MSCMC170AM08CT6LIAG

Datasheet

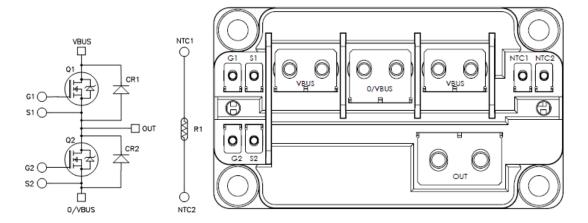
Very Low Stray Inductance Phase Leg SiC MOSFET Power Module

Final May 2018

Contents

1	Revi	sion History	1
	1.1	Revision A	1
2	Prod	duct Overviewduring in the control of the co	2
	2.1	Features	2
	2.2	Benefits	2
	2.3	Applications	2
3	Elect	trical Specifications	3
	3.1	Absolute Maximum Ratings	3
		Electrical Performance	
	3.3	Typical Performance Curves	6
4	Pack	rage Specification	10
	4.1	Package Outline Drawing	10

1 Revision History


The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision A

Revision A was published in May 2018. It is the first publication of this document.

2 Product Overview

2.1 Features

The following are key features of the MSCMC170AM08CT6LIAG device:

- Very low stray inductance
- Internal thermistor for temperature monitoring
- M4 and M5 power connectors
- M2.5 signal connectors
- AIN substrate for improved thermal performance

SiC power MOSFET

- Low RDS(on)
- High temperature performance

SiC Schottky diode

- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive temperature coefficient on VF

2.2 Benefits

The following are the benefits of the MSCMC170AM08CT6LIAG device:

- Outstanding performance at high-frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Low profile
- RoHS compliant

2.3 Applications

The MSCMC170AM08CT6LIAG device is designed for the following applications:

Motor control

*All ratings taken at T_j = 25 °C unless otherwise specified.

Caution: These devices are sensitive to electrostatic discharge. Proper handling procedures should be followed.

3 Electrical Specifications

This section details the electrical specifications for the MSCMC170AM08CT6LIAG device.

3.1 Absolute Maximum Ratings

The following table shows the SiC MOSFET absolute maximum ratings (per SiC MOSFET) for the MSCMC170AM08CT6LIAG device.

Table 1 • Absolute Maximum Ratings

Symbol	Parameter		Max Ratings	Unit
V _{DSS}	Drain-source voltage		1700	V
lσ	Continuous drain current	Tc = 25 °C	280	Α
		Tc = 80 °C	207	=
Івм	Pulsed drain current		560	=
VGS	Gate-source voltage		-5 to 23	V
VGSOP	Gate-source voltage; recommended operation values		–5 to 18	=
Roson	Drain-source ON resistance		11.7	mΩ
P _D	Power dissipation	Tc = 25 °C	1780	W

3.2 Electrical Performance

The following tables show the SiC MOSFET characteristics (per SiC MOSFET) of the MSCMC170AM08CT6LIAG device.

Table 2 • Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
loss	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 1700 \text{ V}$			60	600	μΑ
R _{DS(on)}	Drain-source on	$V_{GS} = 20 \text{ V}, I_D = 300 \text{ A}$	T _j = 25 °C		7.5	11.7	mΩ
	resistance	V _{GS} = 18 V, I _D = 300 A	T _j = 150 °C		15		_
V _{GS(th)}	Gate threshold voltage	$V_{GS} = V_{DS}$, $I_D = 108 \text{ mA}$		2	2.4	4	V
lgss	Gate-source leakage current	V _{GS} = 20 V, V _{DS} = 0 V				3.6	μΑ

Table 3 • Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
Ciss	Input capacitance	$V_{GS} = 0V$		22		nF
Coss	Output capacitance	V _{DS} = 1000 V		1.03		-
Crss	Reverse transfer capacitance	f = 1 MHz		0.04		-
Qg	Total gate charge	V _{GS} = -5 to 20 V		1128		nC
Qgs	Gate-source charge	V _{Bus} = 1200 V		264		-
Q_{gd}	Gate-drain charge	I _D = 300 A		342		-
T _{d(on)}	Turn-on delay time	$V_{GS} = -5$ to 20 V		105		ns

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
Tr	Rise time	$V_{Bus} = 900 \text{ V}$			75		
T _{d(off)}	Turn-off delay time	 I _D = 300 A			210		-
Tf	Fall time	R _G = 3.3Ω			55		-
Eon	Turn on energy	Inductive switching	T _j = 150 °C		13.2		mJ
E _{off}	Turn off energy	V _{GS} = -5 to 20 V	T _j = 150 °C		9		-
		$V_{Bus} = 900 \text{ V}$					
		I _D = 300 A					
		$R_G = 3.3 \Omega$					
RGint	Internal gate resistance				0.9		Ω
RthJC	Junction-to-case thermal resistance					0.07	°C/W

Table 4 • Body Diode Ratings and Characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
V _{SD}	Diode forward voltage	V _{GS} = -5 V	T _j = 25 °C		4.1		V
		I _{SD} = 150 A	T _j = 150 °C		3.6		-
trr	Reverse recovery time	I _{SD} = 300 A			70		ns
Qrr	Reverse recovery charge				3.2		μC
Irr	Reverse recovery current	V _R = 1200 V			84		Α
		di _F /dt = 8400 A/μs					

The following table shows the SiC diode characteristics of the MSCMC170AM08CT6LIAG device (per SiC diode).

Table 5 • SiC Diode Characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
Vrrm	Peak repetitive reverse voltage					1700	V
Irm	Reverse leakage current	V _R = 1700 V	T _j = 25 °C		0.48	3	mA
			T _j = 175 °C		1	6.4	_
l _F	DC forward current		Tc = 125 °C		200		Α
VF	Diode forward voltage	I _F = 200A	T _j = 25 °C		1.6	1.9	V
			T _j = 175 °C		2.5	2.8	_
Q c	Total capacitive charge	V _R = 1100 V			1480		nC
С	Total capacitance	f = 1 MHz, V _R = 40	00 V		960		pF
		f = 1 MHz, V _R = 80	00 V		936		_
RthJC	Junction-to-case thermal res	istance				0.086	°C/W

The following tables show the thermal and package characteristics of the MSCMC170AM08CT6LIAG device

Table 6 • Package Characteristics

Symbol	Characteristic			Min	Max	Unit
Visol	RMS isolation voltage, any terminal to case t	= 1 min, 50 to 60 Hz		4000		V
Tı	Operating junction temperature range SiC MOSFET				150	°C
		SiC diode		-40	175	=
Тлор	Recommended junction temperature under	switching conditions		-40	Tımax –25	-
Тѕтс	Storage temperature range			-40	125	-
Tc	Operating case temperature			-40	125	-
Torque	Mounting torque	For	M2.5	0.4	0.6	N.m
		terminals	M4	2	3	-
			M5	2	3.5	-
		To heatsink	M6	3	5	=
L _{DC}	Module stray inductance between VBUS and	I 0/VBUS			3	nH
Wt	Package weight				320	g

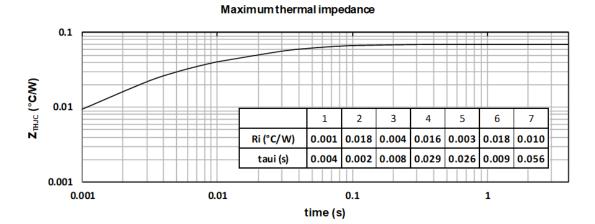
Table 7 • Temperature Sensor NTC

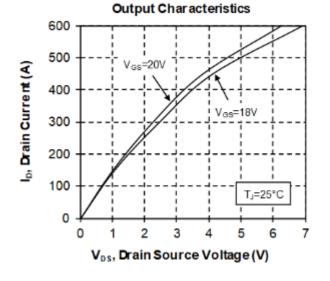
Symbol	Characteristic	Min	Тур	Max	Unit
R ₂₅	Resistance at 25 °C		50		kΩ
ΔR25/R25			5		%
B _{25/85}	T ₂₅ = 298.15 K		3952		K
ΔΒ/Β	Tc=100 °C		4		%

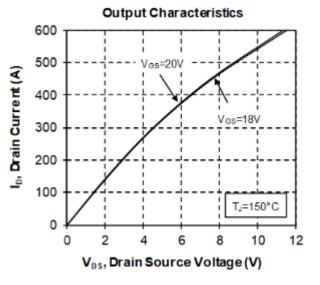
Note: See the APT0406 Application Note at www.microsemi.com.

Figure 1 • NTC Formula

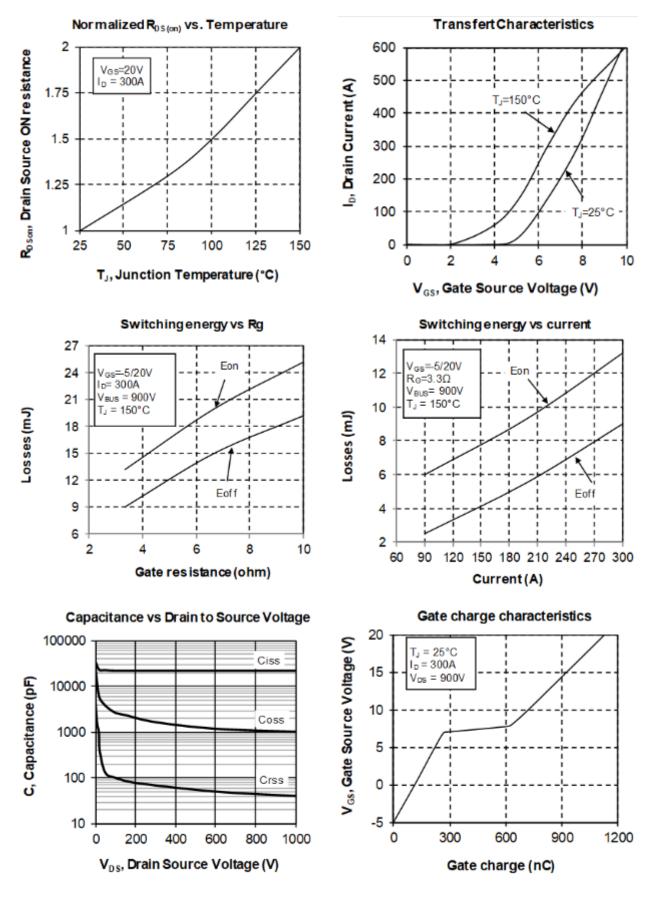
$$R_T = \frac{R_{25}}{\exp\left[B_{25/85}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]}$$

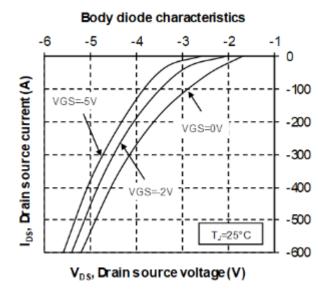

T: thermistor temperature R_T: thermistor value at T

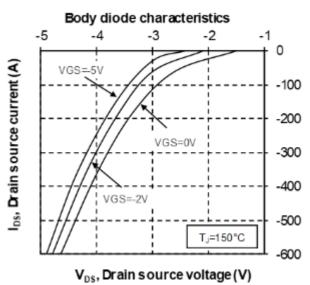


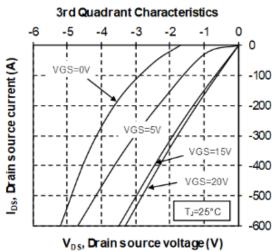

3.3 Typical Performance Curves

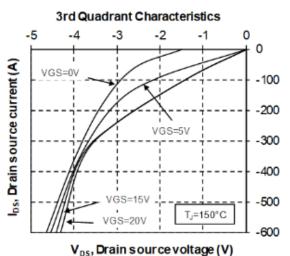
This section shows the typical performance curves for the MSCMC170AM08CT6LIAG device.

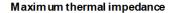

The following section details the typical performance curves for the SiC MOSFET.

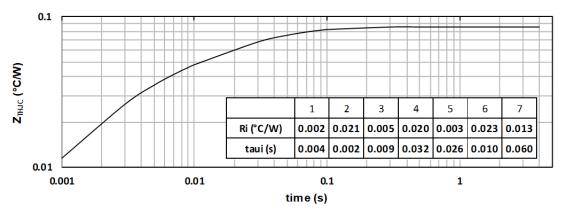


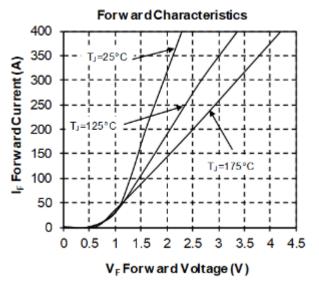


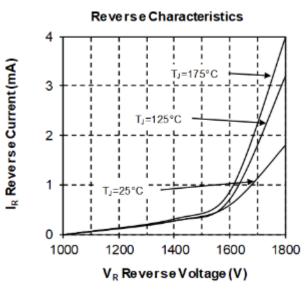


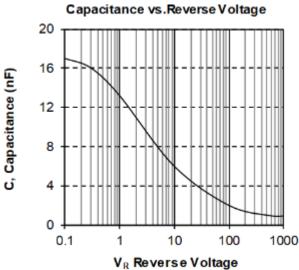


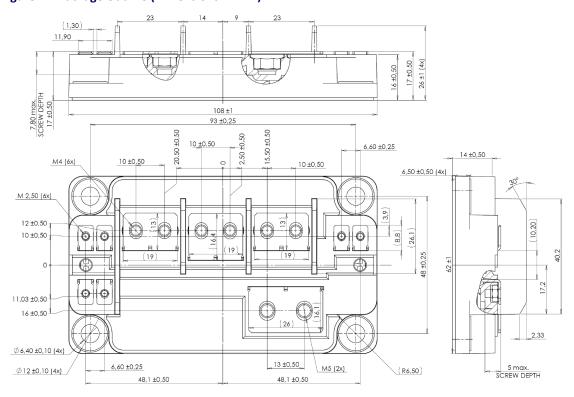









The following section details the typical performance curves for the SiC Diode.



4 Package Specification

This section outlines the package specification for the MSCMC170AM08CT6LIAG device.

4.1 Package Outline Drawing

Figure 2 • Package Outline (Dimensions in mm)

See application note AN1911 - Mounting Instructions for SP6 Low Inductance Power Module at www. microsemi.com

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or prameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided is, where is' and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

MSCMC170AM08CT6LIAG