

MIC4126/27/28

Dual 1.5A-Peak Low-Side MOSFET Drivers in Advanced Packaging

Features

- Dual 1.5A-Peak Drivers
- 4.5V to 20V Operating Range
- Exposed Backside Pad Packaging Reduces Heat
 - ePAD SOIC-8L (θ_{JA} = 58°C/W)
 - ePAD MSOP-8L (θ_{JA} = 60°C/W)
 - VDFN ML[™]-8L (θ_{JA} = 60°C/W)
- Bipolar/CMOS/DMOS Construction
 - 25mV maximum output offset from supply or ground
- Latch-Up Protection to >200mA Reverse Current
- Switches 1000pF in 25ns
- Logic-Input Threshold Independent of Supply Voltage
- Logic-Input Protection to –5V
- 6pF Typical Equivalent Input Capacitance
- Dual Inverting, Dual Noninverting, and Complementary Configurations
 - -40°C to +125°C operating junction temperature range

Applications

- DC/DC Converters
- Motor Drivers
- Clock Line Driver

Package Types

General Description

The MIC4126, MIC4127, and MIC4128 family are highly-reliable dual 1.5A low-side MOSFET drivers fabricated on Microchip's BiCMOS/DMOS process. The devices feature low power consumption and high efficiency. The MIC4126/27/28 translate TTL or CMOS input logic levels to output voltage levels that swing within 25mV of the positive supply or ground whereas comparable bipolar devices are capable of swinging only to within 1V of the supply. The MIC4126/7/8 is available in three configurations: dual inverting, dual noninverting, and complimentary output.

The MIC4126/27/28 offer pin-compatible as well as smaller footprint replacements for the MIC4426/27/28 with improved packaging and electrical performance. The MIC4126/27/28 are available in exposed pad, EPAD, SOIC-8L and MSOP-8L options as well as a small-size VDFN ML[™]-8L option. The devices have an input operating range of 4.5V to 20V.

Primarily intended for driving power MOSFETs, MIC4426/7/8 drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low-impedance, high peak current, and fast switching time. The devices can withstand up to 500mA of reverse current (either polarity) without latching and up to 5V noise spikes (either polarity) on ground pins.

Data sheets and support documentation can be found on Microchip's website at www.microchip.com.

Functional Block Diagram

The function block diagram contains only four resistors, four capacitors, and 52 transistors. Be sure to ground any unused inputs.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage	+24V
Input Voltage	
ESD Susceptibility	(Note 1)

Operating Ratings ††

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $4.5V \le V_S \le 20V$; $T_A = +25^{\circ}C$, **bold** values indicate full specified temperature range; unless noted. Input voltage slew rate >1V/µs; $C_{OUT} = 1000$ pF. Note 1

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
Input								
Logio 1 Input Voltago	V _{IH}	2.4	1.4	_	V	—		
Logic T input voltage		2.4	1.6	—	V	—		
Logio Olpput Voltago	V _{IL}	—	1.1	0.8	V	—		
Logic o input voltage		—	1.3	0.8	V	—		
Input Current	I _{IN}	-1	_	1	μA	$0V \leq V_{IN} \leq V_S$		
Output								
High Output Voltage	V _{OH}	V _S – 0.025	_	—	V	—		
Low Output Voltage	V _{OL}	—	_	0.025	V	—		
Output Resistance	R _O		6	10	Ω	I _{OUT} = 10 mA, V _S = 20V		
Output Resistance		—	8	12				
Peak Output Current	I _{PK}	—	1.5	—	А	—		
Latch-Up Protection	I	>200	_		mA	Withstand Reverse Current		
Switching Time								
Dias Time	t _R	—	13	30		Test Figure 1.1		
Rise fille		—	20	40	115			
		—	15	25		Test Figure 4.4		
	۲F	^t _F — 18 40 ^{ns}	ns					
Delay Time		_	37	50				
	^t D1	_	43	60	ns			
Delay Time	4	_	40	60		Test Figure 4.4		
Delay Time	^t D2	_	45	70	ns			

Note 1: Specification for packaged product only.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: $4.5V \le V_S \le 20V$; $T_A = +25^{\circ}C$, **bold** values indicate full specified temperature range; unless noted. Input voltage slew rate >1V/µs; $C_{OUT} = 1000$ pF. Note 1

Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
Power Supply								
Power Supply Current	۱ _S	_	1.4	4.5	mA			
			1.5	8		$v_{\rm INA} = v_{\rm INB} 3.0 v$		
Device Supely Current			0.18	0.4				
Power Supply Current	IS	_	0.19	0.6	mA	$v_{\rm INA} = v_{\rm INb} 0.0v$		

Note 1: Specification for packaged product only.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Temperature Ranges								
Maximum Junction Temperature	TJ	_	—	+150	°C	—		
Storage Temperature Range	Τ _S	-65	_	+150	°C	—		
Lead Temperature	—	—	_	+300	°C	10 sec.		
Junction Operating Temperature Range	Τ _J	-40	_	+125	°C	—		
Package Thermal Resistances								
Thermal Resistance, 3x3 VDFN 8-Ld	θ_{JA}	_	60	—	°C/W	—		
Thermal Resistance, EP MSOP 8-Ld	θ_{JA}	_	60	—	°C/W	—		
Thermal Resistance, EP SOIC 8-Ld	θ_{JA}	_	58	_	°C/W	—		

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

Test Circuits

FIGURE 1-1:

Inverting Driver Switching Time.

FIGURE 1-2:

Noninverting Driver Switching Time.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1:

Rise and Fall Time.

FIGURE 2-2: MIC4127 Supply Current vs. Capacitive Load.

Frequency.

FIGUR Capaci

FIGURE 2-4: Resistance.

FIGURE 2-5:

Turn On and Turn Off Delay.

FIGURE 2-6: Rise and Fall Time vs. Capacitive Load.

FIGURE 2-7: L

Low Output vs. Current.

FIGURE 2-8: Quiescent Power Supply Current vs. Supply Voltage.

FIGURE 2-9:MIC4127 Supply Current vs.Capacitive Load.

FIGURE 2-10: Rise and Fall Time vs. Capacitive Load.

FIGURE 2-11: High Output vs. Current.

FIGURE 2-12: Quiescent Power Supply Current vs. Supply Voltage.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

Pin Number	Pin Name	Description
1, 8	NC	Not internally connected
2	INA	Control Input A: TTL/CMOS compatible logic input
3	GND	Ground
4	INB	Control Input B: TTL/CMOS compatible logic input
5	OUTB	Output B: CMOS totem-pole output
6	Vs	Supply Input: +4.5V to +20V
7	OUTA	Output A: CMOS totem-pole output
EP	GND	Ground, backside pad

TABLE 3-1: PIN FUNCTION TABLE

4.0 APPLICATION INFORMATION

Supply Bypassing

Large currents are required to charge and discharge large capacitive loads quickly. For example, changing a 1000pF load by 16V in 25ns requires 0.8A from the supply input.

To ensure low supply impedance over a wide frequency range, parallel capacitors are recommended for power supply bypassing. Low-inductance ceramic MLC capacitors with short lead lengths (< 0.5") should be used. A 1.0 μ F film capacitor in parallel with one or two 0.1 μ F ceramic MLC capacitors normally provides adequate bypassing.

Grounding

When using the inverting drivers in the MIC4126 or MIC4128, individual ground returns for the input and output circuits or a ground plane are recommended for optimum switching speed. The voltage drop that occurs between the driver's ground and the input signal ground, during normal high-current switching, will behave as negative feedback and degrade switching speed.

The E-pad and ML packages have an exposed pad under the package. It is important for good thermal performance that this pad is connected to a ground plane.

Control Input

Unused driver inputs must be connected to logic high (which can be VS) or ground. For the lowest quiescent current (< 500μ A), connect unused inputs-to-ground. A logic-high signal will cause the driver to draw up to 9mA.

The control input voltage threshold is approximately 1.5V. The control input recognizes 1.5V up to Vs as a logic high and draws less than 1μ A within this range.

Power Dissipation

Power dissipation should be calculated to make sure that the driver is not operated beyond its thermal ratings. Quiescent power dissipation is negligible. A practical value for total power dissipation is the sum of the dissipation caused by the load and the transition power dissipation (PL + PT).

Load Dissipation

Power dissipation caused by continuous load current (when driving a resistive load) through the driver's output resistance is:

PL = IL2 RO

For capacitive loads, the dissipation in the driver is:

Transition Dissipation

In applications switching at a high frequency, transition power dissipation can be significant. This occurs during switching transitions when the P-channel and N-channel output FETs are both conducting for the brief moment when one is turning on and the other is turning off.

PT = 2 f VS Q

Charge (Q) is read from the following graph:

Crossover Energy Loss per Transition

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 * •, ▲, ♥ mark).	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (€3) can be found on the outer packaging for this package.
Note:	In the ever be carried characters the corport Underbar	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information. Package may or may not include ate logo. (_) and/or Overbar (⁻) symbol may not be to scale.

8-Lead SOICN ePad Package Outline and Recommended Land Pattern

8-Lead MSOP ePad Package Outline and Recommended Land Pattern

8-Lead VDFN Package Outline and Recommended Land Pattern

8-Lead Very Thin Plastic Dual Flat, No Lead Package (JMA) - 3x3x0.9 mm Body [VDFN] Micrel Legacy Package DFN33-8LD-PL-1

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1021 A Sheet 1 of 2

8-Lead Very Thin Plastic Dual Flat, No Lead Package (JMA) - 3x3x0.9 mm Body [VDFN] Micrel Legacy Package DFN33-8LD-PL-1

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	Ν		8			
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.85	0.90		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.203 REF				
Overall Length	D	3.00 BSC				
Exposed Pad Length	D2	2.25	2.30	2.35		
Overall Width	E	3.00 BSC				
Exposed Pad Width	E2	1.50	1.55	1.60		
Terminal Width	b	0.20	0.25	0.30		
Terminal Length	L	0.35	0.40	0.45		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

Pin 1 visual index feature may vary, but must be located within the hatched area.
 Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1021 A Sheet 1 of 2

8-Lead Very Thin Plastic Dual Flat, No Lead Package (JMA) - 3x3x0.9 mm Body [VDFN] Micrel Legacy Package DFN33-8LD-PL-1

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Optional Center Pad Width	X2			2.35
Optional Center Pad Length	Y2			1.60
Contact Pad Spacing	С		2.90	
Contact Pad Width (X8)	X1			0.30
Contact Pad Length (X8)	Y1			0.85
Contact Pad to Center Pad (X8)	G1	0.23		
Contact Pad to Contact Pad (X6)	G2	0.35		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3021 Rev A

APPENDIX A: REVISION HISTORY

Revision A (June 2019)

- Converted Micrel document MIC4126/27/28 (M9999-072605) to Microchip data sheet template DS20006084A.
- Minor grammatical text changes throughout.
- Updated Packaging Information to MCHP standard versions.

Revision B (May 2022)

• Updated package marking drawing in Section 5.1 "Package Marking Information".

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

				Example	es:
Device Part No.	<u>X</u> Junction Temp. Range	<u>XX</u> Package	- <u>XX</u> Media Type	a) MIC4 Advar +125° MIC4	126:1.5A-Peak, Dual Inverting, Low-Side MOSFET Driver in need Packaging, Extended Temperature Range, -40°C to C, RoHS Compliant. 126YME 8-Lead ePad SOIC Package 95/Tube
Device:	Dual 1.5A-Pea Packaging Bip MIC4126:	ak Low-Side MOS polar/CMOS/DMC Dual Inverting	FET Driver in Advance S Process	MIC4 MIC4 MIC4 MIC4	126YME-TR 8-Lead ePad SOIC Package 2500/Reagingel 126YMME 8-Lead ePad MSOP Package 100/Tube 126YMME-TR8-Lead ePad MSOP Package 2500/Reel 126YML-TR 8-Lead VDFN Package 5000/Reel
	MIC4127: MIC4128:	Dual Noninver Inverting and	rting Noninverting	b) MIC4 in Adv +125°	127:1.5A-Peak, Dual Noninverting, Low-Side MOSFET Driver vanced Packaging, Extended Temperature Range, –40°C to 'C, RoHS Compliant.
Junction Temperature Range:	Y = -40	0°C to +125°C, R	oHS Compliant	MIC4 MIC4 MIC4 MIC4 MIC4	127YME 8-Lead ePad SOIC Package 95/Tube 127YME-TR 8-Lead ePad SOIC Package 2500/Reagingel 127YMME 8-Lead ePad MSOP Package 100/Tube 127YMME-TR8-Lead ePad MSOP Package 2500/Reel 127YML-TR 8-Lead VDFN Package 5000/Reel
Package:	ME = 8-L MME= 8-L ML = 8-L	∟ead ePad SOIC ∟ead ePad MSOP ∟ead VDFN		c) MIC4 Driver 40°C	128:1.5A-Peak, Inverting and Noninverting, Low-Side MOSFET - in Advanced Packaging, Extended Temperature Range, – to +125°C, RoHS Compliant.
Media Type:	<blank>= 95/ <blank>= 10/ TR = 2,5 TR = 5,0</blank></blank>	/Tube (ME, ePad 0/Tube (MME, eP 500/Reel (ME & M 000/Reel (ML, VD	SOIC) ad MSOP) ME, ePad SOIC) FN)	MIC4 MIC4 MIC4 MIC4 MIC4	128YME 8-Lead ePad SOIC Package 95/Tube 128YME-TR 8-Lead ePad SOIC Package 2500/Reagingel 128YMME 8-Lead ePad MSOP Package 100/Tube 128YMME-TR 8-Lead ePad MSOP Package 2500/Reel 128YML-TR 8-Lead VDFN Package 5000/Reel
				Note 1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2019 - 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0526-3

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

EUROPE

Austria - Wels

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

MIC4126YMME MIC4126YME MIC4127YMME MIC4128YMME MIC4128YME MIC4127YME MIC4127YME-TR MIC4128YML-TR MIC4128YMME-TR MIC4127YML-TR MIC4127YMME-TR MIC4128YME-TR MIC4126YMME-TR MIC4126YME-TR MIC4126YML-TR