

RoHS

Available on

commercial

versions

Schottky Barrier Rectifier

Qualified per MIL-PRF-19500/553

DESCRIPTION

This schottky barrier diode provides low forward voltage and offers military grade qualifications for high-reliability applications. This rugged DO-203AA rectifier is applicable for freewheeling diodes, rectification in high-frequency, low-voltage inverters, and for polarity protection.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Internal solder bond construction.
- Hermetically sealed (welded).
- 600 Amps surge rating.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/553.
- RoHS compliant devices available by adding "e3" suffix (commercial grade only).

APPLICATIONS / BENEFITS

- Metal and glass construction.
- Reverse energy tested.
- Fast recovery.

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise stated

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	$T_{\rm J}$ and $T_{\rm STG}$	-55 to +175	°C
Thermal Resistance Junction-to-Case	R _{eJC}	2.0	°C/W
Reverse Voltage, Repetitive Peak and Working Peak Reverse Voltage ⁽¹⁾	V_{RRM} and V_{RWM}	45	V
Reverse Voltage, Nonrepetitive Peak	V _{RSM}	54	V
Reverse Voltage ⁽¹⁾	V _R	45	V
Forward Surge Current @ 8.3 ms half-sine wave	I _{FSM}	600	А
Average Forward Current 50% duty cycle square wave @ T_{C} = +125 °C ⁽²⁾	I _{FM}	25	А
Average Rectified Output Current @ T_c = +125 °C ⁽³⁾	Io	22.5	А
Solder Pad Temperature @ 10 s		260	°C

<u>Qualified Levels</u>: JAN, JANTX, JANTXV and JANS

DO-203AA (DO-4) Package

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website: www.microsemi.com

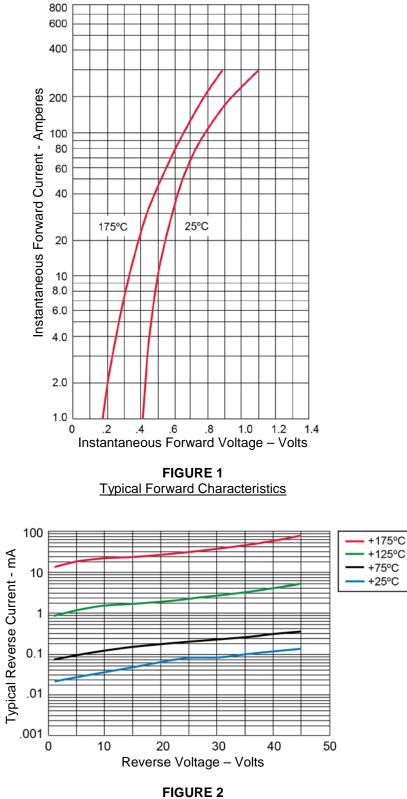

- **NOTES:** 1. Full rated V_{RRM} and V_{RWM} with 50% duty cycle is applicable over the range of $T_C = -55$ °C to +165 °C for $I_{FM} = 0$. Full rated continuous V_R (dc) is applicable over the temperature range of $T_C = -55$ to +155 °C. When $V_R = 45$ V and $T_C = +155$ °C, then $T_J = 175$ °C.
 - 2. Average current with a 50 percent duty cycle square wave including reverse amplitude equal to the magnitude of full rated V_{RWM}. Derate linearly at 0.625 A/°C for T_C > +125 °C.
 - Average current with an applied half-sine wave peak voltage value equal to the magnitude of full rated V_{RWM}. For temperature-current derating curves, see <u>Figure 4</u>.

MECHANICAL and PACKAGING

- CASE: Industry standard DO-4, (DO-203AA), 7/16" hex, stud with 10-32 threads, welded, hermetically sealed metal and glass.
- TERMINALS: Tin-lead plated or RoHS compliant matte-tin plating (commercial grade only) on nickel.
- POLARITY: Cathode to stud.
- MOUNTING HARDWARE: Nut, flat steel washer and lock washer available upon request.
- WEIGHT: Approximately 7.5 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
f	Frequency					
I _{FM}	Forward Current: The current flowing from the external circuit into the anode terminal. Also see first page ratings and test conditions for I_{FM} with 50% duty cycle square wave.					
I _{FSM}	Surge Peak Forward Current: The forward current including all nonrepetitive transient currents but excluding all repetitive transients (ref JESD282-B).					
Ι _ο	Average Rectified Forward Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.					
V _{FM}	Maximum Forward Voltage					
V _R	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.					
V _{RRM}	Repetitive Peak Reverse Voltage: The peak reverse voltage including all repetitive transient voltages but excluding all non-repetitive transient voltages.					
V _{RSM}	Non-Repetitive Peak Inverse Voltage: The peak reverse voltage including all non-repetitive transient voltages but excluding all repetitive transient voltages.					
V _{RWM}	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.					


ELECTRICAL CHARACTERISTICS

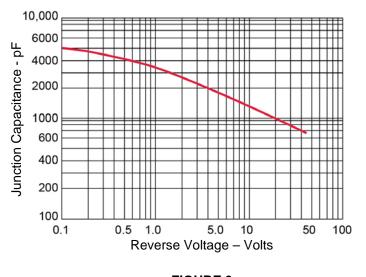
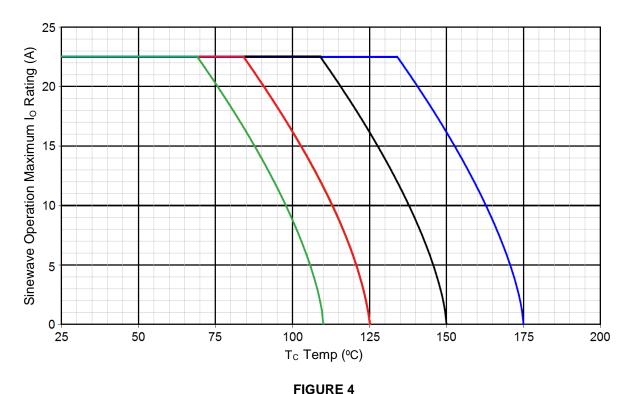
Parameters / Test Conditions	Symbol	Min.	Max.	Тур.	Unit
Forward Voltage $I_{FM} = 50 \text{ A}, T_C = 25 \text{ °C }^*$ $I_{FM} = 5 \text{ A}, T_C = 25 \text{ °C }^*$	V _{FM}		0.68 0.50		V
Reverse Current Leakage $V_{RM} = 45 V, T_J = 25 °C$ $V_{RM} = 45 V, T_J = 175 °C *$ $V_{RM} = 45 V, T_J = 125 °C *$ $V_{RM} = 45 V, T_C = -55 °C *$	I _{RM}		1.5 220 40 1.5		mA
Junction Capacitance $V_R = 5 V$, f = 1 MHz, 100 KHz \leq f \leq 1 MHz	CJ		2000		pF

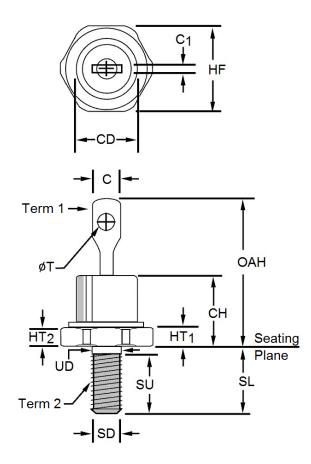
*Pulse test: pulse width 300 $\mu sec,$ duty cycle 2%

GRAPHS

Typical Reverse Characteristics

GRAPHS


FIGURE 3 Typical Junction Capacitance

 $\frac{\text{Temperature} - \text{Current Derating Curve}}{\text{(Derate design curve constrained by the maximum rated junction temperature (TJ ≤ 175C) and current rating specified.)}$

PACKAGE DIMENSIONS

	Dimensions					
Ltr	Inch		Millimeters		Notes	
	Min	Max	Min	Max		
С		.250		6.35	5	
C ₁	0.018	0.65	0.46	1.65	5	
CD	0.265	0.424	6.73	10.77	6	
СН	0.300	0.405	7.62	10.29		
HF	0.403	0.437	10.24	11.1	6	
HT ₁	0.075	0.175	1.91	4.45	7	
HT ₂	0.060	-	1.53	-	7	
OAH	0.600	0.800	15.24	20.32		
SD					2	
SL	0.422	0.453	10.72	11.51		
SU		0.078		1.98	8	
UD	0.163	0.189	4.14	4.80		
ФТ	0.060	0.095	1.52	2.41		

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. See "mechanical and packaging" for the polarity of the terminals.
- 3. Threads shall be 10–32 UNF–2A in accordance with FED–STD–H28. Maximum pitch diameter (SD) of plated threads shall be basic pitch diameter 0.1697 inch (4.31 mm).
- Device shall not be damaged by a torque of 15 inch-pounds applied to a 10-32 UNF-2B nut assembled on thread.
- 5. The angular orientation and peripheral configuration of terminal 1 is undefined, however, the major surfaces over dimension C and C1 shall be flat.
- 6. Dimension CD cannot exceed dimension HF.
- 7. A chamfer or undercut on one or both ends of the hex portion is optional; minimum base diameter at seating plane 0.403 inch (10.24 mm).
- 8. Length of incomplete or undercut threads UD.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

1N6391 JANTX1N6391 JANTXV1N6391 JAN1N6391