

Schottky Barrier Diode Ceramic Surface Mount

Qualified per MIL-PRF-19500/444 DESCRIPTION

This 1N5711UB and 1N5712UB Schottky barrier diode is ceramic encased and offers military grade qualifications for high-reliability applications. Unidirectional as well as doubler,

common anode and common cathode polarities are available.

Important: For the latest information, visit our website <u>http://www.microsemi.com</u>.

FEATURES

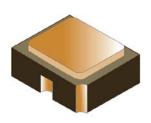
- Surface mount equivalent of JEDEC registered 1N5711, 1N5712 numbers.
- JAN, JANTX, JANTXV and commercial qualifications also available per MIL-PRF-19500/444 on "1N" numbers only.

(See Part Nomenclature for all available options).

RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low reverse leakage characteristics.
- Low-profile ceramic surface mount package (see package illustration).
- ESD sensitive to Class 1.


MAXIMUM RATINGS @ 25 °C unless otherwise stated

Parameters/Test Conditions		Symbol	Value	Unit
Junction and Storage Temperature		$T_{\rm J}$ and $T_{\rm STG}$	-65 to +150	°C
Thermal Resistance, Junction-to-Solder F	R _{OJSP}	100	°C/W	
Average Rectified Output Current:				
	1N5711UB ⁽¹⁾	lo	33	mA
	1N5712UB ⁽²⁾		75	
Solder Temperature @ 10 s			260	°C

NOTES: 1. At T_{EC} and T_{SP} = +140 °C, derate I_0 to 0 at +150 °C.

2. At T_{EC} and T_{SP} = +130 °C, derate I_O to 0 at +150 °C.

<u>Qualified Levels</u>: JAN, JANTX, JANTXV and JANS

UB Package

Also available in:

DO-213AA package (surface mount) <u>1N5711UR-1, 1N5712UR-1, 1N6857UR-1, and</u> 1N6858UR-1

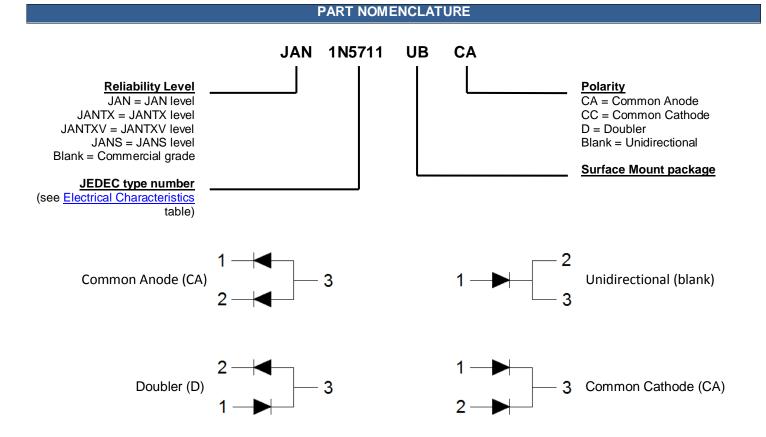
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

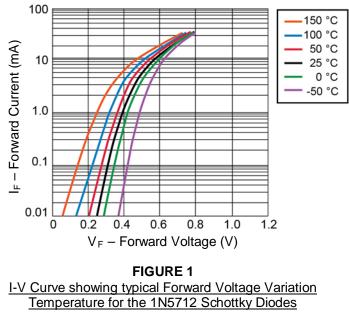
- CASE: Ceramic.
- TERMINALS: Gold plating over nickel under plate.

Microsemi.

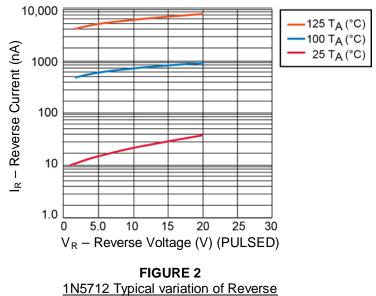
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: Approximately 0.04 grams.
- See <u>Package Dimensions</u> on last page.

SYMBOLS & DEFINITIONS							
Symbol	Definition						
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.						
f	frequency						
I _R	Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V _R .						
Ι _ο	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.						
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.						
V _(BR)	Breakdown Voltage: A voltage in the breakdown region.						
VF	Forward Voltage: A positive dc anode-cathode voltage the device will exhibit at a specified forward current.						
V _R	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.						
V _{RWM}	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.						

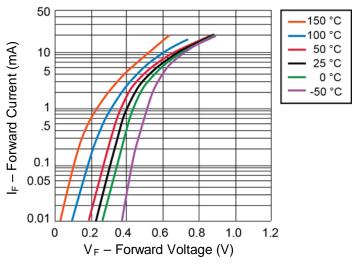
TYPE NUMBER	MINIMUM BREAKDOWN VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM FORWARD VOLTAGE	WORKING PEAK REVERSE VOLTAGE	REV LEAI	IMUM ERSE (AGE RENT	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
	V _(BR) @ 10 µA	V _F @ 1 mA	V _F @ I _F	V _{RWM}	I _R (20 V R		
	Volts	Volts	V @ mA	V (pk)	nA	Volts	pF	
1N5711UB	70	0.41	1.0 @ 15	50	200	50	2.0	
1N5712UB	20	0.41	1.0 @ 35	16	150	16	2.0	

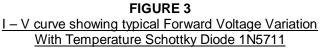

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted

NOTE:


1. Effective minority carrier lifetime (τ) is 100 pico seconds.

GRAPHS





Current (I_R) vs Reverse Voltage (V_R) at Various Temperatures

GRAPHS

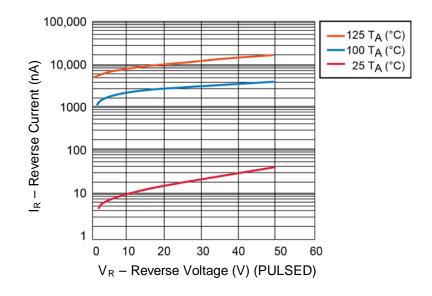
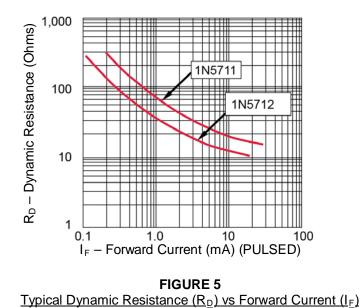
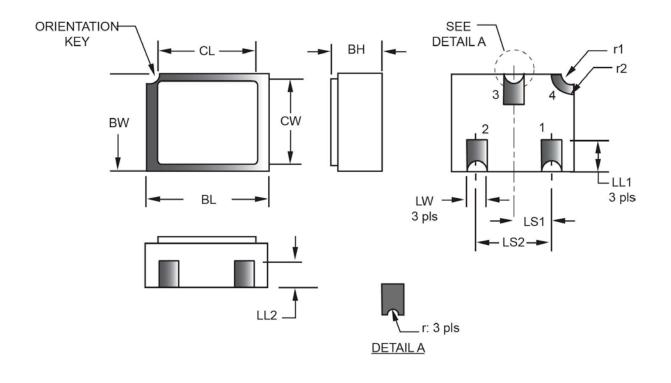



FIGURE 4 <u>1N5711 Typical Variation of Reverse Current (I_R) vs Reverse Voltage (V_R)</u> <u>at Various Temperatures</u>

GRAPHS



T4-LDS-0040-2, Rev. 1 (6/4/13)

1N5711UB and 1N5712UB (CC, CA, & D)

PACKAGE DIMENSIONS

Symbol	Dimensions					Dimensions					
	inch		millimeters		Note	Symbol	inch		millimeters		Note
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	0.046	0.056	1.17	1.42		LS1	.035	.039	0.89	0.99	
BL	0.115	0.128	2.92	3.25		LS2	.071	.079	1.80	2.01	
BW	0.085	0.108	2.16	2.74		LW	.016	.024	0.41	0.61	
CL	-	0.128	-	3.25		r	-	.008	-	0.20	
CW	-	0.108	-	2.74		r1	-	.012	-	0.31	
LL1	0.022	0.038	0.56	0.97		r2	-	.022	-	.056	
LL2	0.017	0.035	0.43	0.89							

NOTES:

1. Dimensions are in inches. Millimeters are given for information only.

2. Ceramic package only.

- 3. Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

JANS1N5712UBCC JANS1N5711UB JANS1N5712UBD JANTXV1N5711UB JANS1N5712UB JANS1N5712UBCA 1N5712UBCC 1N5712UBD 1N5712UB 1N5711UBCA 1N5711UBD 1N5711UB 1N5711UBCC JANS1N5712UB/TR JANTXV1N5711UB/TR 1N5712UBCA JANTX1N5712UBCA JANS1N5711UBCC JANTXV1N5711UBD JANTXV1N5712UBCA JANTX1N5712UBCC JANTX1N5711UBCA JAN1N5711UBD JANTXV1N5711UBCA JANS1N5711UBCA JANTXV1N5712UBD JANTXV1N5711UBCC JAN1N5712UBCC JANS1N5711UBD JAN1N5712UBD JANTX1N5712UB JANTXV1N5711UB JANTXV1N5712UBCC JANTXV1N5712UBC JANS1N5711UBD JAN1N5712UBCA JANTX1N5712UB JAN1N5711UB JANTXV1N5712UBCC JANTXV1N5712UBD JANTXV1N5711UBC JAN1N5712UBCA JANTX1N5712UB JANTX1N5711UB JANTXV1N5712UBD JAN1N5711UBCC JANTX1N5711UBC JANTX1N5711UBD JANTX1N5712UBD/TR JANS1N5711UB/TR JANTX1N5711UB/TR 1N5711UB/TR 1N5711UBCA/TR 1N5711UBD/TR 1N5712UB/TR 1N5712UBC/TR JANS1N5711UB/TR JAN1N5711UB/TR JANS1N5712UBCA/TR JANS1N5712UBD/TR JANS1N5711UBD/TR JAN1N5712UBCA/TR JAN1N5711UB/TR JAN1N5712UBCA/TR JANS1N5712UB/TR JAN1N5711UBCA/TR JAN1N5711UB/TR JAN1N5712UBCA/TR JANS1N5712UB/TR JAN1N5711UBCA/TR JAN1N5711UB/TR JAN1N5712UBCA/TR JAN1N5712UB/TR JAN1N5711UBCA/TR JANTX1N5711UBC/TR JAN1N5711UB/TR JAN1N5712UBCA/TR JAN1N5712UB/TR JAN1N5711UBCA/TR JANTX1N5711UBC/TR JAN1N5711UB/TR JAN1N5712UBCA/TR JAN1N5712UB/TR JAN1N5711UBCA/TR JAN1N5711UB/TR JAN1N5712UBCA/TR JAN1N5712UB/TR JAN1N5711UBCA/TR JANTX1N5711UBC/TR JANTX1N5711UB/TR JAN1N5712UBCA/TR JAN1N5712UB/TR JAN1N5711UBCA/TR JANTX1N5711UB/TR JANTX1N5711UB/TR JAN1N5712UBCA/TR JANTXV1N5711UBCA/TR JANTX1N5711UB/TR JANTX1N5711UB/TR JANTX1N5712UBCA/TR JANTXV1N5711UBCA/TR JANTX1N5711UB/TR JANTX1N5711UB/TR JANTX1N5712UBCA/TR JANTXV1N5711UBCA/TR JANTXV1N5711UB/TR