

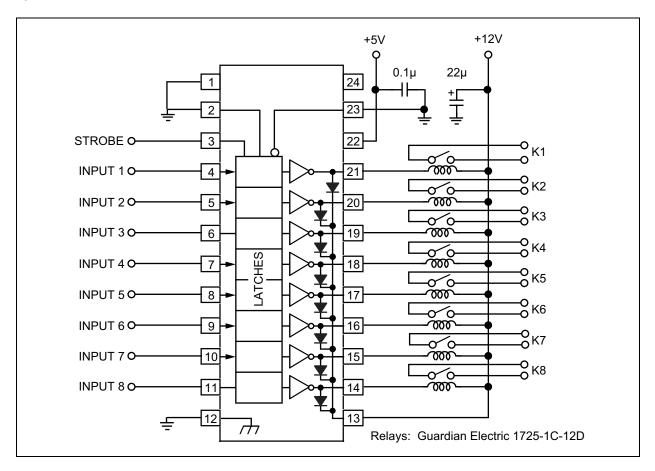
8-Bit Parallel-Input Protected Latched Driver

Features

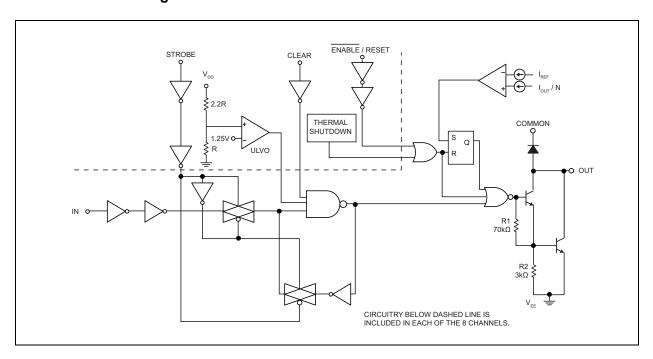
- · 4.4 MHz Minimum Data Input Rate
- · High-Voltage, High-Current Outputs
- Per-Output Overcurrent Shutdown (500 mA Typical)
- Undervoltage Lockout
- · Thermal Shutdown
- Output Transient Protection Diodes
- CMOS, PMOS, NMOS, and TTL Compatible Inputs
- · Internal Pull-Down Resistors
- · Low-Power CMOS Latches

Package Types

General Description


The MIC58P01 parallel-input latched driver is a high-voltage (80V), high-current (500 mA) integrated circuit comprised of eight CMOS data latches, a bipolar Darlington transistor driver for each latch, and CMOS control circuitry for the common CLEAR, STROBE, and OUTPUT ENABLE functions. Similar to the MIC5801, additional protection circuitry supplied on this device includes thermal shutdown, undervoltage lockout (UVLO), and overcurrent shutdown.

The bipolar/CMOS combination provides an extremely low-power latch with maximum interface flexibility. The MIC58P01 has open-collector outputs capable of sinking 500 mA and integral diodes for inductive load transient suppression with a minimum output breakdown voltage rating of 80V (50V sustaining). The drivers may be connected in parallel for higher load current capability.


With a 5V logic supply, the MIC58P01 will typically operate at better than 5 MHz. With a 12V logic supply, significantly higher speeds are obtained. The CMOS inputs are compatible with standard CMOS, PMOS, and NMOS circuits. TTL circuits may require pull-up resistors.

Each of these eight outputs has an independent overcurrent shutdown of 500 mA. Upon current shutdown, the affected channel will turn off until V_{DD} is cycled or the ENABLE/RESET pin is pulsed high. Current pulses less than 2 μs will not activate current shutdown. Temperatures above 165°C will shut down all outputs. The UVLO circuit disables the outputs at low V_{DD} ; hysteresis of 0.5V is provided.

Typical Application Circuit

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Output Voltage (V _{CE})	+80V
Logic Supply Voltage (V _{DD})	
Input Voltage Range (V _{IN})	0.3V to V _{DD} + 0.3V
Maximum Operating Ambient Temperature (T _{A(MAX)})	+85°C
Minimum Operating Ambient Temperature (T _{A(MIN)})	
ESD Rating (Note 1)	

Operating Ratings ††

† Notice: Exceeding the absolute maximum ratings may damage the device.

†† Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: Microchip CMOS devices have input-static protection, but are susceptible to damage when exposed to extremely high static electrical charges.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V _{DD} = 5V, T _A = +25°C, unless otherwise noted. Note 1								
Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
Output Lookage Current		1	_	50	^	V _{CE} = 80V, T _A = +25°C		
Output Leakage Current	ICEX	1	_	100	μA	V _{CE} = 80V, T _A = +70°C		
		1	0.9	1.1		I _C = 100 mA		
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	1	1.1	1.3	V	I _C = 200 mA		
Cataration voltage			1.3	1.6		I _C = 350 mA		
Input Voltage (Low)	V _{IN(0)}		_	1.0	٧	_		
		10.5	_	1		V _{DD} = 12V		
Input Voltage (High)	V _{IN(1)}	8.5	_	1	V	V _{DD} = 10V		
		3.5	_			V _{DD} = 5V, Note 2		
		50	200			V _{DD} = 12V		
Input Resistance	R _{IN}	50	300	1	kΩ	V _{DD} = 10V		
		50	600	_		V _{DD} = 5V		

- Note 1: Specification for packaged product only.
 - 2: Operation of these devices with standard TTL or DTL may require the use of appropriate pull-up resistors to ensure a minimum logic "1".
 - **3:** Undervoltage Lockout is guaranteed to release device at no more than 4.5V, and disable the device at no less than 3.0V.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: V _{DD} = 5V, T _A = +25°C, unless otherwise noted. Note 1								
Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
		_	3.3	4.5		One Driver ON, V _{DD} = 12V, Outputs Open		
	I _{DD(1ON)}	_	3.1	4.5	mA	One Driver ON, V _{DD} = 10V, Outputs Open		
		_	2.4	3.6		One Driver ON, V _{DD} = 5V, Outputs Open		
Supply Courset		_	6.4	10.0		All Drivers ON, V _{DD} = 12V, Outputs Open		
Supply Current	I _{DD(ON)}	_	6.0	9.0	mA	<u> </u>		
		_	4.7	7.5		All Drivers ON, V _{DD} = 5V, Outputs Open		
	I _{DD(OFF)}	_	3.0	4.5	4	All Drivers OFF, V _{DD} = 12V, Outputs Open, Inputs = 0V		
		_	2.2	3.6	mA	All Drivers OFF, V _{DD} = 5V, Outputs Open, Inputs = 0V		
Clamp Diode Leakage	I _R	_		50		V _R = 80V, T _A = +25°C		
Current		_		100	μA	V _R = 80V, T _A = +70°C		
Overcurrent Threshold	I _{LIM}	_	500		mA	Per Output		
Start-Up Voltage	V _{SU}	3.5	4.0	4.5	V	Note 3		
Minimum Operating V _{DD}	V _{DD(MIN)}	3.0	3.5	4.0	V	_		
Clamp Diode Forward Voltage	V _F	_	1.7	2.0	V	I _F = 350 mA		
Thermal Shutdown	_		165		°C	_		
Thermal Shutdown Hystersis	_	_	10	_	°C	_		

- Note 1: Specification for packaged product only.
 - 2: Operation of these devices with standard TTL or DTL may require the use of appropriate pull-up resistors to ensure a minimum logic "1".
 - **3:** Undervoltage Lockout is guaranteed to release device at no more than 4.5V, and disable the device at no less than 3.0V.

TRUTH TABLE

INI	Strobo	trobe Clear Output Enable	Output Frahla	OUT _N		
IN _N	Strobe		t – 1	t		
0	1	0	0	Х	OFF	
1	1	0	0	X	ON	
X	Х	1	X	X	OFF	
X	X	X	1	X	OFF	
X	0	0	0	ON	ON	
Х	0	0	0	OFF	OFF	

Legend: X = Irrelevant; t - 1 = Previous output state; t = Present output state.

Information present at an input is transferred to its latch when the STROBE is high. A high CLEAR input will set all latches to the output OFF condition regardless of the Data or STROBE input levels. A high OUTPUT ENABLE will set all outputs to the OFF condition, regardless of any other input conditions. When the OUTPUT ENABLE is low, the outputs depend on the state of their respective latches. If current shutdown is activated, the OUTPUT ENABLE must be pulsed high to restore operation. Overtemperature faults are not latched and require no reset pulse.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Maximum Operating Temperature Range	T _A	-55	_	+85	°C	_	
Storage Temperature Range	T _S	-65	_	+125	°C	_	
Operating Temperature Range	T _A	-40	_	+85	°C	_	

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

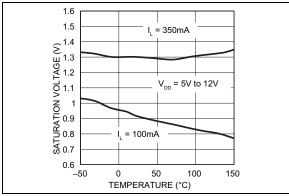


FIGURE 2-1: Output Saturation Voltage vs. Temperature.

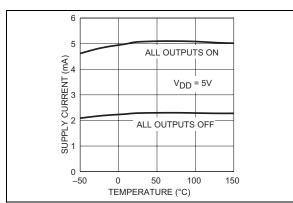


FIGURE 2-2: Supply Current vs. Temperature.

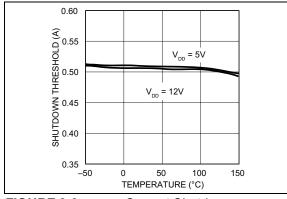


FIGURE 2-3: Current Shutdown Threshold vs. Temperature.

FIGURE 2-4: Current Shutdown Delay vs. Output Current.

FIGURE 2-5: Supply Current vs. Temperature.

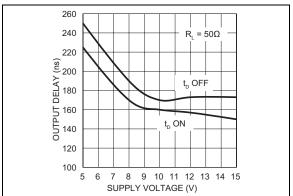


FIGURE 2-6: Output Delay vs. Supply Voltage.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number PLCC	Pin Number SOIC	Pin Name	Description	
1	2	CLEAR	Resets all Latches and turns all outputs OFF (open).	
3	3	STROBE	Input Strobe Pin. Loads output latches when High.	
5, 6, 7, 8, 9, 10, 11, 12	4, 5, 6, 7, 8, 9, 10, 11	IN _N	Parallel Inputs, 1 through 8.	
15	1, 12	GROUND	Logic and Output Ground pin.	
17	13	COMMON	Transient suppression diode common cathode pin.	
18, 19, 20, 21, 22, 23, 24, 25	14, 15, 16, 17, 18, 19, 20, 21	OUT _N	Parallel Outputs, 8 through 1.	
27	22	V_{DD}	Logic Supply voltage.	
28	23	OUTPUT ENABLE/ RESET	When Low, Outputs are active. When High, outputs are inactive and device is reset from a fault condition. An undervoltage condition emulates a high $\overline{\text{OE}}$ output.	
2, 4, 13, 14, 16, 26	24	NC	No connect.	

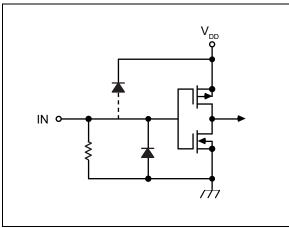


FIGURE 3-1: Typical Input.

4.0 TIMING

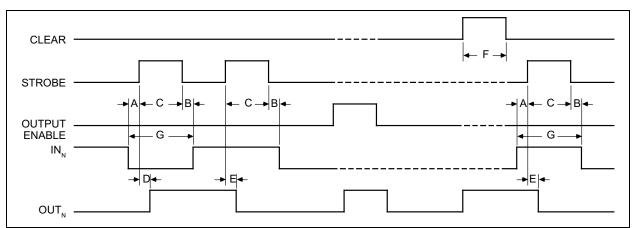


FIGURE 4-1: Timing Diagram.

TABLE 4-1: TIMING CONDITIONS

Characteristics: $T_A = +25$ °C; Logic levels are V_{DD} and Ground; $V_{DD} = 5V$.							
Condition	Min.	Тур.	Max.				
Minimum data active time before strobe enabled (data set-up time)	50 ns	_	_				
Minimum data active time after strobe disabled (data hold time)	50 ns	_	_				
Minimum strobe pulse width	125 ns	_	_				
Typical time between strobe activation and output on to off transition	_	500 ns	_				
Typical time between strobe activation and output off to on transition	_	500 ns	_				
Minimum clear pulse width	300 ns	_	_				
Minimum data pulse width	225 ns	_	_				

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

28-Lead PLCC*

24-Lead SOICW*

Example

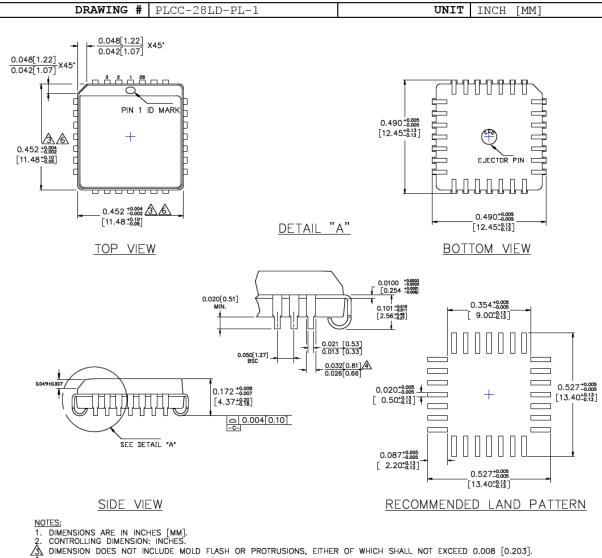
Legend: XX...X Product code or customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

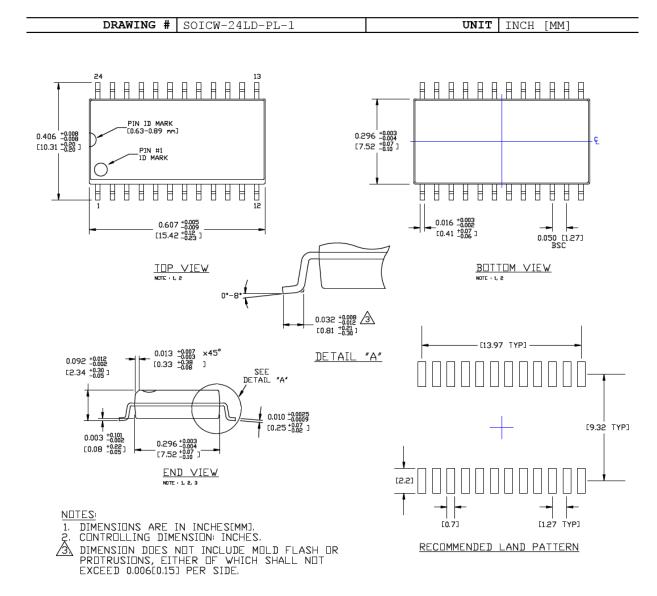

ullet, lacktriangle, lacktriangle Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar () and/or Overbar () symbol may not be to scale.

TITLE

28 LEAD PLCC PACKAGE OUTLINE & RECOMMENDED LAND PATTERN



- DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.008 [0.203].
- LEAD DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
- MAXIMUM AND MINIMUM SPECIFICATIONS ARE INDICATED AS FOLLOWS: MAX/MIN
- PACKAGE TOP DIMENSION MAY BE SLIGHTLY SMALLER THAN BOTTOM DIMENSION.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

TITLE

24 LEAD SOICW PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (February 2019)

- Converted Micrel document MIC58P01 to Microchip data sheet template DS20006159A.
- Minor grammatical text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

				Example	es:	
Device Part No.	<u>X</u> Junction Temp. Range	XX Package	- <u>XX</u> Media Type	a) MIC58	P01YV:	MIC58P01, -40°C to +85°C Temperature Range, 28-Lead PLCC, 38/Tube
Device:		Bit Parallel Input Pro	tected Latched	b) MIC58	P01YV-TR:	MIC58P01, -40°C to +85°C Temperature Range, 28-Leac PLCC, 750/Reel
Junction Temperature	Y = -40°C to	o +85°C, Industrial		c) MIC58	P01YWM:	MIC58P01, -40°C to +85°C Temperature Range, 24-Lead Wide SOIC, 31/Tube
Range: Package:	V = 28-Lead WM = 24-Lead	PLCC Wide SOIC		d) MIC58	P01YWM-TR:	MIC58P01, -40°C to +85°C Temperature Range, 24-Lead Wide SOIC, 1,000/Reel
Media Type:	 <blank>= 38/Tube <blank>= 31/Tube TR = 750/Ree</blank></blank>	(PLCC Package)		Note 1:	catalog part nun used for orderin the device pack	dentifier only appears in the nber description. This identifier is g purposes and is not printed on age. Check with your Microchip package availability with the ption.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4211-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829 **China - Shenzhen** Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393 **Denmark - Copenhagen**

Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

MIC58P01YWM TR MIC58P01BWM MIC58P01YV MIC58P01BWM TR MIC58P01YWM MIC58P01YV TR MIC58P01YWM-TR MIC58P01YV-TR MIC58P01BWM-TR