

MIC69502

5A, Low V_{IN}, Low V_{OUT} µCap LDO Regulator

Features

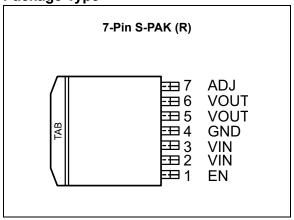
- Input Voltage Range: V_{IN}: 1.65V to 5.5V
- ± 1.0% Initial Output Tolerance
- Maximum Dropout (V_{IN} V_{OUT}) of 500 mV Overtemperature
- · Adjustable Output Voltage down to 0.5V
- Stable with 10 µF Ceramic Output Capacitor (5A)
- Excellent Line and Load Regulation Specifications
- Logic Controlled Shutdown
- Thermal Shutdown and Current Limit Protection
- 7-Pin S-Pak Package
- –40°C to +125°C Junction Temperature

Applications

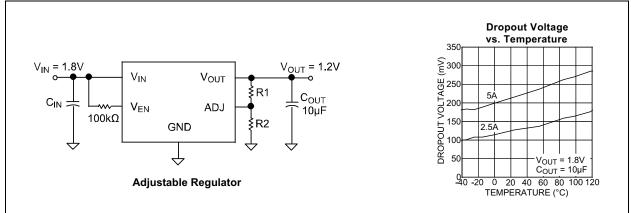
- · ASIC Core Voltage Regulator
- PLD/FPGA Core Power Supply
- · Linear Point-of-Load Conversion
- High-Speed Post-Regulator

General Description

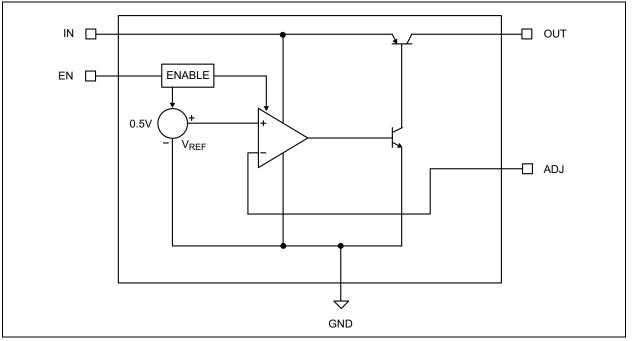
The MIC69502 is a 5A, low dropout linear regulator that provides low voltage high current outputs with a minimum of external components. It offers high precision and ultra low dropout of 500 mV under worst case conditions.


The MIC69502 operates from an input voltage of 1.65V to 5.5V. It is designed to drive digital circuits requiring low voltage at high currents (i.e. PLDs, DSP, microcontroller, etc.). The MIC69502 output is adjustable to a minimum of 0.5V.

The μ Cap design of the MIC69502 is optimized for stability with low value low-ESR ceramic output capacitors.


Protection features of the MIC69502 include thermal shutdown and current limit protection. Logic enable and error flag pins are also available.

The MIC69502 is offered in the space-efficient S-PAK package. It has an operating temperature range of -40° C to $+125^{\circ}$ C.


Package Type

Typical Application Circuits

Functional Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Input Voltage (V _{IN})	+6.0V
Enable Input Voltage (V _{EN})	
Power Dissipation (P _D)	
Junction Temperature (T _J)	$-40^{\circ}C \le T_{J} \le +125^{\circ}C$

Operating Ratings ‡

Supply Voltage (V _{IN})	
Enable Input Voltage (V _{FN})	0V to V _{IN}
Junction Temperature (T _J)	
Package Thermal Resistance	, i i i i i i i i i i i i i i i i i i i
S-PAK-7 (θ _{JC})	

- **†** Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. Specifications are for packaged product only.
 - **‡** Notice: The device is not guaranteed to function outside its operating ratings.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $T_A = 25^{\circ}C$, $V_{IN} = V_{OUT} + 1V$. **Bold** values indicate $-40^{\circ}C \le T_J \le +125^{\circ}C$; $I_{OUT} = 10$ mA; unless otherwise specified. Specification for packaged product only.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
		-1	_	1	%	At 25°C
Output Voltage Accuracy	_	-2		+2	%	Overtemperature range
Output Voltage Line Regulation (Note 1)			0.2	0.5	%	V _{IN} = V _{OUT} +1.0V to 5.5V
Output Voltage Load Regulation	_		0.2	—	%	I _L = 10 mA to 5A
V _{IN} – V _O ; Dropout Voltage	—		160	300	mV	I _L = 2.5A
(Note 2)	—		250	500	IIIV	I _L = 5A
	_	_	1	5		I _L = 10 mA
Output Voltage Line	—		3	10	mA	I _L = 500 mA
Regulation	—	_	20	50	ШA	I _L = 2.5A
	—	_	54	150		I _L = 5A
Ground Pin Current in Shutdown	_	_	5	10	μA	V _{EN} = 0V
Current Limit	_	5.5	10	_	Α	
Start-Up Time	_	_	50	150	μs	V _{EN} = V _{IN}

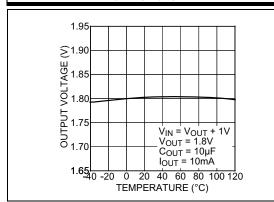
Note 1: Minimum input for line regulation test is set to V_{OUT} + 1V relative to the highest output voltage.

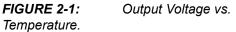
2: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. For outputs below 1.65V, dropout voltage is considered the input-to-output voltage differential with the minimum input voltage of 1.65V. Minimum input operating voltage is 1.65V.

Note 1: The maximum allowable power dissipation of any T_A (ambient temperature) is $(P_{D(max)} = T_{J(max)} - T_A) / \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature and the regulator will go into thermal shutdown.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $T_A = 25^{\circ}C$, $V_{IN} = V_{OUT} + 1V$. **Bold** values indicate $-40^{\circ}C \le T_J \le +125^{\circ}C$; $I_{OUT} = 10$ mA; unless otherwise specified. Specification for packaged product only.


Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	
Enable Input							
Enable Input Threshold	_	0.8	0.6	_	V	Regulator enable	
Enable Input Threshold	—	_	_	0.2	v	Regulator shutdown	
Enchle Din Innut Current	—	_	1	—		V _{IN} ≤ 0.2V (Regulator shutdown)	
Enable Pin Input Current	_	_	100	_	μA	V _{IN} ≤ 0.8V (Regulator enable)	
Overtemperature Shutdown	—	_	160	—	°C	—	
Overtemperature Shutdown Hysteresis	_		20	_	°C	_	


Note 1: Minimum input for line regulation test is set to V_{OUT} + 1V relative to the highest output voltage.

2: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. For outputs below 1.65V, dropout voltage is considered the input-to-output voltage differential with the minimum input voltage of 1.65V. Minimum input operating voltage is 1.65V.

2.0 **TYPICAL PERFORMANCE CURVES**

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

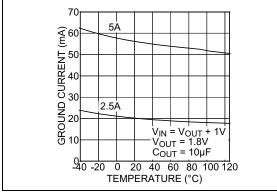
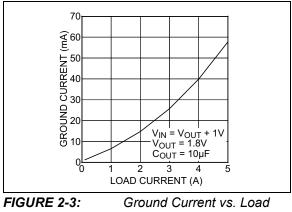



FIGURE 2-2: Ground Current vs. Temperature.

Current.

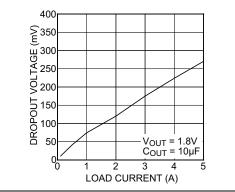


FIGURE 2-4: Current.

Dropout Current vs. Load

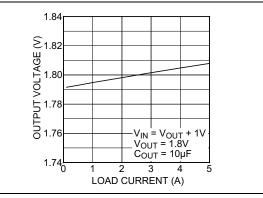
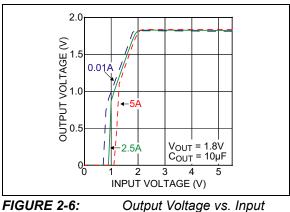



FIGURE 2-5: Current.

Output Voltage vs. Load

Voltage.

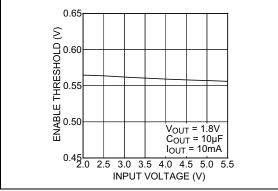


FIGURE 2-7: Enable Threshold vs. Input Voltage.

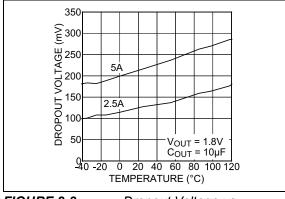


FIGURE 2-8: Temperature.

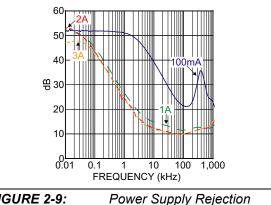
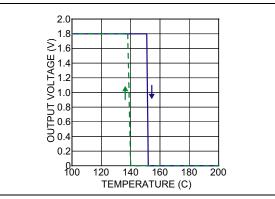



FIGURE 2-9: Ratio.

FIGURE 2-10: Thermal Shutdown.

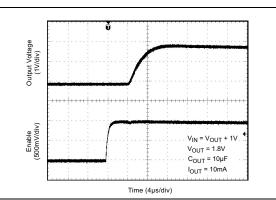
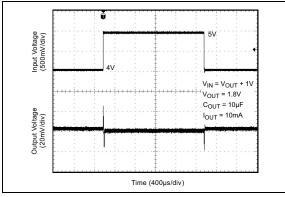



FIGURE 2-11: Enable.

FIGURE 2-12: Line Transient.

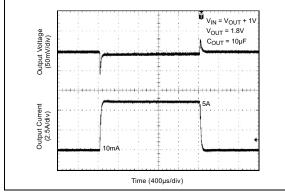


FIGURE 2-13: Load Transient.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

	Pin Number	Pin Name	Description
Ī	1	EN	Enable (Input): CMOS compatible input. Logic high = enable, logic low = shutdown. Do not float.
	2, 3	VIN	Input voltage which supplies current to the output power device.
	4	GND	Ground (TAB is connected to ground on S-Pak).
	5, 6	VOUT	Regulator Output.
	7	ADJ	Adjustable regulator feedback input. Connect to resistor voltage divider. Applies only to adjustable output voltage parts.

4.0 APPLICATIONS INFORMATION

The MIC69502 is an ultra-high performance low dropout linear regulator designed for high current applications requiring fast transient response. It utilizes a single input supply and has very low dropout voltage perfect for lowvoltage DC-to-DC conversion. The MIC69502 requires a minimum of external components. As a μ Cap regulator the output is tolerant of virtually any type of capacitor including ceramic and tantalum.

The MIC69502 regulator is fully protected from damage due to fault conditions offering constant current limiting and thermal shutdown.

4.1 Input Supply Voltage

 V_{IN} provides high current to the collector of the pass transistor. The minimum input voltage is 1.65V allowing conversion from low voltage supplies.

4.2 Output Capacitor

The MIC69502 requires a minimum of output capacitance to maintain stability. However, proper capacitor selection is important to ensure desired transient response. The MIC69502 is specifically designed to be stable with a wide range of capacitance values and ESR. A 10 μ F ceramic chip capacitor should satisfy most applications. See Section 2.0, Typical Performance Curves for examples of load transient response.

X7R dielectric ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by only 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric the value must be much higher than an X7R ceramic or a tantalum capacitor to ensure the same capacitance value over the operating temperature range. Tantalum capacitors have a very stable dielectric (10% over their operating temperature range) and can also be used with this device.

4.3 Inductor Capacitor

An input capacitor of 1 μ F or greater is recommended when the device is more than 4 inches away from the bulk supply capacitance or when the supply is a battery. Small, surface mount, ceramic chip capacitors can be used for the bypassing. The capacitor should be placed within 1" of the device for optimal performance. Larger values will help to improve ripple rejection by bypassing the input to the regulator further improving the integrity of the output voltage.

4.4 Minimum Load Current

The MIC69502 regulator is specified between finite loads. If the output current is too small, leakage currents dominate and the output voltage rises. A 10 mA minimum load current is necessary for proper operation.

4.5 Adjustable Regulator Design

The MIC69502 adjustable version allows programming the output voltage anywhere between 0.5V and 5.5V with two resistors. The resistor value between V_{OUT} and the adjust pin should not exceed 10 k Ω . Larger values can cause instability. The resistor values are calculated by:

EQUATION 4-1:

$$V_{OUT} = 0.5 \times \left(\frac{R_1}{R_2} + 1\right)$$

Where V_{OUT} is the desired output voltage.

4.6 Enable

The MIC69502 features an active high enable input (EN) that allows on-off control of the regulator. Current drain reduces to near "zero" when the device is shutdown, with only microamperes of leakage current. The EN input has TTL/CMOS compatible thresholds for simple logic interfacing. EN may be directly tied to VIN and pulled up to the maximum supply voltage.

4.7 Thermal Design

Linear regulators are simple to use. The most complicated design parameters to consider are thermal characteristics. Thermal design requires the following application-specific parameters:

- Maximum ambient temperature (T_A)
- Output current (I_{OUT})
- Output voltage (V_{OUT})
- Input voltage (V_{IN})
- Ground current (I<sub>GND)
 </sub>

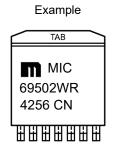
First, calculate the power dissipation of the regulator from these numbers and the device parameters from this Data Sheet.

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$$

where the ground current is approximated by using numbers from the Electrical Characteristics or Typical Performance Curves sections. The heat sink thermal resistance is then determined with this formula:

$$\theta_{SA} = ((T_{J(MAX)} - T_A) / P_D) - (\theta_{JC} + \theta_{CS})$$

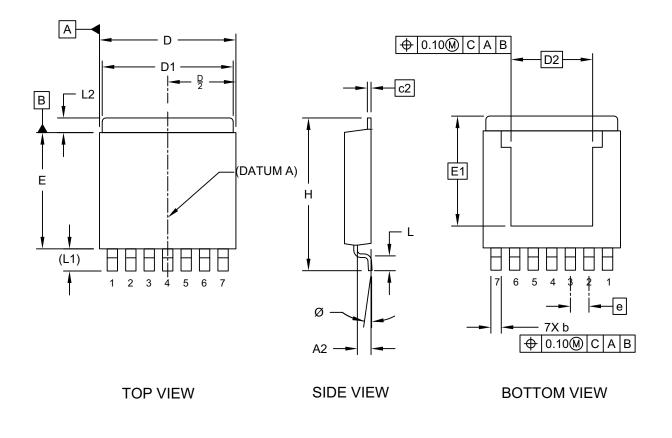
Where $T_{J(MAX)} \le 125^{\circ}$ C and θ_{CS} is between 0°C and 2°C/W.

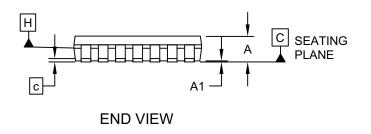

The heat sink may be significantly reduced in applications where the minimum input voltage is known and is large compared with the dropout voltage. Use a series input resistor to drop excessive voltage and distribute the heat between this resistor and the regulator. The low dropout properties of Micrel Super β eta PNP[®] regulators allow significant reductions in regulator power dissipation and the associated heat sink without compromising performance. When this technique is employed, a capacitor of at least 1.0 µF is needed directly between the input and regulator ground.

Refer to "Application Note 9" for further details and examples on thermal design and heat sink applications.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

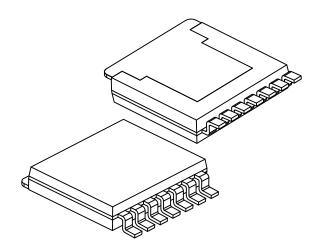

7-Pin S-PAK



Legend:	XXX Y YY WW NNN @3 *	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3)
b c tl	mark). n the even e carried haracters ne corpor	can be found on the outer packaging for this package. Pin one index is identified by a dot, delta up, or delta down (triangle at the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information. Package may or may not include ate logo. (_) and/or Overbar (⁻) symbol may not be to scale.

7-Lead Plastic [Surface] Flange-Mount Package (8CA) - [SPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



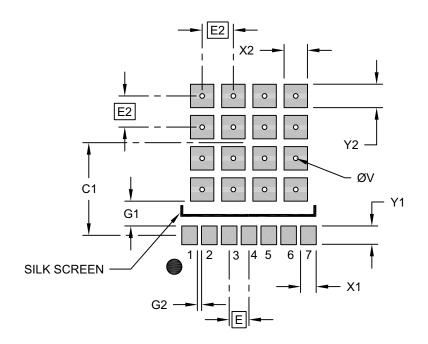
Microchip Technology Drawing C04-1143 Rev A Sheet 1 of 2

7-Lead Plastic [Surface] Flange-Mount Package (8CA) - [SPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimens	Min	Nom	Max			
Number of Leads	N		7			
Pitch	е		1.27 BCS			
Overall Height	А	1.78	-	2.03		
Seating Plane Height	A1	0.03	-	0.13		
Seating Plane to Lead	A2	0.89	-	1.14		
Lead Width	b	0.63	-	0.79		
Lead Thickness	С		0.25 BSC			
Thermal Pad Thickness	c2	0.25 BCS				
Foot Length	L	0.79 - 1.04				
Lead Length	L1		1.53 REF			
Tab Length	L2	0.76	-	1.27		
Overall Length	н	10.41	-	10.67		
Molded Body Length	D	9.27	-	9.52		
Thermal Pad Length	D1	8.89 - 9.14				
Exposed Pad Length	D2	5.58 BSC				
Molded Body Width	E	7.87 - 8.13				
Exposed Pad Width	E2	7.52 BSC				
Lead Foot Angle	Ø	0°	-	6°		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1143 Rev A Sheet 2 of 2

7-Lead Plastic [Surface] Flange-Mount Package (8CA) - [SPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC		
Center Pad and Via Pitch	E2		2.00 BSC		
Center Pad Width (X16)	X2			1.50	
Center Pad Length (X16)	Y2	1.50			
Contact Pad Spacing	C1		6.45		
Contact Pad Width (X7)	X1			1.05	
Contact Pad Length (X7)	Y1			1.25	
Contact Pad to Center Pad (X7)	G1	1.57			
Contact Pad to Contact Pad (X6)	G2	0.27			
Thermal Via Diameter	Ø٧	0.30			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3143 Rev A

APPENDIX A: REVISION HISTORY

Revision A (December 2023)

- Converted Micrel document MIC69502 to Microchip data sheet DS20006836A.
- Minor text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>	×	××	<u>-xx</u>	Exampl	es:			
Device	Output Voltage	Junction Temperature Range	Package Option	Media Type	a) MIC69	502WR:	5A, Low VIN, Low VOUT μCap LDO Regulator, Adjustable Output Voltage, -40°C to +125°C Junction		
Device:	MIC69	9502: 5A, Low V _{IN} ,	Low V _{OUT} µC	Cap LDO Regulator			Temperature Range, 7-Pin SPAK Package		
Output Voltage:	Blank	= Adjustable			b) MIC69	502WR-TR:	5A, Low VIN, Low VOUT μCap LDO Regulator, Adjustable Output Voltage, -40°C to +125°C Junction		
Junction Temperature Rar	nge: W	= -40°C to +12	25°C				Temperature Range, 7-Pin SPAK Package, 750/Reel		
Package:	R	= 7-Pin 9.5 mr	n x 8 mm x 2	mm SPAK					
Media Type:	Blank TR	= 48/Tube = 750/Reel			Note 1:		Reel identifier only appears in the		
						t number description. This identifier is Jering purposes and is not printed on package. Check with your Microchip e for package availability with the eel option.			
Note: Other out details.	tput voltag	e options are a	vailable. Con	ntact Factory for					

NOTES:

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. ISBN: 978-1-6683-3586-4

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Germany - Haan

Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400

EUROPE Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-8931-9700

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065