

Front-End PD Interface Controller

Product Overview

The PD70210, PD70210A, and PD70210AL devices are advanced PD interface controllers (front-end IC) for powered devices in PoE applications. They support IEEE[®] 802.3af, IEEE 802at, HDBaseT, and general 2-pair or 4-pair configurations.

The PD70210, PD70210A, and PD70210AL devices have an advanced classification block that supports 2, 3, 4, and 6 event classification. These devices also identify the four pairs of cable that receives power and generates appropriate flags by using the SUPP_Sx pins. The IC features an internal bleeder for rapidly discharging the input capacitor of the DC–DC converter to ensure fast re-detection and port power-up on sudden removal and re-insertion of the Ethernet cable into RJ45.

Features

The following are the features of PD70210, PD70210A, and PD70210AL devices.

- Supports IEEE 802.3af/at, HDBaseT, and other 2-pair or 4-pair configurations
- PD detection and programmable classification
- 2, 3, 4, and 6 event classification
- Integrated 0.3 Ω isolating (series-pass) FET
- In-rush current limiting
- Wall adapter priority support (PD70210A and PD70210AL only)
- Less than 5 µA offset current during detection
- DFN-16/QFN-38 package
- Power Good Flag (PD70210 only)

UPoE

x x

Х

х

х

The following table lists the Microchip PD products offerings.

···· · · · · · · · · · · · · · · · · ·										
Part	Туре	Package	IEEE 802.3af	IEEE 802.3at	HDBaseT (PoH)					
PD70100	Front-end	3 mm × 4 mm 12L DFN	x		—					
PD70101	Front-end + PWM	5 mm × 5 mm 32L QFN	x	—	—					
PD70200	Front-end	3 mm × 4 mm 12L DFN	x	x	—					
PD70201	Front-end + PWM	5 mm × 5 mm 32L QFN	x	x	—					
PD70210	Front-end	4 mm × 5 mm 16L DFN	x	x	x					
PD70210A	Front-end	4 mm × 5 mm 16L DFN	x	x	x					

5 mm × 7 mm 38L QFN

6 mm × 6 mm 36L QFN

6 mm × 8 mm 40L QFN

Х

х

х

Х

х

х

х

х

х

Table 1. Microchip Powered Device Products Offerings

Applications

PD70210AL

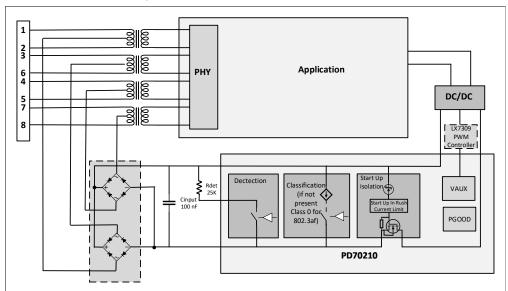
PD70211

PD70224

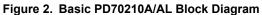
The following are the applications of PD70210, PD70210A, and PD70210AL devices.

• Single HDBaseT or double up to 95 W

Front-end


Front-end + PWM

Ideal diode bridge


- IEEE 802.3af and IEEE 802.3at
- Indoor and outdoor PoE

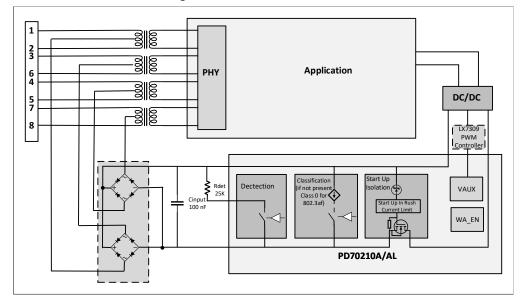
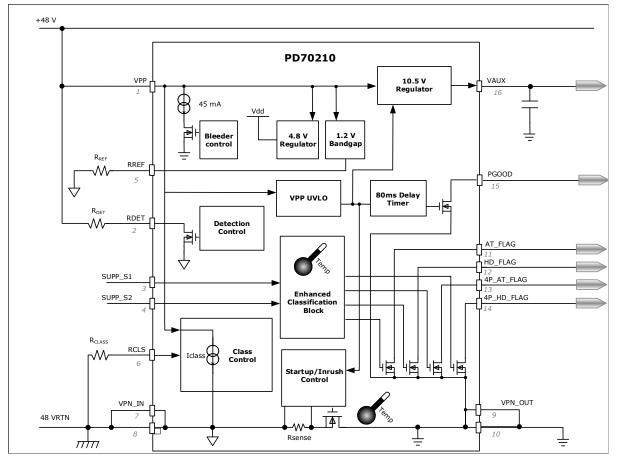

The following figure shows a typical PD70210 application.

Figure 1. Basic PD70210 Block Diagram

The following figure shows a typical PD70210A/AL application.

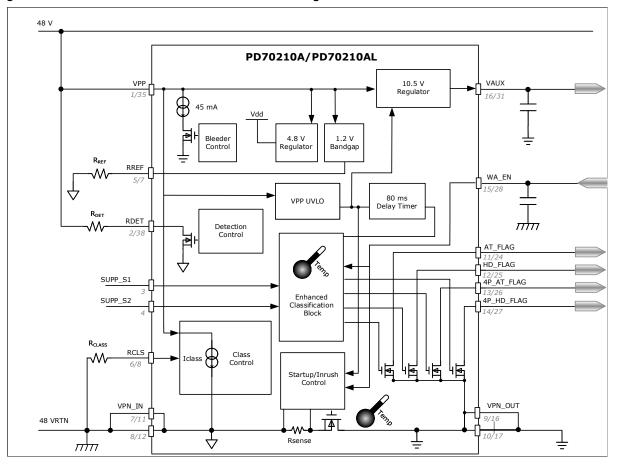
Microchip offers complete reference design packages and Evaluation Boards (EVBs). For access to these design packages, device datasheets, or application notes, consult local Microchip Client Engagement Manager or visit Microchip website. For technical support, consult local Embedded Solutions Engineers or go to Microchip Support. For help in designing the DC-DC portion of circuit try MPLAB Analog Designer (MAD) tool.


Table of Contents

Pro	duct Overview	1
Fea	itures	1
Арр	plications	2
1.	Functional Descriptions	5
	1.1. Application Information	6
	1.2. Wall Adapter Mode (PD70210A/AL)	6
	1.3. Flags	9
2.	Electrical Specifications	10
	2.1. Absolute Maximum Ratings	13
	2.2. Operating Conditions	14
	2.3. Thermal Properties	14
3.	Pin Descriptions	
4.	Package Information	
	4.1. 16-Pin Plastic DFN, 5 mm × 4 mm	
	4.2. 38-Pin Plastic QFN, 5 mm × 7 mm	
	4.3. Thermal Protection	
5.	Ordering Information	
6.	Reference Documents	
7.	Revision History	
The	Microchip Website	27
Pro	duct Change Notification Service	27
Cus	stomer Support	
Mic	rochip Devices Code Protection Feature	27
Leg	al Notice	
Trac	demarks	
Qua	ality Management System	29
Woi	rldwide Sales and Service	

1. Functional Descriptions

The following figure shows the functional blocks of the PD70210 device.


Figure 1-1. PD70210 Functional Block Diagram

Functional Descriptions

The following figure shows the functional blocks of the PD70210A/PD70210AL devices.

Figure 1-2. PD70210A/PD70210AL Functional Block Diagram

1.1 Application Information

This section describes the PD70210/A/AL application.

For latest recommendations, contact Microchip and/or see AN3468 Designing a Type 1/2 802.3 or HDBaseT Type 3 Powered Device Front-End Using PD702x0 and PD701x0 ICs.

1.2 Wall Adapter Mode (PD70210A/AL)

PD70210A and PD70210AL supports wall adapter functionality. By setting the WA_EN pin high, it gives priority to the wall adapter jack to supply the load.

The WA_EN pin is used while connecting a wall-adapter voltage between VPP and VPN_OUT by OR-ing diode. When WA_EN (the wall adapter enable pin) is held low (referenced to VPN_IN), the front-end works as a normal PD. When WA_EN is raised high (referenced to VPN_IN), the following three internal operations are forced.

- The isolation FET is turned off.
- All output flags (AT_FLAG, HD_FLAG, 4P_AT_FLAG, and 4P_HD_FLAG) are activated (low state).
- Vaux output voltage is turned on.

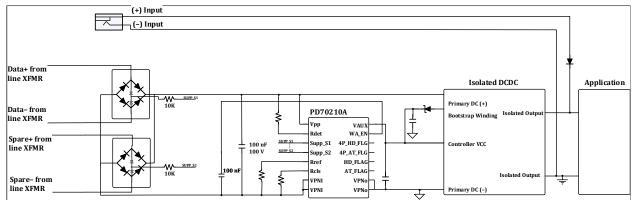
While activating the WA_EN pin, the wall adapter supplies input voltage for the DC–DC converter. The WA_EN at a high state disables the detection and classification modes.

Functional Descriptions

1.2.1 Peripheral Devices

The following is the list of PD70210/A/AL peripheral devices.

- Place 47 nF to 100 nF/100 V capacitor between the device's VPP and VPNI pins and close to the device.
- Place a 58 V TVS between device VPP and VPN_IN pins for protection against voltage transients. For complete surge protection, see AN3410 Design for PD System Surge Immunity PD701xx and PD702xx Application Note.
- If 4-pair flags are used, place a 10 KΩ resistor on SUPP_S1 and SUPP_S2 lines between the diode bridge and PD70210/A device.
- When WA_EN is used, place 100 nF to 1 μ F/10 V capacitor between WA_EN and the VPN_IN pin, close to the PD70210/A device.
- When it is not used, connect the WA_EN to the VPN_IN pin.
- Place 4.7 μF/25 V capacitor between Vaux pin and VPN_OUT.


1.2.2 Operation with an External DC Source

PD applications using PD70210A IC operates with an external power source (DC wall adapter). The two cases of providing power with an external source is detailed in the following sections.

1.2.2.1 External Power Input Connected to Application Supply Rails

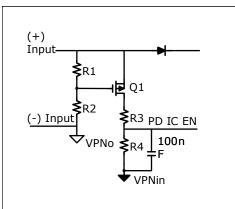
In this application, the external source is connected to the application's low-voltage supply rails. The external source voltage level depends on DC–DC output characteristics.

Figure 1-3. External Power Input to Supply Rails

1.2.2.2 External Power Input Connected to PD70210A Output

In this application, the external source is connected to the PD device's output connection for the application (VPP to VPN_{OUT}). The external source voltage level depends on the DC–DC input requirements.

(+) Input Q1 (-) Input Data+ from line XFMR Isolated DCDC Application 10 K arv DC (+) Data- from PD70210A solated Out Ŷ Bootstrap Windin line XFMR Vpp VAUX WA EN Spare+ fron Supp_S1 4P_HD_FLG 100 nF 100 V Controller VCC line XFMR SUPP S 4P_AT_FLG upp_S2 HD_FLAG ₩ 101 100 nF Rcls AT FLAG Isolated Output Spare- from VPNI VPN 1 line XFMR /PNI VPN Primary DC (-) Ŧ


Figure 1-4. External Power Input to PD70210A Output

When an external adapter is connected, the PD70210A WA_EN pin is used for disabling the isolation switch and PSE input power. The WA_EN pin resistors divider depends on the WA_EN threshold of the PD70210A.

PD70210/PD70210A/PD70210AL Functional Descriptions

The following figure shows a detailed view of the resistors to be selected in an external adapter connection.

Figure 1-5. External Power Input Resistors Dividers

R1 and R2 sets a threshold for Pfet Q1 enable to detect an external adapter. It must be set to a lower threshold than PD70210A disable levels. R3 and R4 sets the PD70210A disable threshold. Therefore, in 36 V–57 V external adapter, the disable settings are selected as follows:

- Pfet enable threshold = 30 V.
- R1 and R2 setting must be the value of Q1 VGS < 20 V at the maximum voltage condition of the external adapter.
- When the external adapter voltage is more than 30 V, Q1 is more than its VGS_{TH} value.

$$VGS = Vext_adapter \times \frac{R1}{R1 + R2}$$

• R1 is selected as 2 KΩ.

$$R2 = R1 \times \frac{Vext_adapter - VGS}{VGS}$$

- Using R1 = 2 K Ω , Vext_adapter = 30 V, and VGS = maximum VGS_{TH} = 3.5 V, provides the R2 value as 15 K Ω .
- R3 and R4 are set to the range of few K Ω to tens of K Ω using the following equation.

$$PD70210A_Wa_en = Vext_adapter_PD70210A \times \frac{R4}{(R3+R4)}$$

• Using R3 = 15 K Ω , Vext_adapter = 33.7 V, and PD70210A_WA_EN = 2.4 V as turn-off minimum threshold from the datasheet, solving the equation gives the valid resistor values for an adapter of 36 V and above. The values are: R3 = 15 K Ω and R4 = 1.15 K Ω .

For more information and various adapter connection methods, see AN3472 Implementing AUX Power in PoE Application Note.

1.3 Flags

The following truth table lists the flags status.

Table 1-1.	Truth	Table [•]	for	Status	of Flags
------------	-------	--------------------	-----	--------	----------

Number of Fingers "N" (N-Event Classification)	SUPP_S1	SUPP_S2	AT_FLAG	HD_FLAG	4P_AT_FLAG	4P_HD_FLAG		
1	Х	Х	Hi Z	Hi Z	Hi Z	Hi Z		
2	Н	L	0 V	Hi Z	Hi Z	Hi Z		
2	L	Н	0 V	Hi Z	Hi Z	Hi Z		
2	Н	Н	0 V	Hi Z	0 V	Hi Z		
3	L	Н	0 V	0 V	Hi Z	Hi Z		
3	Н	L	0 V	0 V	Hi Z	Hi Z		
3	Н	Н	0 V	0 V	0 V	Hi Z		
4	Х	Х	0 V	0 V	0 V	Hi Z		
5	Reserved fo	Reserved for future						
6	Х	Х	0 V	0 V	0 V	Hi Z		

Note: A flag's state is set only once at port turn on, while VPP-VPNin voltage crosses UVLO_{ON}. If SUPP_S1 and SUPP_S2 pins are changing after port turn on, the flags do not change accordingly.

2. Electrical Specifications

Unless otherwise specified under conditions, the minimum and maximum ratings stated apply over the entire specified operating rating of the device. Typical values are obtained either by design or by production testing at 25 °C ambient. Voltages are with respect to IC ground (VPN_IN).

Table 2-1. Input Voltage

Symbol	Parameter	Conditions	Typical	Maximum	Unit
I _{IN}	IC input current with I _{CLASS} off	VPP = 55 V	1	3	mA

Table 2-2. Detection Phase

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{DET}	Detection range	—	1.1	—	10.1	V
R _{DET_TH}	R _{DET} disconnect threshold	—	10.1	—	12.8	V
R _{DS_DET_ON}	On-resistance of internal FET during detection	_	_	_	50	Ω
R _{DS_DET_OFF}	Off-resistance of internal FET after detection	—	2	—	—	ΜΩ
I _{OFFSET_DET}	Input offset current	1.1 V ≤ VPP ≤ 10.1 V T _J ≤ 85 °C			5	μΑ
V _{R_DET_ON}	R _{DET} reconnection threshold when VPP goes low	-	2.8	3.0	4.85	V

Table 2-3. Classification Phase

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CLS_ON}	Classification sink turn-on threshold		11.4		13.7	V
V _{CLS_OFF}	Classification sink turn-off threshold	—	20.9	—	23.9	V
V _{HYS_CLS_ON}	Hysteresis of V _{CLS_ON} threshold			1		V
V _{MARK_TH}	Mark detection threshold (VPP falling)	—	10.1	—	11.4	V
I _{MARK}	Current sink in mark event region		0.25		4	mA

Electrical Specifications

continu	continued									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit				
I _{CLASS_CLIM}	Current limit of class current	—	50	68	80	mA				
I _{CLASS}	Classification current sink	R _{CLASS} = not present (Class 0)			3	mA				
		$R_{CLASS} = 133$ Ω (Class 1)	9.5	10.5	11.5					
		R _{CLASS} = 69.8 Ω (Class 2)	17.5	18.5	19.5	-				
		$R_{CLASS} = 45.3$ 26.5 28.0 29.5 Ω (Class 3)	29.5							
		$R_{CLASS} = 30.9$ Ω (Class 4)	38.0	40.0	42.0					

Table 2-4. Isolation FET

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
R _{DSON}	On resistance	Total resistance between VPN_IN to VPN_OUT; $I_{LOAD} < 600$ mA, -40 °C < $T_A < 85$ °C		0.22	0.3	Ω
I _{CLIM_INRUSH}	Inrush current limit	—	105	240	325	mA
OCP	Overcurrent protection		2.2			A
I _{LOAD}	Continuous operation load ¹	—	—	—	2	A

Note: 1. Actual maximum load is subjected to the application environment conditions, such as ambient temperatures, air flow, mutual heating by other components, and so on.

Table 2-5. Undervoltage Lockout

Symbol	Parameter	Minimum	Maximum	Unit
UVLO _{ON}	Threshold that marks start of inrush phase	36	42	V
UVLO _{OFF}	Threshold where pass-FET turns off as VPP collapses	30.5	34.5	V

Electrical Specifications

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
I _{CAP_DIS}	Discharge current (PD70210)	12 V ≤ VPP ≤ 30 V 7 V ≤ VPP ≤ 12 V	22.8 10	60	mA mA
I _{CAP_DIS}	Discharge current (PD70210A)	7 V ≤ VPP ≤ 30 V	22.8	60	mA
timer _{dis}	Discharge timer	Time for which discharge circuit is activated	430		ms

Table 2-6. DC–DC Input Cap Discharger

Table 2-7. References, Rails, and Logic

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{AUX}	Auxiliary voltage	0 mA < I _{AUX} < 4 mA	9.8	10.5	12.0	V
I _{AUX_CLIM}	Auxiliary current limit	—	10	—	32	mA
V _{REF}	Bias current reference voltage	—	1.17	1.2	1.23	V
V _{FLAG_LO}	Low level flag	For AT_FLAG, HD_FLAG, 4P_AT_FLAG, 4P_HD_FLAG, I _{FLAG} = 3 mA			0.4	V
V _{PGOOD_LO}	Power good, active low voltage	I _{PGOOD} = 3 mA PD70210 only	_	_	0.4	V
t _{FLAG}	Delay timer between start of inrush and flags declared	For AT_FLAG, HD_FLAG, 4P_AT_FLAG, 4P_HD_FLAG	80	-	-	ms
t _{PGOOD}	Delay timer between start of inrush and power good declared	PD70210 only	80	—	—	ms
IFLAG_max	Flag current driving capability	For AT_FLAG, HD_FLAG, 4P_AT_FLAG, 4P_HD_FLAG	5		_	mA
I _{PGOOD_max}	Power good current capability	PD70210 only	5	_	—	mA

Electrical Specifications

continued						
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{SUPP_HI}	SUPP_Sx high voltage threshold	For SUPP_S1 and SUPP_S2	25	—	35	V

Table 2-8. Wall Adapter Enable Pin

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{IH}	Input high logic	PD70210A, PD70210AL only	2.4		V
V _{IL}	Input low logic	PD70210A, PD70210AL only		0.8	V

2.1 Absolute Maximum Ratings

Performance is not guaranteed over this entire range. These are maximum stress ratings only. Exceeding these ratings cause immediate damage or negatively impact long-term operating reliability. Voltages are with respect to IC ground (VPN_IN), unless otherwise specified.

Table 2-9. Absolute Maximum Ratings

Parameter		Minimum	Maximum	Units
VPP, RDET		-0.3	74	V
PGOOD, AT_FLAG, HD_FLAG, 4P_AT_FLAG, 4P_HD_FLAG referenced to VPN_OUT		-0.3	20	V
SUPP_S1, SUPP_S2		0	V _{VPP} + 1.5	V
RREF, RCLS, WA_EN		-0.3	5	V
Junction temperature		-40	150	°C
Lead soldering temper	ature (40 s, reflow)		260	°C
Storage temperature, I	MSL3	-65	150	°C
ESD rating	HBM (PD70210)	—	±1.5	kV
	HBM (PD70210A/ PD70210AL)	_	±1.25	kV
	MM	—	±100	V
	CDM	_	±500	V

Electrical Specifications

2.2 Operating Conditions

Performance is guaranteed over this range as described in other electrical characteristics tables. Voltages are with respect to IC ground (VPN_IN).

Table 2-10. Operating Conditions

Conditions	Minimum	Maximum	Units
VPP	0	57	V
Ambient temperature ¹	-40	85	°C
Detection range	1.1	10.1	V
Mark event range	4.9	10.1	V
Class event range	13.7	20.9	V

Note: 1. Corresponding maximum operating junction temperature is 125 °C.

2.3 Thermal Properties

The following table shows the thermal properties of the device.

Table 2-11. Thermal Properties

Thermal Resistance	Typical	Units
θ _{JA}	31	°C/W
θ _{JP}	3	°C/W
θ _{JC}	4	°C/W

Note: θ_{JX} numbers assume no forced airflow. Junction temperature is calculated using $T_J = T_A + (P_D \times \theta_{JA})$. θ_{JA} is a function of the PCB construction. The stated number is for a four-layer board in accordance with JESD-51 (JEDEC[®]).

3. Pin Descriptions

This section provides the pin information for the PD70210/PD70210A/PD7021AL devices.

The following figures show the device pin diagrams (top and bottom views).

Figure 3-1. PD70210 Pinout

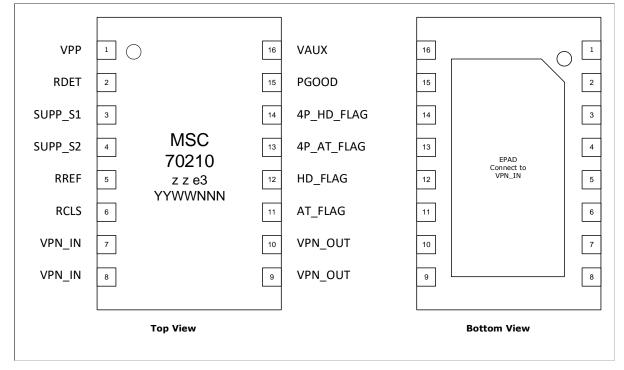
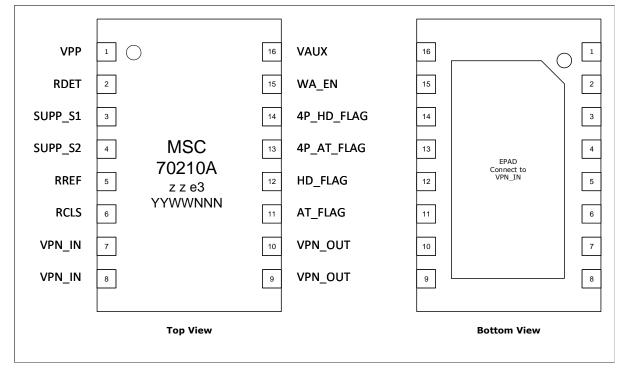
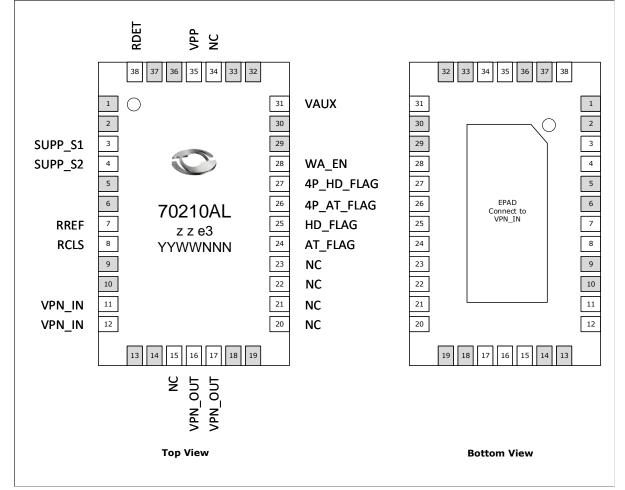




Figure 3-2. PD70210A Pinout

Pin Descriptions

Figure 3-3. PD70210AL Pinout

Note: Shaded pins do not exist.

The following table lists the pin descriptions for the PD70210/PD70210A devices.

Table 3-1. PD70210/PD70210A Pin Descriptions

Pin Number	Pin Name (PD70210A)	Pin Name (PD70210)	Description
1	VPP	VPP	Upper rail of the incoming PSE voltage rail from the positive terminal of the two OR-ed bridge rectifiers. The corresponding lower PoE rail is VPN_IN.
2	RDET	RDET	Internally connects to VPN_IN during detection phase and disengages after it is over. A 25 K Ω (or 24.9 K Ω) 1 % resistor is connected between this pin and VPP.
3	SUPP_S1	SUPP_S1	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin, along with the SUPP_S2 pin, can be used to distinguish between 2-pair and 4-pair operation for PSEs that operate in 4-pairs but do not generate the classification procedure on both pairs, but one pair only. Signal is referenced to VPN_IN. Place a 10 K Ω resistor in the input of this pin.

Pin Descriptions

contii	continued			
Pin Number	Pin Name (PD70210A)	Pin Name (PD70210)	Description	
4	SUPP_S2	SUPP_S2	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin, along with the SUPP_S1 pin, can be used to distinguish between 2-pair and 4-pair operation for PSEs that operate in 4-pairs but do not generate the classification procedure on both pairs, but one pair only. Signal is referenced to VPN_IN. Place a 10 K Ω resistor in the input of this pin.	
5	RREF	RREF	Bias current resistor. A 60.4 K Ω 1 % resistor is connected between RREF and IC ground (VPN_IN).	
6	RCLS	RCLS	Sets the class of the PD. Connect R _{CLASS} (programming resistor) between this pin and IC ground (VPN_IN). Allowed values are 133 Ω , 69.8 Ω , 45.3 Ω , and 30.9 Ω for Class 1, 2, 3, and 4, respectively. If RCLASS is not present, the PD will draw up to 3 mA during classification, indicating Class 0 (default type 1) to the PSE. Signal is referenced to VPN_IN.	
7,8	VPN_IN	VPN_IN	Lower rail of the incoming PSE voltage rail, from the negative terminal of the two OR-ed bridge rectifiers. The corresponding upper PoE rail is VPP.	
9,10	VPN_OUT	VPN_OUT	In effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and power-up. It is connected to the power ground and PWM controller IC's ground plane of the DC–DC converter section.	
11	AT_FLAG	AT_FLAG	Open drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. In PD70210A, there is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. In PD70210, this flag asserts once inrush current is ended. Signal is referenced to VPN_OUT.	
12	HD_FLAG	HD_FLAG	Open drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. In PD70210A, there is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. In PD70210, this flag asserts once inrush current is ended. Signal is referenced to VPN_OUT.	
13	4P_AT_FLAG	4P_AT_FLAG	Open drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. In PD70210A, there is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. In PD70210, this flag asserts once inrush current is ended. Signal is referenced to VPN_OUT.	

Pin Descriptions

contii	nued		
Pin Number	Pin Name (PD70210A)	Pin Name (PD70210)	Description
14	4P_HD_FLAG	4P_HD_FLAG	Open drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification. In PD70210A, there is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. In PD70210, this flag asserts once inrush current is ended. Signal is referenced to VPN_OUT.
15	WA_EN		While this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 μ F/10 V capacitor from WA_EN to VPN_IN pins, close to the device. When WA_EN is not used, connect it to VPN_IN. For more information, see Figure 1-3.
		PGOOD	Open drain output. Power good output signal from the front-end stage. This pin gets actively pulled low when power-on occurs. There is a minimum 80 ms delay from the moment VPort exceeds UVLO (~36 V) to this PGOOD signal being driven low as per the IEEE standard, to allow the PSE to increase its current limit after power-up is completed. Signal is referenced to VPN_OUT.
16	VAUX	VAUX	Auxiliary voltage rail. This can be used to provide a few mA of startup current for the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC-DC must not start up until Vaux is active.
	EPAD	EPAD	Connected on PCB plane to VPN_IN.

The following table lists the pin descriptions for the PD70210AL device.

Table 3-2. PD70210AL Pin Descriptions

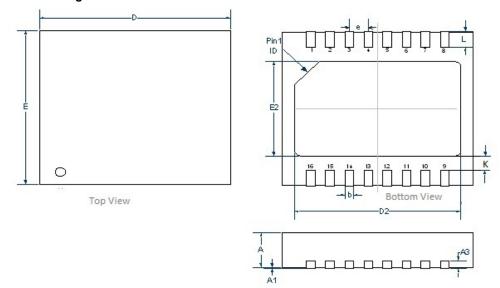
Pin Number	Pin Name	Description
1, 2	NA	
3	SUPP_S1	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin, along with the SUPP_S2 pin, can be used to distinguish between 2-pair and 4-pair operation for PSEs that operate in 4-pairs but do not generate the classification procedure on both pairs, but one pair only. Signal is referenced to VPN_IN. Place a 10 K Ω resistor in the input of this pin.
4	SUPP_S2	Input pin for sensing the voltage on the diode bridge connected to the data pairs. This pin, along with the SUPP_S1 pin, can be used to distinguish between 2-pair and 4-pair operation for PSEs that operate in 4-pairs but do not generate the classification procedure on both pairs, but one pair only. Signal is referenced to VPN_IN. Place a 10 K Ω resistor in the input of this pin.
5,6	NA	

Pin Descriptions

Pin Number Pin Name Description 7 RREF Bias current resistor. A 60.4 K0 1% resistor is connected between RREF and IC ground (VPN_IN). 8 RCLS Sets the class of the PD. Connect R _{CLASS} (programming resistor) between this pin and IC ground (VPN_IN). Allowed values are 133.0, 693.0, 453. 0, and 30.9 Ω for Class.1, 2.3, and 4, respectively.1 RCLASS is not present, the PD will draw up to 3 mA during classification, indicating Class 0 (default type 1) to the PSE. Signal is referenced to VPN_IN. 9, 10 NA Lower rail of the incoming PSE voltage rail, from the negative terminal of the two OR-ed bridge rectifiers. The corresponding upper PoE rail is VPP. 13, 14 NA In effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and power-up. It is connected to the power ground and PWM controller IC's ground plane of the DC-DC converter section. 18, 19 NA 20, 21, 22, 23 NC No connect. 24 AT_FLAG Open drain output. This pin gets actively pulled low when a type 2 PD-PSE isignal activity. Signal is referenced to VPN_OUT. 25 HD_FLAG Open drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 26 4P_AT_FLAG	continued		
and IC ground (VPN_IN). 8 RCLS Sets the class of the PD. Connect R _{CLASS} (programming resistry) between the pD wind (VPN_IN). Allowed values are 133 0, 69.8 0, 45.3 0, and 30 0 for Class 1, 2, 3, and 4, respectively. If RCLASS is not present, the PD will draw up to 3 mA during classification, indicating Class 0 (default type 1) to the PSE. Signal is referenced to VPN_IN. 9, 10 NA 11, 12 VPN_IN Lower rail of the incoming PSE voltage rail, from the negative terminal of the WO OR-ed bridge rectifiers. The corresponding upper POE rail is VPP. 13, 14 NA 15 NC No connect. 16, 17 VPN_OUT In effect, the switched ground for establishing continuity to the PVM sector on the power ground and PVM controller IC's ground plane of the DC-DC converter section. 18, 19 NA 20, 21, 22, 23 NC No connect. 24 AT_FLAG Open drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 25 HD_FLAG Open drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 26 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE m	Pin Number	Pin Name	Description
this pin and 1C ground (VPN_IN). Allowed values are 133, 069.8 0, 45.3 0, and 30.9 G for Class 1.2, 3. and 4, respectively. If RCLASS is not present, the PD will draw up to 3 mA during classification, indicating Class 0 (default type 1) to the PSE. Signal is referenced to VPN_IN. 9, 10 NA 11, 12 VPN_IN Lower rail of the incoming PSE voltage rail, from the negative terminal of the two OR-ed bridge rectifiers. The corresponding upper PoE rail is VPP. 13, 14 NA 15 NC No connect. 16, 17 VPN_OUT In effect, the switched ground for establishing continuity to the PVM section the power ground and PVM controller IC's ground plane of the DC-DC converter section. 18, 19 NA 20, 21, 22, 23 NC No connect. 24 AT_FLAG Open drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 25 HD_FLAG Open drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 26 4P_AT_FLAG Open drain output. This pin gets actively pu	7	RREF	
11, 12 VPN_IN Lower rail of the incoming PSE voltage rail, from the negative terminal of the two OR-ed bridge rectifiers. The corresponding upper PoE rail is VPP. 13, 14 NA 15 NC No connect. 16, 17 VPN_OUT In effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and power-up. It is connected to the power ground and PWM controller IC's ground plane of the DC-DC converter section. 18, 19 NA 20, 21, 22, 23 NC No connect. 24 AT_FLAG Open drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 25 HD_FLAG Open drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 26 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification is fully charged to this signal activity. Signal is referenced to VPN_OUT. 27 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classifica	8	RCLS	this pin and IC ground (VPN_IN). Allowed values are 133 Ω , 69.8 Ω , 45.3 Ω , and 30.9 Ω for Class 1, 2, 3, and 4, respectively. If RCLASS is not present, the PD will draw up to 3 mA during classification, indicating Class 0
InstructionThe two OR-ed bridge rectifiers. The corresponding upper PoE rail is VPP.13, 14NA15NCNo connect.16, 17VPN_OUTIn effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and power-up. It is connected to the power ground and PVM controller IC's ground plane of the DC-DC converter section.18, 19NA20, 21, 22, 23NCNo connect.24AT_FLAGOpen drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.25HD_FLAGOpen drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.264P_AT_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.274P_AT_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.274P_	9, 10	NA	
15 NC No connect. 16, 17 VPN_OUT In effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and power-up. It is connected to the power ground and PWM controller IC's ground plane of the DC-DC converter section. 18, 19 NA 20, 21, 22, 23 NC No connect. 24 AT_FLAG Open drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 25 HD_FLAG Open drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 26 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 27 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair Version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Sig	11, 12	VPN_IN	
16, 17 VPN_OUT In effect, the switched ground for establishing continuity to the PWM section after successful detection, classification, and power-up. It is connected to the power ground and PVMM controller IC's ground plane of the DC-DC converter section. 18, 19 NA 20, 21, 22, 23 NC No connect. 24 AT_FLAG Open drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 25 HD_FLAG Open drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 26 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 27 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair VPN_OUT. 28 WA_EN While this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this signal activity. Signal is referenced to VPN_OUT. 28 WA_EN While this input	13, 14	NA	
after successful detection, classification, and power-up. It is connected to the power ground and PWM controller IC's ground plane of the DC-DC converter section.18, 19NA20, 21, 22, 23NCNo connect.24AT_FLAGOpen drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.25HD_FLAGOpen drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.264P_AT_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.274P_HD_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.28WA_ENWhile this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this input is high, tenables the wall adapter feature. Place from 100 nF/10 V to 1 µF/10 V capacitor from WA_EN to VPN_IN pins, close to the device. When WA_EN is not used, connect it to VPN_IN. For more in	15	NC	No connect.
20, 21, 22, 23NCNo connect.24AT_FLAGOpen drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.25HD_FLAGOpen drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.264P_AT_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.274P_HD_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.28WA_ENWhile this input is low (referenced to VPN_N). The chip works according to internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 µF/10 V capacitor from WA_EN to VPN_N. N. For more information, see Figure 1-3.29,30NA31VAUXAuxiliary voltage rail. This is used to provide a few mA of startup current for the PVM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end	16, 17	VPN_OUT	after successful detection, classification, and power-up. It is connected to the power ground and PWM controller IC's ground plane of the DC–DC
24 AT_FLAG Open drain output. This pin gets actively pulled low when a type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 25 HD_FLAG Open drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 26 4P_AT_FLAG Open drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 27 4P_HD_FLAG Open drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 27 4P_HD_FLAG Open drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT. 28 WA_EN While this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this input is high, it	18, 19	NA	
Imitually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.25HD_FLAGOpen drain output. This pin gets actively pulled low when a 2-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.264P_AT_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.274P_HD_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.28WA_ENWhile this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 µF/10 V capacitor from WA_EN to VPN_IN. For more information, see Figure 1-3.29,30NAMa31VAUXAuxiliary voltage rail. This is used to provide a few mA of startup current for the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC-DC should not start up until Vaux is active.	20, 21, 22, 23	NC	No connect.
PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.264P_AT_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair version of a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.274P_HD_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.28WA_ENWhile this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 µF/10 V capacitor from WA_EN to VPN_IN. For more information, see Figure 1-3.29,30NA31VAUXAuxiliary voltage rail. This is used to provide a few mA of startup current for the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC-DC should not start up until Vaux is active.	24	AT_FLAG	mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this
a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.274P_HD_FLAGOpen drain output. This pin gets actively pulled low when a 4-pair HDBaseT PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.28WA_ENWhile this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 µF/10 V capacitor from WA_EN to VPN_IN pins, close to the device. When WA_EN is not used, connect it to VPN_IN_EN more information, see Figure 1-3.29,30NA31VAUXAuxiliary voltage rail. This is used to provide a few mA of startup current for the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC-DC should not start up until Vaux is active.	25	HD_FLAG	PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully
PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to VPN_OUT.28WA_ENWhile this input is low (referenced to VPN_IN), the chip works according to internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 µF/10 V capacitor from WA_EN to VPN_IN pins, close to the device. When WA_EN is not used, connect it to VPN_IN. For more information, see Figure 1-3.29,30NA31VAUXAuxiliary voltage rail. This is used to provide a few mA of startup current for the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC-DC should not start up until Vaux is active.	26	4P_AT_FLAG	a (non-standard) type 2 PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully charged to this signal activity. Signal is referenced to
internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 µF/10 V capacitor from WA_EN to VPN_IN pins, close to the device. When WA_EN is not used, connect it to VPN_IN. For more information, see Figure 1-3.29,30NA31VAUXAuxiliary voltage rail. This is used to provide a few mA of startup current for the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC-DC should not start up until Vaux is active.	27	4P_HD_FLAG	PD-PSE mutually identifies each other through classification. There is a minimum 80 ms delay from the moment that the input capacitor is fully
31VAUXAuxiliary voltage rail. This is used to provide a few mA of startup current for the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC-DC should not start up until Vaux is active.	28	WA_EN	internal flow diagram. When this input is high, it enables the wall adapter feature. Place from 100 nF/10 V to 1 μ F/10 V capacitor from WA_EN to VPN_IN pins, close to the device. When WA_EN is not used, connect it to
the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC–DC should not start up until Vaux is active.	29,30	NA	
32, 33 NA	31	VAUX	the PWM controller (typically, 10.5 V). Signal is referenced to VPN_OUT and is activated once the front-end power-up sequence ends. DC–DC
	32, 33	NA	

Pin Descriptions

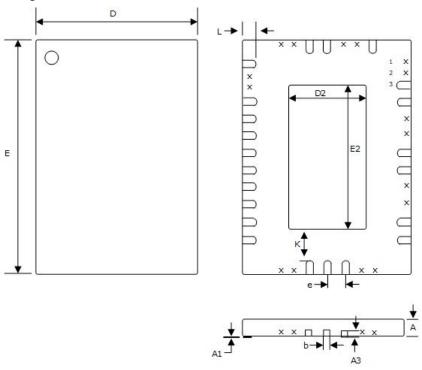
continued	continued		
Pin Number	Pin Name	Description	
34	NC	No connect.	
35	VPP	Upper rail of the incoming PSE voltage rail, from the positive terminal of the two OR-ed bridge rectifiers. The corresponding lower PoE rail is VPN_IN.	
36, 37	NA		
38	RDET	Internally connects to VPN_IN during detection phase and disengages after it is over. A 25 K Ω (or 24.9 K Ω) 1% resistor is connected between this pin and VPP.	
	EPAD	Connected on PCB plane to VPN_IN.	


4. Package Information

This section provides information about the two available packages.

Note: Dimensions do not include protrusions. These shall not exceed 0.155 mm (0.006 in.) on any side. Lead dimension shall not include solder coverage. Dimensions are in millimeters, inches for reference only.

4.1 16-Pin Plastic DFN, 5 mm × 4 mm


This section shows the 16-pin plastic DFN, 5 mm × 4 mm package and package dimensions. **Figure 4-1. DFN Package**

Dimension	Millimeters	limeters Inches		nes	
	Minimum	Maximum	Minimum	Maximum	
A	0.80	1.00	0.031	0.039	
A1	0.00	0.05	0.000	0.002	
A3	0.20 REF	—	0.008 REF	—	
D	5.00 BSC	—	0.197 BSC	—	
E	4.00 BSC	—	0.157 BSC	—	
D2	4.20	4.45	0.165	0.175	
E2	2.30	2.55	0.091	0.100	
е	0.50 BSC	—	0.0197 BSC	—	
К	0.20 MIN	—	0.008 MIN	—	
L	0.30	0.50	0.012	0.020	
b	0.18	0.30	0.007	0.012	

4.2 38-Pin Plastic QFN, 5 mm × 7 mm

This section shows the 38-pin plastic DFN, 5 mm × 7 mm package and package dimensions. **Figure 4-2. QFN Package**

Table 4-2. Package Dimensions: QFN

Dimension	Millimeters		Inches	
	Minimum	Maximum	Minimum	Maximum
A	0.80	1.00	0.031	0.039
A1	0.00	0.05	0	0.002
A3	0.20 REF	—	0.008 REF	—
b	0.18	0.30	0.007	0.012
D	5.00 BSC	—	0.196 BSC	—
E	7.00 BSC	-	0.275 BSC	—
D2	1.85	2.10	0.073	0.083
E2	3.85	4.10	0.152	0.161
е	0.50 BSC	—	0.020 BSC	—
К	1.016	—	0.040	—
L	0.30	0.50	0.012	0.020

4.3 Thermal Protection

PD70210, PD70210A, and PD70210AL are protected from excessive internal temperatures that might occur during various operating procedures. Two temperature sensors are located on the chip, monitoring the temperatures of the isolating switch (pass-FET) and classification current sink.

Each over-temperature sensors activates a protection mechanism that disconnects the isolation (pass) FET or the classification circuit. This protects the device from being permanently damaged and from long-term degradation.

5. Ordering Information

The following table lists the detailed part ordering information for the PD70210/PD70210A/PD70210AL devices. All part numbers are RoHS-compliant, Pb-free, and have an ambient temperature range of –40 °C to 85 °C. All parts also have 2-pair/4-pair HDBaseT support.

Table 5-1. Ordering Information

Part Number	Packaging Type	Package	Part Marketing	Wall Adapter Support	Clearance Between HV Pins
PD70210ILD-TR	Tape and reel	DFN 5 mm × 4 mm, 0.5 mm pitch 16 pins	MSC 70210 Z Z e3 ¹ YYWWNNN ²	_	0.2 mm
PD70210AILD-TR	Tape and reel	DFN 5 mm × 4 mm, 0.5 mm pitch 16 pins	MSC 70210A Z Z e3 ¹ YYWWNNN ²	Available	0.2 mm
PD70210ALILQ-TR	Tape and reel	QFN 5 mm × 7 mm, 0.5 mm pitch 38 pins	MSC logo 70210AL Z Z e3 ^{1,3} YYWWNNN ²	Available	1 mm

Notes:

- 1. ZZ e3: ZZ = Random character with no meaning and e3 = Second level interconnect.
- 2. YY = Year; WW = Week; NNN = Trace code.
- 3. This is a primary option. Other options are also available.

Reference Documents

6. **Reference Documents**

- AN3533 PD70210/A/AL and PD70211 System Layout Guidelines
- AN3468 Designing a Type 1/2 802.3 or HDBaseT Type 3 Powered Device Front End Using PD702x0 and PD701x0 ICs
- AN3472 Implementing Auxiliary Power in PoE.

7. Revision History

Revision	Date	Description
A	10/2020	 Revision A is the latest publication of this document. The following is the summary of changes: The document was updated to Microchip template. The document number updated to DS00003695.
3.0	10/2019	 The following is a summary of the changes in revision 3.0 of this document. Updated package marking of the following figures. Figure 3-1 Figure 3-2 Figure 3-3 1.1 Application Information section was updated. 5. Ordering Information section was updated.
2.0	03/2020	 The following is a summary of changes in revision 2.0 of this document. Document format was updated. Capacitor between VAUX and VPN_OUT was updated to 4.7 μF according to AN_209 Application Note. For more information, see Applications. MSL3 rating was added to the storage temperature information. For more information, see 2.1 Absolute Maximum Ratings.
1.51	10/2015	 The following is a summary of changes in revision 1.51 of this document. The 80 mS delay was removed from the Vaux pin description. Missing UVLO_ON information was added.
1.50	10/2014	Added flag description details in revision 1.50
1.40	06/2014	Added WA_EN information in revision 1.40.
1.38	04/2014	Added thermal properties were in revision 1.38.
1.37	01/2014	Corrected package information in revision 1.37.
1.36	01/2014	Added IC marking information in revision 1.36.
1.34		 The following is a summary of changes in revision 1.34 of this document. A new 38-pin, 5 × 7 QFN package option was added (PD70210AL). The package drawing was updated and an application diagram for the new package added. The flag table was updated.
1.2	11/2013	In revision 1.2 of this document, the PD70210 application diagram was updated.
1.1	10/2013	In revision 1.1 of this document, the Vaux description and cap GND symbol were fixed.
1.0	06/2013	Revision 1.0 was the first publication of this document.

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- · Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6978-0

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-39
el: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
	-	Tel: 91-20-4121-0141	Fax: 45-4485-2829
echnical Support:	Tel: 86-28-8665-5511	Japan - Osaka	
/ww.microchip.com/support /eb Address:	China - Chongqing Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Finland - Espoo Tel: 358-9-4520-820
veb Address. /ww.microchip.com		Japan - Tokyo	France - Paris
Atlanta	China - Dongguan	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
	Tel: 86-769-8702-9880	Korea - Daegu	
uluth, GA	China - Guangzhou		Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301 Korea - Seoul	Germany - Garching
ax: 678-957-1455	China - Hangzhou		Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
el: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
loston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Vestborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
ndianapolis	China - Xiamen		Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380			Poland - Warsaw
os Angeles			Tel: 48-22-3325737
lission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
ax: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
aleigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
el: 631-435-6000			Sweden - Stockholm
an Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
			Fax. 44-110-921-3020
el: 905-695-1980			
ax: 905-695-2078			

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

PD70210A PD70210 PD70210ALILQ-TR PD70210ILD-TR PD70210AILD-TR