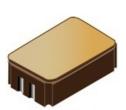


PNP Silicon Low-Power Transistor Qualified per MIL-PRF-19500/485

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This family of 2N5415UA and 2N5416UA epitaxial planar transistors are military qualified up to a JANS level for high-reliability applications. The UA package is hermetically sealed and provides a low profile for minimizing board height. These devices are also available in the long-leaded TO-5, short-leaded TO-39 and low profile U4 packaging.


Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5415 through 2N5416 series
- JAN, JANTXV, and JANS qualifications are available per MIL-PRF-19500/485.
 (See part nomenclature for all available options.)
- RoHS compliant

APPLICATIONS / BENEFITS

- General purpose transistors for low power applications requiring high frequency switching.
- Low package profile
- Military and other high-reliability applications

UA Package

Also available in:

TO-5 package (long-leaded) 2N5415 - 2N5416

TO-39 (TO-205AD) package (short-leaded) 2N5415S – 2N5416S

2N5415S

U4 package (surface mount) 2N5415U4 – 2N5416U4

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted

Parameters / Test Conditions	Symbol	2N5415UA	2N5416UA	Unit
Collector-Emitter Voltage	V_{CEO}	200	300	V
Collector-Base Voltage	V_{CBO}	200	350	V
Emitter-Base Voltage	V_{EBO}	6.0	6.0	V
Collector Current	Ic	1.0	1.0	Α
Operating & Storage Junction Temperature Range	T_J, T_{stg}	-65 to	°C	
Thermal Resistance Junction-to-Ambient	$R_{\Theta JA}$	234		°C/W
Thermal Resistance Junction-to-Solder Pad	$R_{\Theta JSP}$	80		°C/W
Total Power Dissipation @ $T_A = +25 ^{\circ}C^{(1)}$ @ $T_{SP} = +25 ^{\circ}C^{(2)}$	P _T	0.75 2		W

Notes: 1. Derate linearly 4.29 mW/°C for T_A > +25°C

2. Derate linearly 12.5 mW/°C for $T_{SP} > +25$ °C

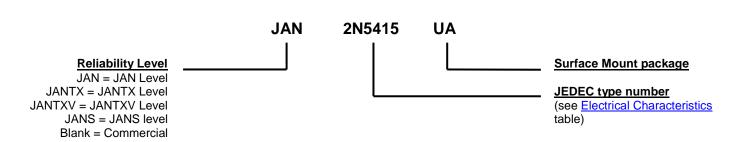
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed ceramic package
- TERMINALS: Gold plate over nickel
- · MARKING: Manufacturer's ID, date code, part number
- POLARITY: PNP (see package outline)
- TAPE & REEL option: Per EIA-481 (consult factory for quantities)
- WEIGHT: Approximately 0.12 grams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
C_obo	Common-base open-circuit output capacitance					
I _{CEO}	Collector cutoff current, base open					
I _{CEX}	Collector cutoff current, circuit between base and emitter					
I _{EBO}	Emitter cutoff current, collector open					
h _{FE}	Common-emitter static forward current transfer ratio					
V_{CEO}	Collector-emitter voltage, base open					
V_{CBO}	Collector-emitter voltage, emitter open					
V_{EBO}	Emitter-base voltage, collector open					

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

OFF CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage					
$I_{C} = 50 \text{ mA}, I_{B} = 5 \text{ mA},$	2N5415UA	$V_{(BR)CEO}$	200		V
L = 25 mH; f = 30 – 60 Hz	2N5416UA		300		
Emitter-Base Cutoff Current		1		20	
$V_{EB} = 6.0 \text{ V}$		I _{EBO}		20	μΑ
Collector-Emitter Cutoff Current					
$V_{CE} = 200 \text{ V}, V_{BE} = 1.5 \text{ V}$	2N5415UA	I _{CEX}		50	μΑ
$V_{CE} = 300 \text{ V}, V_{BE} = 1.5 \text{ V}$	2N5416UA				
Collector-Emitter Cutoff Current					
V _{CE} = 150 V	2N5415UA	I _{CEO1}		50	μΑ
$V_{CE} = 250 \text{ V}$	2N5416UA				
Collector-Emitter Cutoff Current					
$V_{CE} = 200 \text{ V}$	2N5415UA	I _{CEO2}		1	mA
$V_{CE} = 300 \text{ V}$	2N5416UA				
Collector-Base Cutoff Current					
V _{CB} = 175 V	2N5415UA	I _{CBO1}		50	μΑ
$V_{CB} = 280 \text{ V}$	2N5416UA				
$V_{CB} = 200 \text{ V}$	2N5415UA	Longo		500	Δ
$V_{CB} = 350 \text{ V}$	2N5416UA	I _{CBO2}		500	μΑ
$V_{CB} = 175 \text{ V}, T_A = +150 {}^{\circ}\text{C}$	2N5415UA	Longo		1	mΑ
$V_{CB} = 280 \text{ V}, T_A = +150 ^{\circ}\text{C}$	2N5416UA	I _{CBO3}		, I	шл

ON CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio $I_C = 50$ mA, $V_{CE} = 10$ V $I_C = 1$ mA, $V_{CE} = 10$ V $I_C = 50$ mA, $V_{CE} = 10$ V, $T_A = +150$ °C	h _{FE}	30 15 15	120	
Collector-Emitter Saturation Voltage I _C = 50 mA, I _B = 5 mA	V _{CE(sat)}		2.0	V
Base-Emitter Voltage Non-Saturation $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}$	V _{BE}		1.5	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 5 \text{ MHz}$	h _{fe}	3	15	
Small-signal short Circuit Forward-Current Transfer Ratio I _C = 5 mA, V _{CE} = 10 V, f ≤ 1 kHz	h _{fe}	25		
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C _{obo}		15	pF

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $V_{CC} = 200 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = 5 \text{ mA}$	t _{on}		1	μs
Turn-Off Time $V_{CC} = 200 \text{ V}, I_C = 50 \text{ mA}, I_{B1} = I_{B2} = 5 \text{ mA}$	t _{off}		10	μs

SAFE OPERATING AREA (See SOA graph below and MIL-STD-750, method 3053)

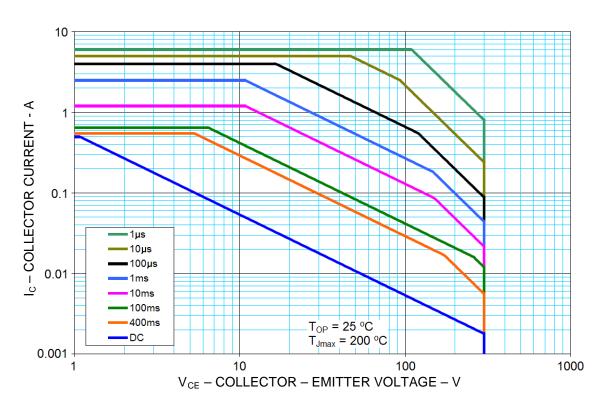
DC Tests

 T_C = +25 °C, t_P = 0.4 s, 1 Cycle

Test 1

 $V_{CE} = 10 \text{ V}, I_{C} = 0.3 \text{ A}$

Test 2


 $V_{CE} = 100 \text{ V}, I_{C} = 30 \text{ mA}$

Test 3 (2N5415UA only)

 $V_{CE} = 200 \text{ V}, I_{C} = 12 \text{ mA}$

Test 4 (2N5416UA only)

 $V_{CE} = 300 \text{ V}, I_C = 5 \text{ mA}$

Maximum Safe Operating Area (T_J = 200 °C)

GRAPHS

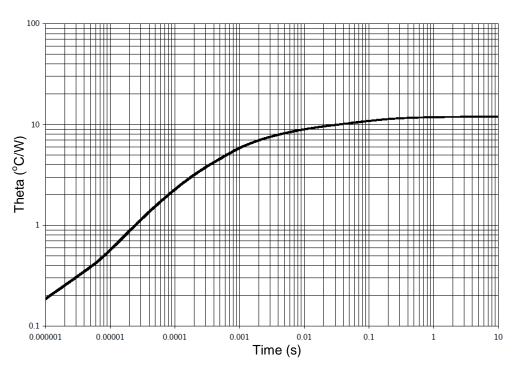
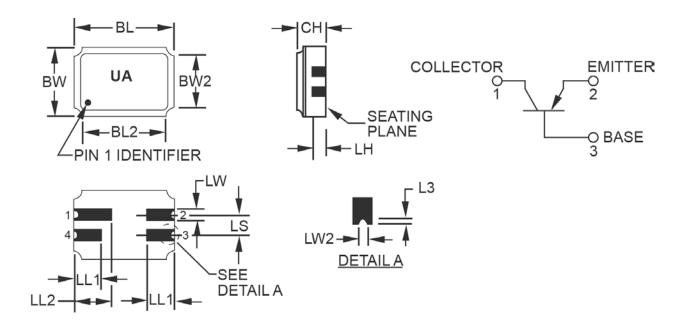



FIGURE 1
Thermal impedance graph (R_{OJA})

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- Dimension "CH" controls the overall package thickness. When a window lid is used, dimension "CH" must increase by a minimum of 0.010 inch (0.254 mm) and a maximum of 0.040 inch (1.020 mm).
- 4. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- 5. Dimensions " LW2" minimum and "L3" minimum and the appropriate castellation length define an unobstructed three-dimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension " LW2" maximum and "L3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dipping.
- 6. The co-planarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed 0.006 inch (0.15mm) for solder dipped leadless chip carriers.
- In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

	Dimensions				
Symbol	Inches		Millin	Note	
	Min	Max	Min	Max	
BL	0.215	0.225	5.46	5.71	
BL2	1	0.225	-	5.71	
BW	0.145	0.155	3.68	3.93	
BW2	1	0.155	-	3.93	
СН	0.061	0.075	1.55	1.90	3
L3	0.003	0.007	0.08	0.18	5
LH	0.029	0.042	0.74	1.07	
LL1	0.032	0.048	0.81	1.22	
LL2	0.072	0.088	1.83	2.23	
LS	0.045	0.055	1.14	1.39	
LW	0.022	0.028	0.56	0.71	
LW2	0.006	0.022	0.15	0.56	5
	Pin no	. 1	2	3	4

Pin no.	1	2	3	4
Transistor	Collector	Emitter	Base	N/C

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

JANS2N5415UA JANS2N5416UA JANS2N5416UA/TR JANS2N5415UA/TR