

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

RADIATION HARDENED NPN SILICON SWITCHING TRANSISTOR

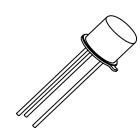
Qualified per MIL-PRF-19500/255

DEVICES

2N2221A	2N2222A
2N2221AL	2N2222AL
2N2221AUA	2N2222AUA
2N2221AUB	2N2222AUB
2N2221AUBC	2N2222AUB(

LEVELS

JANSM – 3K Rads (Si) JANSD – 10K Rads (Si) JANSP – 30K Rads (Si) JANSL – 50K Rads (Si) JANSR – 100K Rads (Si) JANSF – 300K Rads (Si) JANSG – 500K Rads (Si) JANSH – 1MEG Rads (Si)


ABSOLUTE MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

Parameters / Te	Symbol	Value	Unit	
Collector-Emitter Voltage		V _{CEO}	50	Vdc
Collector-Base Voltage		V_{CBO}	75	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc	
Collector Current	I_{C}	800	mAdc	
Total Power Dissipation @ T	$_{A} = +25^{\circ}C$			
2N2221A, L 2N2221AUA 2N2221AUB, UBC	2N2222A, L 2N2222AUA 2N2222AUB, UBC	P_{T}	0.5 0.65 0.50	W
Operating & Storage Junction	T _{op} , T _{stg}	-65 to +200	°C	

THERMAL CHARACTERISTICS

Parameters / Test Con	Symbol	Max.	Unit	
Thermal Resistance, Ju 2N2221A, L 2N2221AUA	unction-to-Ambient 2N2222A, L 2N2222AUA	$R_{ heta JA}$	325 210	°C/W
2N2221AUB, UBC	2N2222AUB, UBC		325	

- 1. Derate linearly 3.08 mW/ $^{\circ}$ C above $T_A > +37.5 ^{\circ}$ C
- 2. Derate linearly 4.76 mW/°C above $T_A > +63.5$ °C

TO-18 (TO-206AA) 2N2221A, 2N2222A

4 PIN 2N2221AUA, 2N2222AUA

3 PIN 2N2221AUB, 2N2222AUB 2N2221AUBC, 2N2222AUBC (UBC = Ceramic Lid Version)

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit			
OFF CHARACTERISTICS								
Collector-Emitter Breakdown Voltage								
$I_C = 10 \text{mAdc}$		$V_{(BR)CEO}$	50		Vdc			
Collector-Base Cutoff Current					A do			
$V_{CB} = 75 \text{Vdc}$ $V_{CB} = 60 \text{Vdc}$		I_{CBO}		10 10	μAdc ηAdc			
				-				
Emitter-Base Cutoff Current								
$V_{EB} = 6.0 \text{Vdc}$ $V_{EB} = 4.0 \text{Vdc}$		I_{EBO}		10 10	μAdc ηAdc			
v _{EB} = 4.0 v dc				10	i i i i i			
Collector-Emitter Cutoff Current								
$V_{CE} = 50 V dc$		I_{CES}		50	ηAdc			
ON CHARACTERISTICS (3)								
Forward-Current Transfer Ratio								
$I_C = 0.1 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC		30 50					
	2N2222A, L, UA, UB, UBC		30					
$I_C = 1.0 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC		35	150				
	2N2222A, L, UA, UB, UBC		75	325				
$I_C = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC	h_{FE}	40					
	2N2222A, L, UA, UB, UBC	1.2	100					
I = 150m A do V = 10V/do	ONOCOLA I IIA IID IIDC		40	120				
$I_C = 150 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC		100	300				
$I_C = 500 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC		20 30					
Collector-Emitter Saturation Voltage	ZIVZZZZA, L, UA, UB, UBC		50					
$I_C = 150 \text{mAdc}, I_B = 15 \text{mAdc}$				0.3				
$I_C = 500 \text{mAdc}, I_B = 50 \text{mAdc}$		V _{CE(sat)}		1.0	Vdc			
Base-Emitter Voltage								
$I_C = 150 \text{mAdc}, I_B = 15 \text{mAdc}$ $I_C = 500 \text{mAdc}, I_B = 50 \text{mAdc}$		V _{BE(sat)}	0.6	1.2 2.0	Vdc			
IC – Journauc, IB – Journauc				2.0				

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

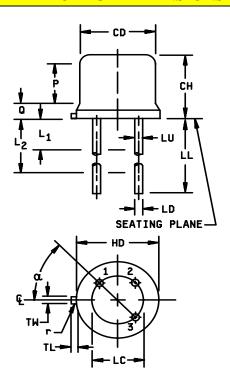
DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Trai	Small-Signal Short-Circuit Forward Current Transfer Ratio				
$I_C = 1.0$ mAdc, $V_{CE} = 10$ Vdc, $f = 1.0$ kHz	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC	h_{fe}	30 50		
Magnitude of Small–Signal Short-Circuit Forward Current Transfer Ratio					
$I_C = 20$ mAdc, $V_{CE} = 20$ Vdc, $f = 100$ MHz		$ \mathrm{h_{fe}} $	2.5		
Output Capacitance					
$V_{CB} = 10Vdc, I_E = 0, 100kHz \le f \le 1.0MHz$		C_{obo}		8.0	pF
Input Capacitance					
$V_{EB} = 0.5 \text{Vdc}, I_C = 0, 100 \text{kHz} \le f \le 1.0 \text{MHz}$		C_{ibo}		25	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time See figure 8 of MIL-PRF-19500/255	t _{on}		35	ηs
Turn-Off Time See Figure 9 of MIL-PRF-19500/255	$t_{ m off}$		300	ηs

(3) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.


T4-LDS-0042 Rev. 3 (100247) Page 3 of 7

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

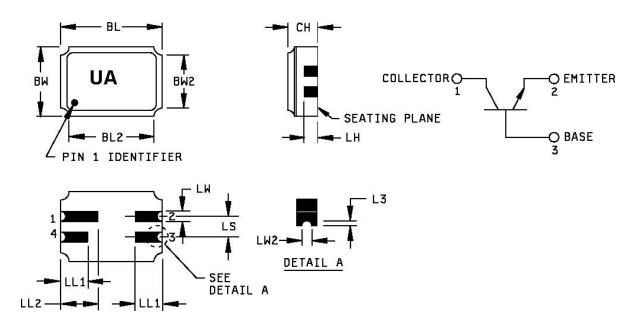
Website: http://www.microsemi.com

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TL shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L₁ and L₂. Dimension LD applies between L₂ and LL minimum. Diameter is uncontrolled in L₁ and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
- 12. Lead 1 = emitter, lead 2 = base, lead 3 = collector.
- 13. For L suffix devices, dimension LL = 1.5 inches (38.10 mm) min. and 1.75 inches (44.45 mm) max.

		Dime	nsions		
Symbol	Inc	hes	Millir	neters	Note
	Min	Max	Min	Max	
CD	.178	.195	4.52	4.95	
CH	.170	.210	4.32	5.33	
HD	.209	.230	5.31	5.84	
LC	.100) TP	2.54	I TP	6
LD	.016	.021	0.41	0.53	7,8
LL	.500	.750	12.70	19.05	7,8,13
LU	.016	.019	0.41	0.48	7,8
L_1		.050		1.27	7,8
L_2	.250		6.35		7,8
P	.100		2.54		
Q		.030		0.76	5
TL	.028	.048	0.71	1.22	3,4
TW	.036	.046	0.91	1.17	3
r		.010		0.25	10
α	45°	TP	45°	TP	6
	1	1, 2, 9, 11	, 12, 13	•	


FIGURE 1. Physical dimensions (similar to TO-18).

Page 4 of 7 T4-LDS-0042 Rev. 3 (100247)

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

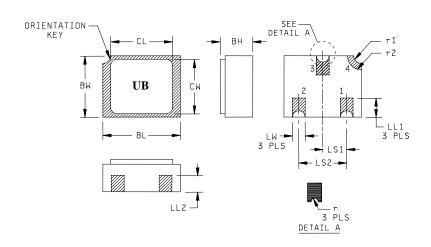
Website: http://www.microsemi.com

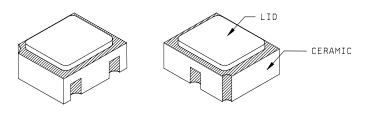
NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Dimension CH controls the overall package thickness. When a window lid is used, dimension CH must increase by a minimum of .010 inch (0.254 mm) and a maximum of .040 inch (1.020 mm).
- 4. The corner shape (square, notch, radius) may vary at the manufacturer's option, from that shown on the drawing.
- 5. Dimensions LW2 minimum and L3 minimum and the appropriate castellation length define an unobstructed three-dimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on the bottom two layers, optional on the top ceramic layer.) Dimension LW2 maximum and L3 maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dipping.
- 6. The co-planarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed .006 inch (0.15mm) for solder dipped leadless chip carriers.
- 7. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

	Dimensions				
Symbol	Inc	hes	Millir	neters	Note
	Min	Max	Min	Max	
BL	.215	.225	5.46	5.71	
BL2		.225		5.71	
BW	.145	.155	3.68	3.93	
BW2		.155		3.93	
CH	.061	.075	1.55	1.90	3
L3	.003	.007	0.08	0.18	5
LH	.029	.042	0.74	1.07	
LL1	.032	.048	0.81	1.22	
LL2	.072	.088	1.83	2.23	
LS	.045	.055	1.14	1.39	
LW	.022	.028	0.56	0.71	
LW2	.006	.022	0.15	0.56	5

Pin no.	1	2	3	4
Transistor	Collector	Emitter	Base	N/C


FIGURE 2. Physical dimensions, surface mount (UA version).


Page 5 of 7 T4-LDS-0042 Rev. 3 (100247)

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

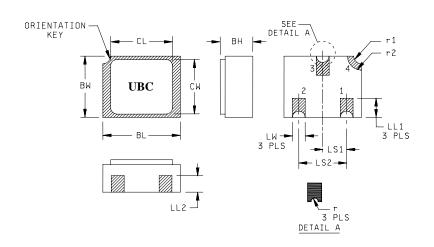
Website: http://www.microsemi.com

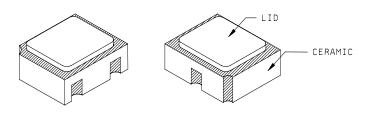
Dimensions					
Symbol	Inc	Inches		neters	Note
	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL1	.022	.038	0.56	0.96	
LL2	.017	.035	0.43	0.89	

	Dimensions				
Symbol	Inc	hes	Millir	neters	Note
	Min	Max	Min	Max	
LS_1	.036	.040	0.91	1.02	
LS_2	.071	.079	1.81	2.01	
LW	.016	.024	0.41	0.61	
r		.008		.203	
\mathbf{r}_1		.012		.305	
\mathbf{r}_2		.022		.559	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metalized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.


FIGURE 3. Physical dimensions, surface mount (UB version)


T4-LDS-0042 Rev. 3 (100247) Page 6 of 7

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803

Website: http://www.microsemi.com

	nsions				
Symbol	Inc	hes	Millir	neters	Note
	Min	Max	Min	Max	
BH	.046	.071	1.17	1.80	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL1	.022	.038	0.56	0.96	
LL2	.017	.035	0.43	0.89	

	Dimensions				
Symbol	Inches		Millimeters		Note
	Min	Max	Min	Max	
LS_1	.036	.040	0.91	1.02	
LS_2	.071	.079	1.81	2.01	
LW	.016	.024	0.41	0.61	
r		.008		.203	
\mathbf{r}_1		.012		.305	
\mathbf{r}_2		.022		.559	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metalized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Connected to the lid braze ring.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 4. Physical dimensions, surface mount (UBC version, ceramic lid)

T4-LDS-0042 Rev. 3 (100247) Page 7 of 7

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

JANSR2N2222AUB JANSF2N2222AL JANSF2N2221AUB JANSR2N2222AU JANSF2N2222AUA

JANSR2N2221AUB JANSF2N2222A JANSF2N2222AUB JANSR2N2222AUA JANSR2N2222AUBC

JANSD2N2222AUA/TR JANSD2N2222AUB/TR JANSF2N2222AUB/TR JANSM2N2222AUA/TR

JANSM2N2222AUB/TR JANSR2N2222AUA/TR JANSP2N2222AUB JANSP2N2218 JANSP2N2218A

JANSP2N2218AL JANSP2N2219 JANSP2N2219A JANSP2N2219AL JANSP2N2221AUA JANSP2N2221AUB

JANSP2N2221AUBC JANSP2N2221AUBC/TR JANSP2N2222A JANSP2N2222AUA JANSP2N2222AUBC/TR