

1-Port PSE PoE Manager

Introduction

Microchip's PD69201 device is an IEEE® 802.3af and IEEE 802.3at compliant single-port Power over Ethernet (PoE) Manager, used in Ethernet switches to allow network devices to share power and data over the same cable. With minimal external components, the PD69201 supports both IEEE 802.3af/at and Legacy Powered Devices (PDs). Integrating power, analog, and state-of-the-art logic, the PD69201 is available in a 10-pin, 3 mm × 4 mm DFN package.

Features

- Fully IEEE 802.3af and at compliant
- · Includes two-event classification
- Supports pre-standard PD detection
- Single DC voltage input (32 V–57 V)
- Wide temperature range: -40 °C to 85 °C
- Low thermal dissipation (internal 100 $m\Omega$ sense resistor)
- I²C communication

- · Continuous port and system data monitoring
- · Power soft-start mechanism
- · On-chip thermal protection
- · Voltage monitoring and protection
- · Internal power-on reset
- · RoHS compliant
- MSL1

Application Block Diagrams

The PD69201 may be used in either an unmanaged standalone or a managed configuration.

Figure 1. Unmanaged Application

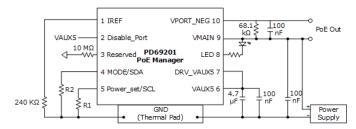
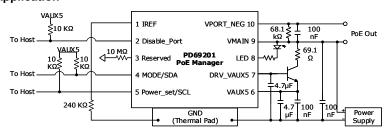
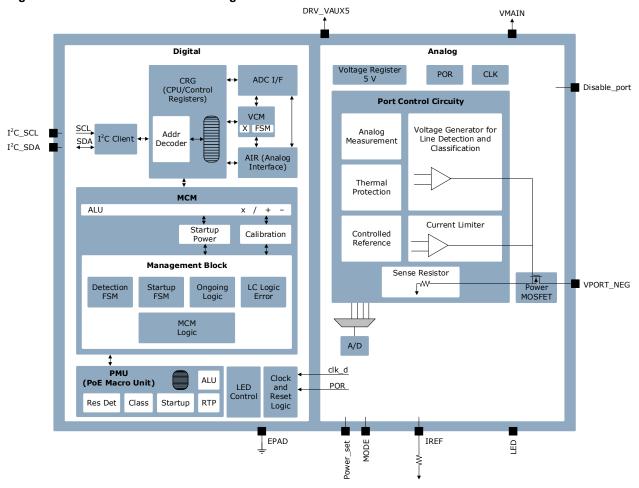



Figure 2. Managed Application

Table of Contents


Intr	oductio	on	1
	1.	Features	1
	2.	Application Block Diagrams	1
1.	Funct	tional Descriptions	3
	1.1.	I ² C Communication	3
	1.2.	Detection and Classification	
	1.3.	Port Start-Up	10
	1.4.	Over-Load and Short-Circuit Protection	10
	1.5.	Maintain Power Signature (MPS)	10
	1.6.	Over-Temperature Protection	10
	1.7.	LED	11
	1.8.	Auxiliary 5 V _{DC} Power Options	11
	1.9.	Power_set Pin (Unmanaged Mode)	12
	1.10.	MODE Pin (Unmanaged Mode)	12
2.	Electr	rical Specifications	13
	2.1.	Absolute Maximum Ratings	13
	2.2.	Recommended Operating Conditions	13
	2.3.	Test Specifications	14
3.	Pin D	Pescriptions	17
4.	Packa	age Specifications	18
	4.1.	RoHS and Solder Reflow Information	19
	4.2.	Thermal Specifications	20
	4.3.	Recommended PCB Footprint	20
5.	Order	ring Information	24
6.	Revis	sion History	25
The	e Micro	ochip Website	26
Pro	duct C	Change Notification Service	26
Cu	stomer	Support	26
Mic	rochip	Devices Code Protection Feature	26
		ice	
		ks	
		anagement System	
	•		
Wo	ridwide	e Sales and Service	29

1. Functional Descriptions

The PD69201 device has two major sections: a digital section that controls and monitors the logical PoE functions (state machines, timings, and so on) and an analog section that performs the front-end analog PoE functionality.

The following illustration shows the internal functional blocks of the PD69201 device.

Figure 1-1. PD69201 Internal Block Diagram

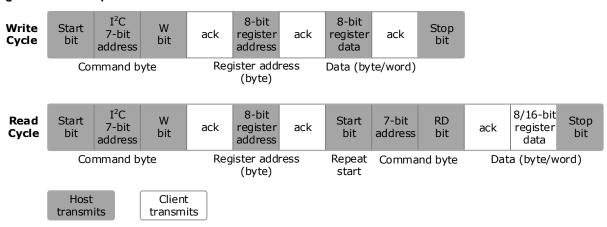
1.1 I²C Communication

The PD69201 can be controlled via I^2C bus, based on registers access. There are two I^2C addresses that can be set (0x20 or 0x21). I^2C address is set by pin 8.

1.1.1 Features

- I²C Client mode only.
- Data rate: 0 kbps-100 kbps
- · Broadcast address: 0x00
- Watchdog reset. Resets the block if I²C input clock halts for 0.5 s during a transaction.
- Host does not need to support I²C clock stretching.

1.1.2 Setting Capability


- · Port enable/disable
- · Operating modes
 - Power delivered over Alt A/B
 - Current limit setting (I_{LIM})
 - Legacy detection enable/disable

1.1.3 Reading Capability

- Port voltage
- · IEEE 802.3at detection result
- Classification result
- · Port status

The following illustration shows the I²C sequence for both write and read transactions.

Figure 1-2. I²C Sequence

Table 1-1. I²C Commands

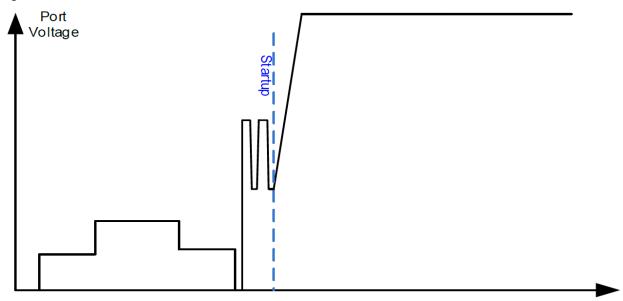
Name	Address	Width	Field	Bits	Туре	Reset Value	Description	
PORT_TYPE	0x00	7	AF_AT	2:0	R/W	0	Mode, ICUT, and ILIM are listed as follows.	
							0: AF, 375 mA, 425 mA (No Class)	
							1: AF1, Disabled, 110 mA (No Class)	
							2: AF2, Disabled, 195 mA (No Class)	
							3: AF3, Disabled, 280 mA (No Class)	
							4: AT1, Disabled, 485 mA (No Class)	
							5: AT2, Disabled, 607 mA (No Class)	
							7: AT, 642 mA, 720 mA (Class)	
			Reserved	3	R/W			
			ALT	6:4	R/W	0 O	Value equals 3MSB of ADC R _{MODE} measurement.	
							0: AltB Res	
							1: AltB Res+Cap	
							2: AltA Res	
							3: AltA Res+Cap	
VPORT_L	0x02	8	DATA	[7:0]	RO		Port voltage. Updated every 1 ms. Host must first read VPORT_L, then VPORT_ H. Resolution: 58.6 mV per bit.	

continued	continued								
Name	Address	Width	Field	Bits	Туре	Reset Value	Description		
VPORT_H	0x03	8	DATA	1:0	RO		The 2 ms bits of port voltage reading (total 10 bits includes reg 0x02). Updated every 1 ms. Host must first read VPORT_L, then VPORT_H. Resolution: 58. 6 mV per bit.		
			VALID	2	Clear	0	V _{PORT} measurement is valid. 1: Data was not read by the host.		
					read				
					(COR)		0: Data was already read by the host.		
			UDL_EVENT	3	R/W	0	Under-load indication		
							0: No event.		
							1: Event occurred.		
							This bit is not COR, and should be cleared by the host.		
			OVT_EVENT	4	R/W	0	Over-temperature indication		
							0: No event.		
							1: Event occurred.		
							This bit is a real-time indication (no latch).		
			OVL_EVENT	5	R/W	0	Over-load indication		
							0: No event.		
							1: Event occurred.		
							In AF modes, can also be set in T _{LIM} events.		
							This bit is not COR, and should be cleared by the host.		
			SC_EVENT	6	R/W	0	Short circuit indication		
							0: No event.		
							1: Event occurred.		
							This bit is not COR, and should be cleared by the host.		

continued							
Name	Address	Width	Field	Bits	Туре	Reset Value	Description
TLIM	0x04	8	TLIM	0	R/W	0	T _{LIM} event indication
							0: No event.
							1: Event occurred.
							In AF, OVT_EVENT can be set in case of T _{LIM} events.
							This bit is not COR, and should be cleared by the host.
			LD_ERR	1	R/W	0	Repetitive over load indication
							0: No event.
							1: Event occurred.
							This bit is not COR, and should be cleared by the host.
			DIS_PRT	2	R/W	0	Disable_port external pin high to low event.
							0: No event.
							1: Event occurred.
							This bit is not COR, and should be cleared by the host.
			SU_DVDT_FAIL	3	R/W	0	Port turned off due to high inrush current (dV/dt).
							0: No event.
							1: Event occurred.
							This bit is not COR, and should be cleared by the host.
			SU_SC_FAIL	4	R/W	0	Port turned off due to short during start-up.
							0: No event.
							1: Event occurred.
							This bit is not COR, and should be cleared by the host.
			OVT_EVENT	6	R/W	0	Over-temperature indication
							0: No event.
							1: Event occurred.
							This bit is not COR, and should be cleared by the host.

continued								
Name	Address	Width	Field	Bits	Туре	Reset Value	Description	
			RPR_EVENT	7	R/W	0	Port external voltage feed indication	
							0: No event.	
							1: Event occurred.	
							This bit is not COR, and should be cleared by the host.	
STATUS	0x0B	7	RES_DET	1:0	RO	0	0: Open	
							1: Fail	
							2: Pass	
							3: Pass_res_cap	
			CLASS	4:2	RO	0	0: reset_value	
							1: class_ovl_err (above 50 mA)	
							2: class_diff_err (1st class event is different	
							then 2 nd class event)	
							3: class_0123	
							4: class_4	
			PDP	5	R/W	0	Port delivering power indication	
							If host writes 0, port shutdown momentary (push-button).	
							1: Port is delivering power. Startup succeeded. RTP is working.	
							0: Port is not delivering power.	
							Host shall not write 1, only 0.	
			SU_FAIL	6	RO	0	1: Startup fail indication.	
SW_USE	0x0D	5	User bits	[3:0]	R/W	0	Software read/write register (general use).	
							Detects a reset by setting register to non-zero value and reading it periodically.	
			SPARE_IN	[4]	RO			
SW_RST	0x0E	8	GEN	[7:0]	WO		Reset can be generated by the host writing 0xAB (push-button functionality).	

continued								
Name	Address	Width	Field	Bits	Туре	Reset Value	Description	
RST_SRC	0x0F	3	POR	[0]	R/W	1	Power on reset has occurred. This bit is not COR, and should be cleared by the host.	
			SW_RST	[1]	R/W	0	Software reset has occurred. This bit is not COR, and should be cleared by the host.	
			I2C_WD_RST	[2]	R/W	0	I ² C module watchdog reset has occurred (reset does not influence PoE functionality).	
CHIP_REV_L	0x10	6	DATA	[5:0]	RO		Chip digital version [2:0] = digital_ver_d[2:0] V1R1='001'b , V3R1='001'b Chip analog version[5:3] = analog_ver_d[5:3] V1R1='001'b , V3R1='010'b	
PORT_LED	0xB5	2	OFF	[0]	R/W	0	Set the control of the LED 0: LED operated by the PD69201. 1: LED operated by external host (using bit 1).	
			EN	[1]	R/W	1	Open-drain output control. Need to set only after bit 0 was set to 1 (not in the same command). 0: LED pin on. 1: LED pin off.	
DISABL_PORT	0xD9	2	SEL	[0]	R/W	0	Disable port pin control 0: External pin enabled. 1: External pin disabled, external host controls the port through bit 1. When setting bit to 0, port immediately starts detection cycle (can be used for sync).	
			VAL	[1]	R/W	0	Disable port (when bit 0= 1) 0: Port disable. 1: Port enable.	


1.2 Detection and Classification

The PD69201 signature detection is IEEE 802.3at-compliant. Pre-standard or legacy detection may also be enabled.

Detection is executed in three levels to guarantee power delivering to a valid PD.

Following a successful detection, the PD69201 generates two classification events per the IEEE 802.3at standard.

Figure 1-3. Detection and Classification

1.3 Port Start-Up

Upon successful detection and classification, power is applied via a controlled start-up mechanism.

As defined by IEEE 802.3at, during the startup period, the current is limited to 425 mA for a duration of 65 ms, allowing the PD's capacitors to charge to the steady state power condition.

1.4 Over-Load and Short-Circuit Protection

After successful power-up, the PD69201 initializes its internal protection mechanism that monitors and disconnects power from the port in cases of over-current or short circuit, as specified by IEEE 802.3af/at.

1.5 Maintain Power Signature (MPS)

The no-load function detects if a PD is still connected to the port by measuring the port current over time and comparing it to current and time thresholds.

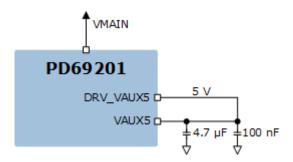
The MPS parmeters are fixed: TMPDO= 324 ms, TMPS= 48 ms, I_{MPS} = 7.5 mA.

1.6 Over-Temperature Protection

A thermal sensor is located inside the PD69201.

In the case of an over-temperature event, the port will be turned off.

1.7 LED


Table 1-2. LED

State	LED
Port on	ON
Port OVL/short/dvdt error/res fail/class error	Blink 1 Hz
V _{MAIN} voltage out of range or IC over temperature	Blink 4 Hz
Port off, UDL	OFF
Idle	Pulse of 30 ms every 2 s

1.8 Auxiliary 5 V_{DC} Power Options

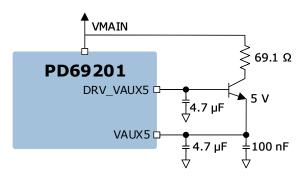

The PD69201 has an internal 5 V_{DC} regulator, which eliminates the need for an external DC/DC converter. This is option 1, as shown in the following figure. To use the internal regulator, connect DRV-VAUX5 (internal regulator output) to VAUX5.

Figure 1-4. Option 1

In case it is required to use the 5 V for external periphery, the 5 V_{DC} regulator can be boosted by an external transistor, which enables powering peripheral circuitry up to 20 mA. This is option 2, as shown in the following figure.

Figure 1-5. Option 2

1.9 Power_set Pin (Unmanaged Mode)

In the Unmanaged mode of operation, pin 5 sets the power limit of the port, based on a resistor connected from the pin to GND.

The following table describes the power levels.

Table 1-3. Power_set Pin

Level	Resistor Value	I _{LIM} (typ)	I _{CUT} (OVL)	Class Events
0	0 Ω	430 mA ¹	Enabled (375 mA)	No
1	15 kΩ	111 mA	Disabled	No
2	34.8 kΩ	197 mA	Disabled	No
3	59 kΩ	283 mA	Disabled	No
4	86.6 kΩ	490 mA	Disabled	No
5	118 kΩ	614 mA	Disabled	No
6	154 kΩ	981 mA	Disabled	2 Events
7	200 kΩ	759 mA ²	Enabled (642 mA)	2 Events

- 1. IEEE 802.3af Class 3
- 2. IEEE 802.3at Class 4

1.10 MODE Pin (Unmanaged Mode)

In the Unmanaged mode of operation, pin 4 sets the operation mode of the PD69201, based on a resistor connected from the pin to GND.

The following table describes the power levels.

Table 1-4. MODE Pin

Level	Resistor Value	Alt A/B	Detection
0	0 Ω	Alt B	IEEE
1	15 kΩ	Alt B	IEEE+ Pre-Standard
2	34.8 kΩ	Alt A	IEEE
3	59 kΩ	Alt A	IEEE+ Pre-Standard

2. Electrical Specifications

The following sections describe the electrical specifications of the PD69201 device.

2.1 Absolute Maximum Ratings

The following table lists the absolute maximum ratings for the PD69201. Exceeding these ratings can cause damage to the device. All voltages are with respect to ground. Currents are marked positive when flowing into a specified terminal and marked negative when flowing out of a specified terminal. Drv_vaux5 pin should not be forced to any voltage from external source.

Table 2-1. Absolute Maximum Ratings

Parameter	Rating
Supply input voltage (V _{MAIN})	-0.3 V to 72 V
LED	-0.3 V to V _{MAIN} + 0.5
Port_Neg pin	-0.3 V to V _{MAIN} + 0.5
VAUX5	–0.3 V to 5.5 V
GND (thermal pad)	–0.3 V to 5.5 V
All other pins	–0.3 V to 5.5 V
Operating ambient temperature range	–40 °C to 85 °C
Maximum junction temperature	150 °C
Storage temperature range	−65 °C to 150 °C
ESD protection at all I/O pins	±2 KV (HBM)

2.2 Recommended Operating Conditions

The following table lists the recommended operating conditions for the PD69201.

Table 2-2. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
Input voltage	V _{MAIN}	32	57	V
Recommended operating junction temperature	T _J Operating		125	°C

2.3 Test Specifications

Unless otherwise specified, the minimum and maximum ratings apply to the operating ambient temperature (T_{AMB}): – 40 °C to 85 °C and tested at 55 V. Typical values stated are either by design or by production testing at 25 °C ambient.

Table 2-3. Power Supply

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
Power supply current at operating mode		V _{MAIN} = 57 V Port is on.			5	mA

Table 2-4. Digital I/O (SDA, SCL)

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
Input logic, high threshold	V _{IH}		0.6* V _{AUX5}			V
Input logic, low threshold	V _{IL}				0.8	V
Input high current	I _{IH}		-10		10	μΑ
Input low current	I _{IL}		-10		10	μΑ
Output low voltage	V _{OL}	I _{OH} = 1 mA			0.4	V

Table 2-5. Current Limit

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
Current Limit	I _{LIM}	Custom setting for 4 W	105	111	117	mA
		Custom setting for 7 W	186	197	208	mA
		Custom setting 10 W	268	283	298	mA
		IEEE 802.3af Class 3 setting for 15.4 W	400	430	450	mA
		Custom setting for 20 W	464	490	516	mA
		Custom setting for 25 W	581	614	647	mA
		IEEE 802.3at Class 4 setting for 30 W	684	759	800	mA
		Custom setting for 40 W	928	981	1034	mA

Table 2-6. Current Limit Timing

Parameter	Symbol	Test Conditions/ Comment	Тур.	Unit
Current Limit Timing	T _{LIM}	4 W	64	ms
		7 W	64	ms
		10 W	64	ms
		IEEE 802.3af Class 3 (15.4 W)	64	ms
		20 W	12	ms
		25 W	12	ms
		IEEE 802.3at Class 4 (30 W)	7	ms
		40 W	12	ms

Table 2-7. Over-Current Indication

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
ICUT_AT	I _{CUT}		600	637	684	mA
ICUT_AF	I _{CUT}		350	375	400	mA

Table 2-8. Main Power Switching FET

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
Output leakage	I _{LEAKAGE}	At port off state. V _{PORT} = 57 V			12	μΑ
Total channel resistance	Ron = Rdson +sense Res + bonding resistance	At port on state, at I _{PORT} = 0.1 A		0.44	0.7	Ω

Table 2-9. Classification Voltage Generation

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
Class event output voltage		Measured between VMAIN and VPORT_NEG pins (for both class blocks on port). Load Current= 1 mA, 30 mA, and 60 mA	15.5	18	20.5	V
Mark event output voltage		Measured between VMAIN and VPORT_NEG pins (for both class blocks on single port). Load current= 1 mA and 10 mA	7	8.5	10	V
Class event current limitation	I_CLASS_LIM		51	71	100	mA

Table 2-10. POR Cell

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
POR high threshold			4.1		4.35	V

Table 2-11. Disable Port Pin/I²C_address Pins

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
Disable_port/ I ² C_address logic high threshold	V _{IH}			2.2		V
Disable_port/ I ² C_address logic low threshold	V _{IL}				0.4	V

Table 2-12. LED

Parameter	Symbol	Test Conditions/ Comment	Min.	Тур.	Max.	Unit
Low level voltage	V _{LOW}	Sink current from V _{MAIN} I _{SINK} = 5 mA			1	V

3. Pin Descriptions

The following figure and table describe the pins of the PD69201 device.

Figure 3-1. PD69201 Pinout

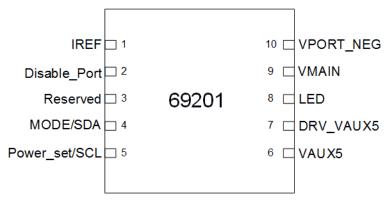
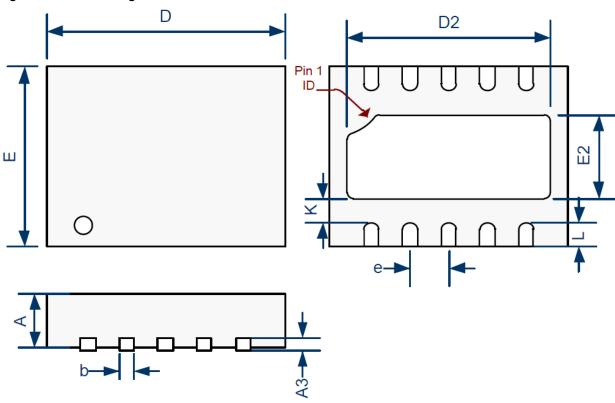


Table 3-1. Pin Descriptions


Number	Name	Туре	Description
0	PAD	GND-power	Exposed PAD: Connect to analog ground. Maximum the Ground plane (especially on the bottom layer) for optimal thermal performance. Use recommended footprint. (See PD69201 Layout Design Guidelines).
1	IREF	Analog input	Reference resistor pin. Connect a 240 k Ω 1% resistor to AGND.
2	Disable_Port	Analog I/O	Enable/disable port pin: When applying 5 V—port enable, 0 V—port disable.
3	Reserved	N/A	Reserved pin. Do not connect externally.
4	MODE/SDA	Analog Input/DIO	Dual purpose: Mode select pin (by connecting external resistor to ground). I ² C SDA signal for PD69201.
5	Power_set/SCL	Analog Input/DI	Dual purpose: Mode select pin (by connecting external resistor to ground). I ² C SDA signal for PD69201.
6	VAUX5	Power	Regulated 5 V output voltage source; Connect to filtering capacitors (4.7 uF + 100 nF).
7	DRV_VAUX5		See section Auxiliary 5 V _{DC} Power Options.
8	LED	Analog I/O	Dual purpose: Current sink for controlling external LED. I ² C address setting for PD69201 (low sets to address 0x20; high sets to address 0x21). Note: When an LED is connected to the pin, it sets to
			address 0x21.
9	VMAIN	Power	Main high-voltage supply voltage. A low ESR 100 nF (or higher) bypass capacitor, connected to AGND, should be placed as close as possible to this pin through low-resistance traces.
10	VPORT_NEG	Analog I/O	Negative port output.

4. Package Specifications

This section provides the package drawing, RoHS and solder reflow information, and thermal specifications for the PD69201 device.

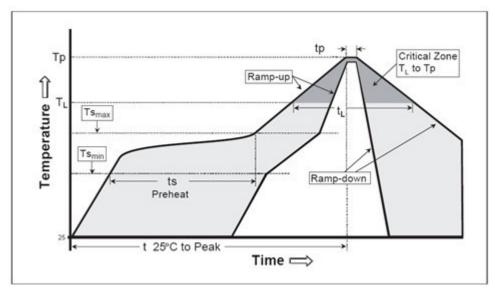
The PD69201 package is a 3 mm × 4 mm, 10-pin DFN, as shown in the following illustration.

Figure 4-1. DFN Package

Dimensions do not include protrusions; these shall not exceed 0.155 mm (0.006") on any side. Lead dimension shall not include solder coverage.

Table 4-1. Package Dimensions

Dimension	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A	0.80	1.00	0.031	0.039	
A3	0.20 REF		0.008 REF		
b	0.18	0.30	0.007	0.012	
D	4.00 BSC		0.236 BSC		
E	3.00 BSC		0.315 BSC		
D2	3.30	3.5	0.130	0.138	
E2	1.30	1.5	0.051	0.059	
е	0.65 BSC		0.026 BSC		
K	0.30	-	0.012	-	
L	0.30	0.45	0.012	0.018	


4.1 RoHS and Solder Reflow Information

- RoHS 6/6
- · Pb-free NiPdAu pin finish
- Package peak temperature for solder reflow (40 s maximum exposure)—260 °C (0 °C, -5 °C)

Table 4-2. Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-up Rate (TSmax to Tp)	3 °C/second max	3 °C/second max
Preheat		
Temperature Min (TS _{min})	100 °C	150 °C
Temperature Max (TS _{max})	150 °C	200 °C
Time (ts _{min} to ts _{max})	60 s to 120 s	60 s to 180 s
Time Maintained		
Temperature (T _L)	183 °C	217 °C
Time (t _L)	60 s to 150 s	60 s to 150 s
Peak Classification Temperature (TP)	210 °C to 235 °C	240 °C to 255 °C
Time within 5 °C of Actual Peak Temperature (tp)	10 s to 30 s	20 s to 40 s
Ramp-Down Rate	6 °C/second max	6 °C/second max
Time 25 °C to Peak Temperature	6 minutes max	8 minutes max

Figure 4-2. Classification Reflow Profiles

4.2 Thermal Specifications

The following table lists the thermal specifications for the PD69201 device.

Table 4-3. Thermal Specifications

Typical Thermal Resistance	Value
Junction to ambient (T _A)	36.4 °C/W
Junction to case (T _C) (bottom)	0.94 °C/W
Junction to board (T _B)	9.05 °C/W

The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All specifications assume no ambient airflow.

4.3 Recommended PCB Footprint

The following figures illustrate the PCB footprint pattern for PD69201. Units are in mm [mils].

Figure 4-3. Top Solder Mask

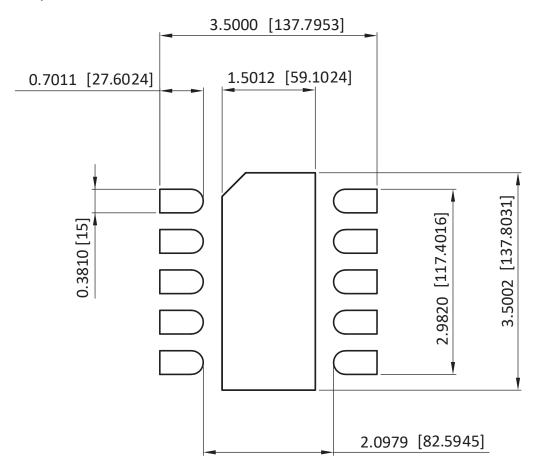


Figure 4-4. Top Copper

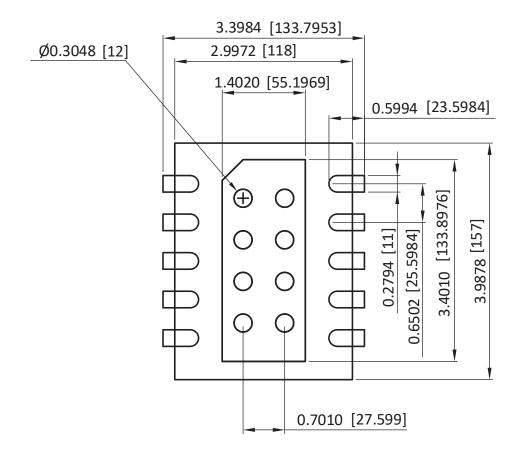


Figure 4-5. Bottom and Internal Layer Copper

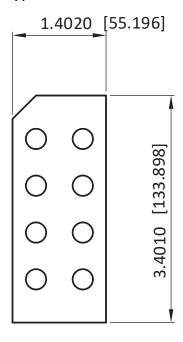


Figure 4-6. Top Paste Mask

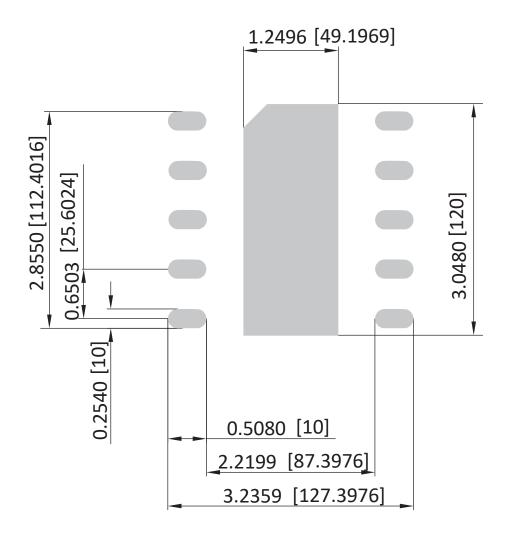
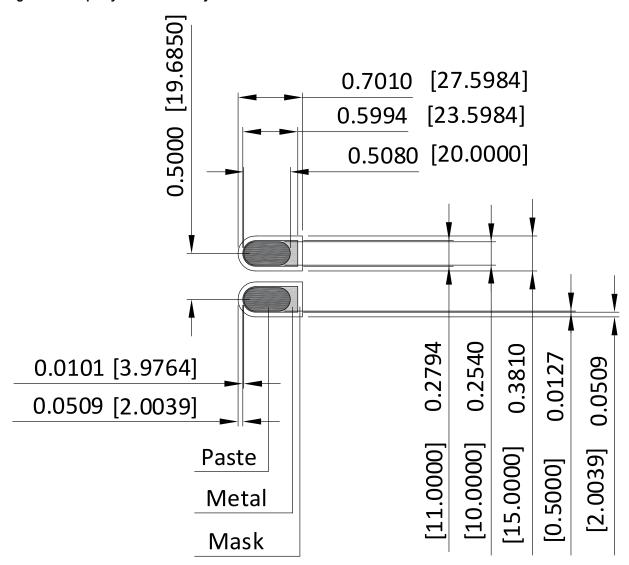



Figure 4-7. Top Layer Pin Geometry

5. Ordering Information

The following table lists the ordering information for the PD69201 device.

Table 5-1. Ordering Information

Part Number	Package	Packaging Type	Temperature	Part Marking
PD69201ILD-TR	Plastic 10-pin	Tape and Reel	–40 °C to 85 °C	69201
	DFN: 3 mm × 4 mm			ZZ ¹
				YYWWNNN ²

- 1. ZZ= Random character
- 2. YY= Year; WW= Week; NNN= Trace code

6. Revision History

Revision	Date	Description
D	January 2021	 The following is a summary of changes in revision D of this document. Added NPN transistor, 69.1 Ω resistor, and 4.7 μF capacitor to pin 7 in Managed Application figure. Updated "DNIE_LD_ERR" to "LD_ERR" in I²C Commands table. Added "V_{MAIN} voltage out of range or IC over temperature"/ "Blink 4 Hz" and "Idle" / "Pulse of 30 ms every 2 s" rows to LED table. Added resistor 69.1 Ω to NPN transistor in Option 2 figure. Changed "Power" column to "I_{LIM} (typ)" column and updated values in Power_set Pin table. Added MHz values for I_{CUT} Enabled mode in Power_set Pin table. Updated "af/at" information in Current Limit Timing table. Added Recommended PCB Footprint section.
С	September 2020	 The following is a summary of changes in revision C of this document. Updated the PD69201 Internal Block Diagram figure. For more information, see Figure 1-1. Updated the figure and the table in the Reading Capability section. For more information, see 1.1.3 Reading Capability. Updated the MODE Pin table. For more information, see Table 1-4.
В	September 2020	Updated LED details in Table 3-1.
A	May 2020	Initial Revision

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal
 conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
 of the Microchip devices. We believe that these methods require using the Microchip products in a manner
 outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code
 protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7111-0

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380	15 55 155 52 155 15		Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 da. 77-110-92 1-0020
Fax: 905-695-2078			
I an. 300-030-20/0			

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: PD69201ILD-TR