN, /IN, and V_T inputs. Do not apply a combination of voltages that causes the input current to exceed the maximum limit.
 - 4: See Section 7.0, Timing Diagram for V_{IN} definition. V_{IN} (max.) is specified when V_T is floating.
 - **5:** See Figure 6-1 and Figure 6-2 for V_{DIFF} definition.
 - **6:** Operating using V_{IN} is limited to AC-coupled PECL or CML applications only. Connect directly to V_T pin.

[†] **Notice:** Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{**}Motice: The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

TABLE 1-2: LVDS OUTPUTS DC ELECTRICAL CHARACTERISTICS

V_{CC} = 2.5V ±5% and T_A = -40°C to +85°C, unless otherwise noted. (Note 1, Note 2)								
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Output Voltage Swing	V _{OUT}	250	350	450	mV	Note 3		
Output High Voltage	V _{OH}	_	_	1.475	V	Note 4		
Output Low Voltage	V _{OL}	0.925	_	_	V	Note 4		
Output Common Mode Voltage	V _{OCM}	1.125	_	1.375	V	Note 5		
Change in Common Mode Voltage	ΔV _{OCM}	– 50	_	50	mV	_		

- **Note 1:** The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
 - 2: Specification for packaged product only.
 - 3: See Figure 6-1.
 - **4:** Measured as per Figure 5-1, 100Ω across Q and /Q outputs.
 - 5: Measured as per Figure 5-2.

TABLE 1-3: LVTTL/CMOS INPUTS DC ELECTRICAL CHARACTERISTICS

V_{CC} = 2.5V ±5% and T_A = -40°C to +85°C, unless otherwise noted. (Note 1, Note 2)								
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Input HIGH Voltage	V _{IH}	2.0	_	V _{CC}	V	_		
Input LOW Voltage	V_{IL}	0	_	0.8	V	_		
Input HIGH Current	I _{IH}	-125	_	20	μA	_		
Input LOW Current	I _{IL}	_	_	-300	μΑ	_		

- **Note 1:** The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
 - 2: Specification for packaged product only.

TABLE 1-4: AC ELECTRICAL CHARACTERISTICS

V_{CC} = 2.5V ±5% and T_A = -40°C to + 85°C, unless otherwise noted. (Note 1, Note 2)								
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Maximum Toggle Frequency	f	2	_	_	GHz	Output swing: ≥200 mV		
Maximum Input Frequency	f _{MAX}	3.2	_	_	GHz	Note 3		
Differential Propagation Delay	+	500	625	750	ps	Input swing: <400 mV		
IN-to-Q	t _{pd}	450	575	700	ps	Input Swing: ≥400 mV		
Within-Device Skew (Differential) (QB0-to-QB1)		_	7	15	ps	Note 4		
Within-Device Skew (Differential) (Bank A-to-Bank B)	t _{SKEW}	_	12	30	ps	Note 4		
Part-to-Part Skew (Differential)			_	250	ps	Note 4		
Reset Recovery Time	t _{rr}	600	_	_	ps	Note 5		
RMS Phase Jitter	t _{JITTER}	_	265	_	fs	Output = 622 MHz, Integration Range: 12 kHz–20 MHz		
Rise/Fall Times (20% to 80%)	t _r , t _f	70	130	200	ps	_		

- **Note 1:** Measured with 400 mV input signal, 50% duty cycle, 100Ω termination between Q and /Q, unless otherwise stated.
 - 2: Specification for packaged product only.
 - 3: Bank A (pass-through) maximum frequency is limited by the output stage. Bank B (input-to-output +2, +4, +8, +16) can accept an input frequency >3 GHz, while Bank A will be slew rate limited.
 - **4:** Skew is measured between outputs under identical transitions.
 - 5: See Section 7.0, Timing Diagram.

TABLE 1-5: TEMPERATURE SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Temperature Range								
Operating Temperature	T _A	-40	_	+85	°C	_		
Lead Temperature	T _{LEAD}	_	+260	_	°C	Soldering, 20 sec.		
Storage Temperature	T _S	-65	_	+150	°C	_		
Package Thermal Resistance								
VQFN, Still Air	0	_	+60	_	°C/W	_		
VQFN, 500 lfpm	θ_{JA}	_	+54	_	°C/W	_		
VQFN, Junction-to-Board (Note 1)	Ψ_{JB}	_	+32	_	°C/W	_		

Note 1: Junction-to-board resistance assumes exposed pad Is soldered (or equivalent) to the device's most negative potential on the PCB.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1, 2, 3, 4	QB0, /QB0 QB1, /QB1	Differential LVDS Compatible Outputs: Divide by 2, 4, 8, 16. Unused outputs must be terminated with 100Ω across the pin (Q, /Q),
5, 6	QA, /QA	Differential L VOS Compatible Undivided Output Clock.
7, 14	VCC	Positive Power Supply: Bypass with 0.1 μF/0.01 μF low ESR capacitors.
8	/RESET, /DISABLE	Output Reset and Output Enable/Disable: Internal 25 k Ω pull-up. Input threshold is $V_{CC}/2$. Logic LOW will reset the divider select, and align Bank A and Bank B edges, In addition, when LOW, Bank A and Bank B will be disabled.
12, 9	IN, /IN	Differential Reference Input Clock Internal 50Ω termination resistors to V_T input. See Section 9.0, Input Interface Applications.
10	VREF-AC	Reference Voltage: Equal to V_{CC} – 1.4V (approx.). and used for AC-coupled applications. Maximum sink/source current is 0.5 mA. See Section 9.0, Input Interface Applications,
11	VT	Termination Center-Tap: For DC-Coupled CML and LVDS inputs, leave this pin floating, See Section 9.0, Input Interface Applications,
13	GND	Ground.
15, 16	S1, S0	Select Pins: LVTTL/CMOS logic levels. Internal 25 k Ω pull-up resistor. Logic HIGH if left unconnected (divided by 16 mode). S0 = LSB. Input threshold is $V_{CC}/2$.

TABLE 2-2: TRUTH TABLE

/RESET /DISABLE	S1	S0	Bank A Output	Bank B Outputs
1	0	0	Input Clock	Input Clock + 2
1	0	1	Input Clock	Input Clock + 4
1	1	0	Input Clock	Input Clock + 8
1	1	1	Input Clock	Input Clock + 16
0	Х	Х	QA = Low, /QA = High (Note 1)	QB0 = Low, /QB0 = High (Note 2) QB1 = Low, /QB1 = High (Note 2)

Note 1: On the next negative transition of the input signal.

^{2:} Asynchronous reset/disable function. See Section 7.0, Timing Diagram.

3.0 TYPICAL CHARACTERISTICS

 V_{CC} = 2.5V; V_{IN} = 400 mV, T_A = 25°C, unless otherwise noted.

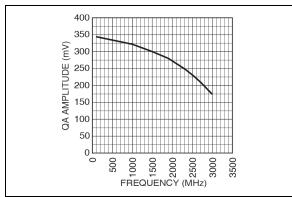


FIGURE 3-1: QA OUTPUT AMPLITUDE VS. FREQUENCY.

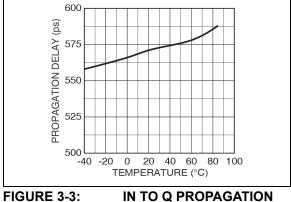


FIGURE 3-3: IN TO Q PROPAGATION DELAY VS.
TEMPERATURE.

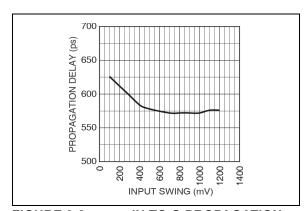


FIGURE 3-2: IN TO Q PROPAGATION DELAY VS. INPUT SWING.

4.0 TYPICAL OUTPUT WAVEFORMS

 V_{CC} = 2.5V; V_{IN} = 400 mV, T_A = 25°C, unless otherwise noted.

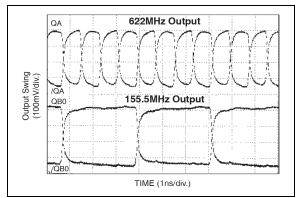


FIGURE 4-1: QA @ 622 MHZ AND QB @ 155.5 MHZ (DIVIDE-BY-4).

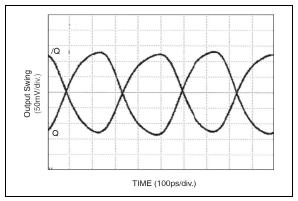


FIGURE 4-3: 2 GHZ OUTPUT.

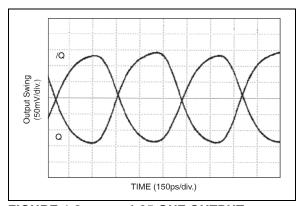


FIGURE 4-2: 1.25 GHZ OUTPUT.

5.0 LVDS OUTPUT

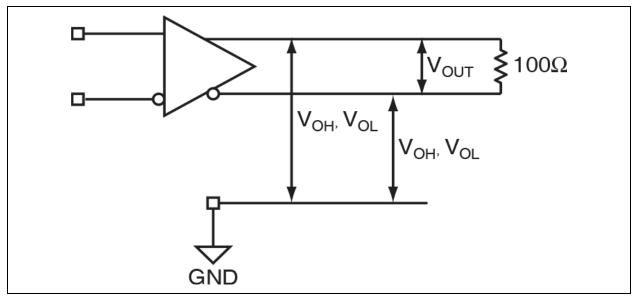


FIGURE 5-1: LVDS DIFFERENTIAL MEASUREMENT.

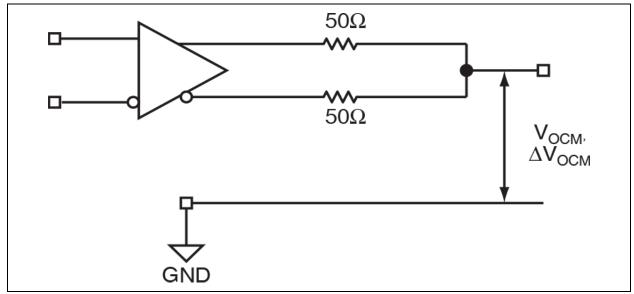


FIGURE 5-2: LVDS COMMON MODE MEASUREMENT.

6.0 SINGLE-ENDED AND DIFFERENTIAL SWINGS

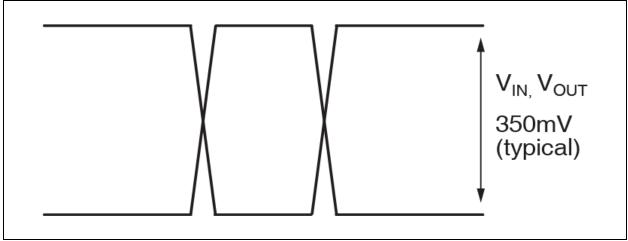


FIGURE 6-1: SINGLE-ENDED VOLTAGE SWING.

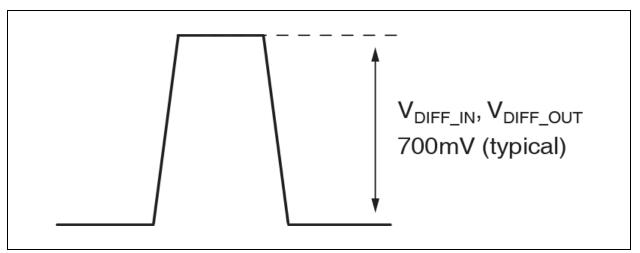


FIGURE 6-2: DIFFERENTIAL VOLTAGE SWING.

7.0 TIMING DIAGRAM

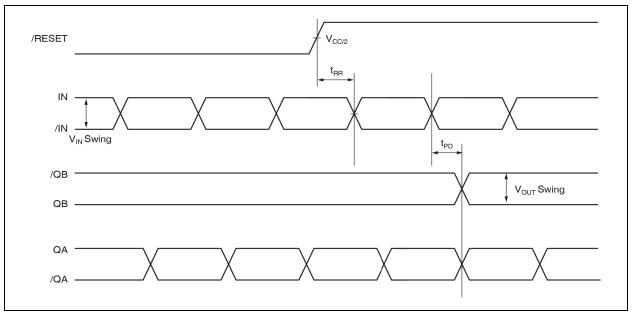


FIGURE 7-1: TIMING DIAGRAM.

8.0 INPUT BUFFER STRUCTURE

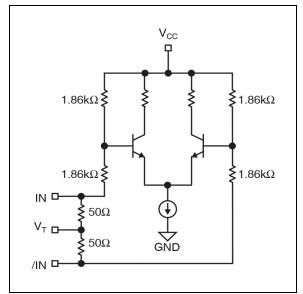


FIGURE 8-1: SIMPLIFIED DIFFERENTIAL INPUT BUFFER.

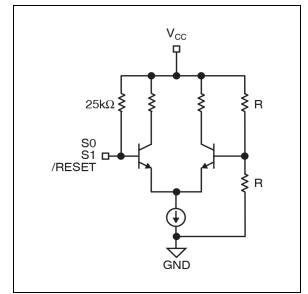


FIGURE 8-2: SIMPLIFIED TTL/CMOS INPUT BUFFER.

9.0 INPUT INTERFACE APPLICATIONS

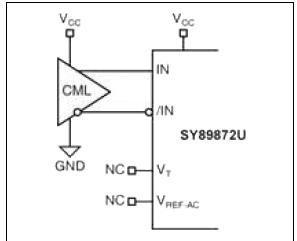


FIGURE 9-1: DC-COUPLED CML INPUT INTERFACE.

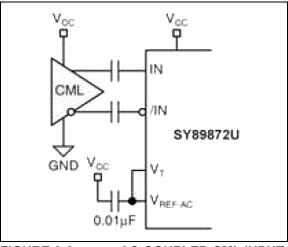


FIGURE 9-2: AC-COUPLED CML INPUT INTERFACE.

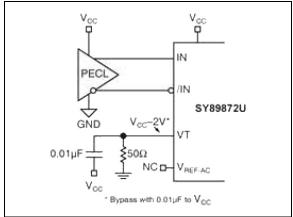


FIGURE 9-3: DC-COUPLED PECL INPUT INTERFACE.

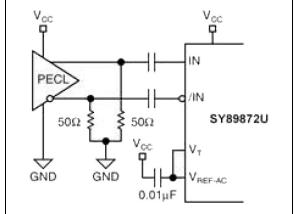


FIGURE 9-4: AC-COUPLED PECL INPUT INTERFACE.

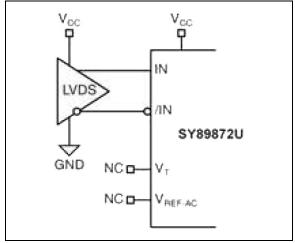


FIGURE 9-5: DC-COUPLED LVDS INPUT INTERFACE.

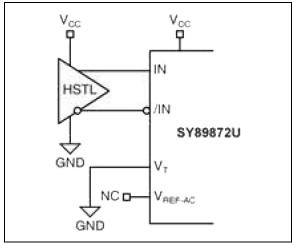
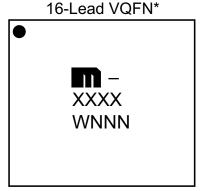
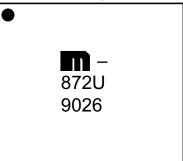



FIGURE 9-6: HSTL INPUT INTERFACE.


10.0 PACKAGING INFORMATION

10.1 Package Marking Information

Example*

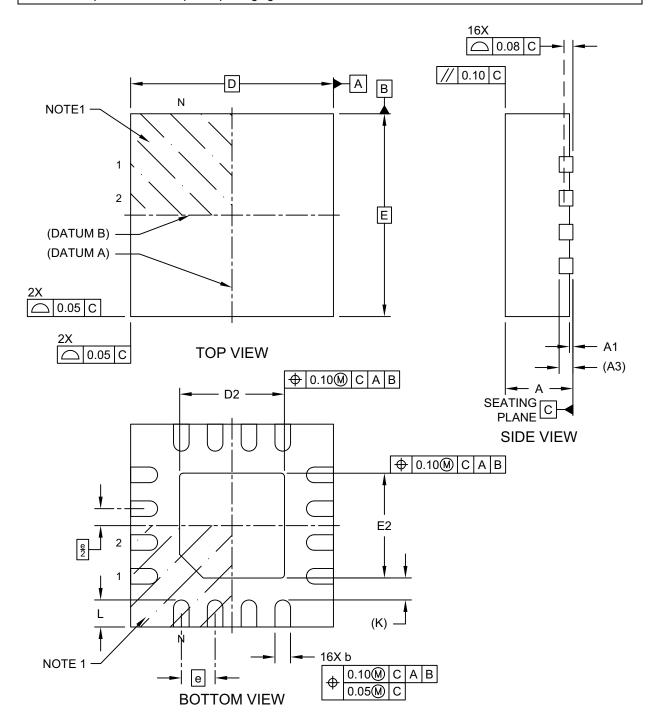
Legend: XX...X Product code or customer-specific information

W Week code

NNN Alphanumeric traceability code (week)

* This package is Pb-free. The Pb-free JEDEC designator can be found on the outer packaging for this package.

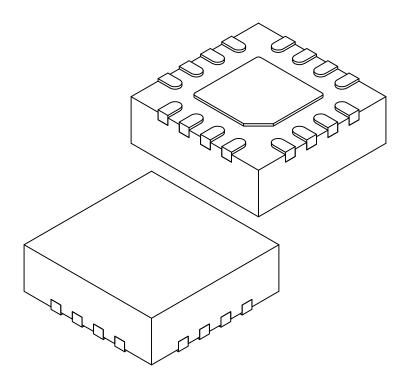
Pin one index is identified by a dot


Note:

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (_) symbol may not be to scale.

16-Lead 3 mm × 3 mm VQFN [NCA] Package Outline and Recommended Land Pattern


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1103-NCA Rev C Sheet 1 of 2

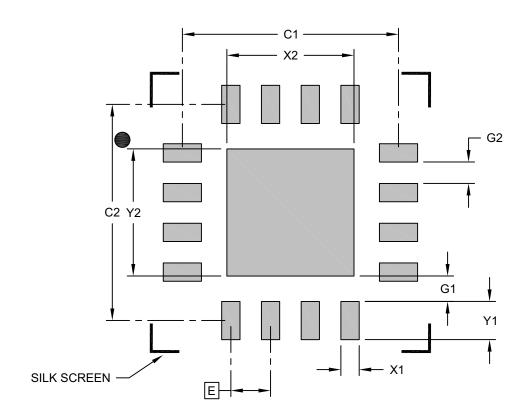
16-Lead 3 mm × 3 mm VQFN [NCA] Package Outline and Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		16	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.203 REF		
Overall Length	D		3.00 BSC	
Exposed Pad Length	D2	1.50	1.55	1.60
Overall Width	Е		3.00 BSC	
Exposed Pad Width	E2	1.50	1.55	1.60
Terminal Width	b	0.18	0.23	0.28
Terminal Length	L	0.35	0.40	0.45
Terminal-to-Exposed-Pad	K		0.33 REF	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1103-NCA Rev C Sheet 2 of 2

16-Lead 3 mm × 3 mm VQFN [NCA] Package Outline and Recommended Land Pattern

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.50 BSC	
Center Pad Width	X2			1.60
Center Pad Length	Y2			1.60
Contact Pad Spacing	C1		2.72	
Contact Pad Spacing	C2		2.72	
Contact Pad Width (Xnn)	X1			0.23
Contact Pad Length (Xnn)	Y1			0.48
Contact Pad to Center Pad (Xnn)	G1	0.32		
Contact Pad to Contact Pad (Xnn)	G2	0.27		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3103-NCA Rev C

61	/8	a	Ø.	7)	
U	U	J	U I		U

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (February 2024)

- Converted Micrel data sheet for SY89872U to Microchip format as DS20006871A.
- Minor text changes throughout.

61	/8	a	Ø.	7)	
J I	U	J	U I		U

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	X	X	<u>х</u> <u>-хх</u>
Device	Supply P Voltage Range	acka	age Temperature Special Range Processing
Device:	SY89872	=	2.5V, 2 GHz Any Differential Into-LVDS Programmable Clock Divider/Fanout Buffer with Internal Termination
Voltage Option:	U	=	2.5V
Package:	М	=	16-Lead VQFN
Temperature Range:	G	=	–40°C to 85°C
Special Processing:		=	100/Tube 1,000/Reel

Examples:

a) SY89872UMG

2.5V, 16-Lead VQFN, -40°C to 85°C, 100/Tube

b) **SY89872UMG-TR**

2.5V, 16-Lead VQFN, -40°C to 85°C, 1,000/Reel

61	/8	a	δ.	7)	
J	U	J	O.		U

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink. maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-4101-8

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393 **Denmark - Copenhagen**Tel: 45-4485-5910

Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: