HV9918

Hysteretic Buck High-Brightness LED Driver with High-Side Current Sensing

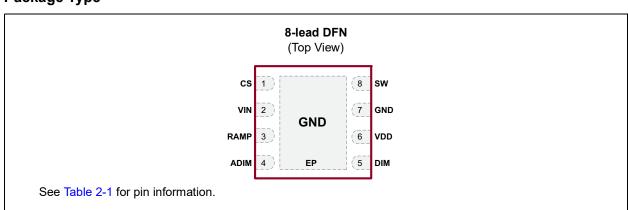
Features

- Hysteretic Control with High-Side Current Sensing
- Integrated 40V1Ω MOSFET
- >90% Efficiency
- · 4.5V to 40V Wide Input Voltage Range
- ±5% LED Current Accuracy
- Up to 2 MHz Switching Frequency
- · Adjustable Constant LED Current
- Analog or Pulse-With Modulation (PWM) Control Signal for PWM Dimming
- · Overtemperature Protection
- –40°C to +125°C Operating Ambient Temperature Range

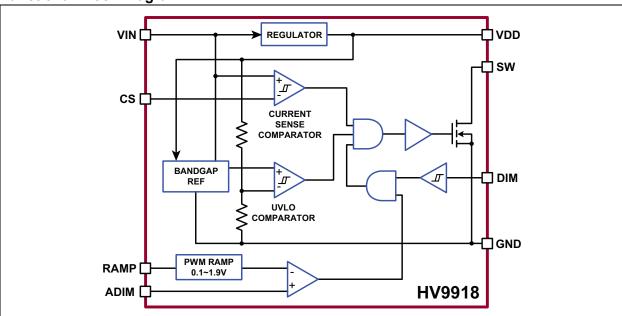
Applications

- · Low-Voltage Industrial and Architectural Lighting
- · General Purpose Constant Current Source
- · Signage and Decorative LED Lighting
- · Indicator and Emergency Lighting

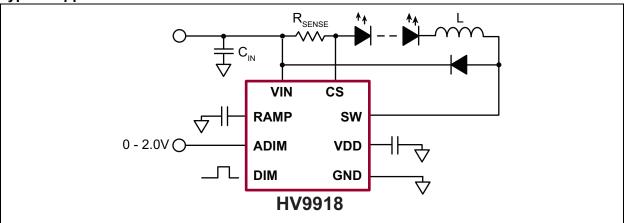
General Description


The HV9918 is a PWM controller IC designed to drive high-brightness LEDs using a buck topology. It operates from an input voltage of 4.5 VDC to 40 VDC and employs hysteretic control with a high-side current sense resistor to set the constant output current up to 700 mA. The device is well suited for applications requiring a wide input voltage range. The high-side current sensing and an integrated current-setting circuitry minimize the number of external components while delivering an accurate average output.

A dedicated PWM input enables pulsed LED dimming over a wide range of brightness levels. A hysteretic control method ensures excellent input supply rejection and fast response during load transients and PWM dimming.


The HV9918 offers an analog-controlled PWM dimming feature that reduces the output current by applying an external DC voltage below the internal 2V threshold voltage from ADIM to GND. ADIM can also accept input from a resistor divider including a negative temperature coefficient (NTC) thermistor connected between ADIM and GND or a positive temperature coefficient (PTC) thermistor connected between ADIM and $V_{\rm DD}$. This provides a PWM thermal foldback feature that reduces the LED current when the temperature of the LED string exceeds a specified temperature point. Additional features include thermal-shutdown protection.

The high-switching frequency up to 2 MHz permits the use of small inductors and capacitors, minimizing space and cost in the overall system.


Package Type

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

V _{IN.} CS and SW to GND	–0.3V to +45V
V _{DD} , GATE, RAMP, DIM, ADIM to GND	0.3V to +6V
CS to V _{IN}	
Junction Temperature, T _{.1}	
Storage Temperature Range, T _S	
Continuous Power Dissipation (T _A = +25°C):	
8-lead DFN	1.6W

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: V_{IN} = 12V, V_{DIM} = V_{DD} , V_{RAMP} = GND, C_{VDD} = 1 μ F, R_{SENSE} = 0.5 Ω , T_A = T_J = -40°C to +125°C (**Note 1**) unless otherwise noted.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Input DC Supply Voltage Range	V _{IN}	4.5	_	40	V	DC input voltage
Internally Regulated Voltage	V_{DD}	4.5	_	5.5	V	V _{IN} = 6V to 40V
Supply Current	I _{IN}	_	_	1.5	mA	SW = GND
Shutdown Supply Current	I _{IN, SDN}	_	_	900	μA	V _{DIM} < 0.7V
Internal Regulator Current Limit		_	30	_	mA	V _{IN} = 4.5V, V _{DD} = 0V
Internal Regulator Current Limit	I _{IN, LIM}	_	8	_	IIIA	V _{IN} = 4.5V, V _{DD} = 4V
Switching Frequency	f _{SW}	_	_	2	MHz	
V _{DD} Undervoltage Lockout Threshold	UVLO	_	_	4.5	V	V _{DD} rising
V _{DD} Undervoltage Lockout Hysteresis	ΔUVLO	_	500	_	mV	V _{DD} falling
SENSE COMPARATOR			•			
Sense Voltage Threshold High	V _{RS(HI)}	213	_	246	mV	(V _{IN} – V _{CS}) rising
Sense Voltage Threshold Low	V _{RS(LO)}	158	_	182	mV	(V _{IN} – V _{CS}) falling
Propagation Delay to SW Off	t _{DPDL}		70		ns	Rising edge of $V_{IN} - V_{CS} = V_{RS(HI)} + 70 \text{ mV to}$ $V_{SW} = 0.1 \text{ x } V_{IN}$
Propagation Delay to SW On	t _{DPDH}	_	70	_	ns	Falling edge of $V_{IN} - V_{CS} = V_{RS(LO)} - 70 \text{ mV to}$ $V_{SW} = 0.9 \text{ x } V_{IN}$
Current Sense Input Current	I _{cs}	_	_	1	μA	V _{IN} – V _{CS} = 200 mV
Current Sense Voltage Threshold Hysteresis	V _{RS(HYS)}	_	56	70	mV	
DIM INPUT						
DIM Input High Voltage	V _{DIM(H)}	2.2	_	_	V	
DIM Input Low Voltage	V _{DIM(L)}		_	0.7	V	
Turn-On Time	t _{ON}		100		ns	V_{DIM} rising edge to $V_{SW} = 0.9 \text{ x } V_{IN}$
Turn-Off Time	t _{OFF}	_	100		ns	V_{DIM} falling edge to $V_{SW} = 0.1 \times V_{IN}$

Note 1: Limits obtained by design and characterization. Typical values are given at $T_A = 25^{\circ}C$.

2: For design guidance only

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V_{IN} = 12V, V_{DIM} = V_{DD} , V_{RAMP} = GND, C_{VDD} = 1 μF, R_{SENSE} = 0.5Ω, T_A = T_J = -40°C to +125°C (Note 1) unless otherwise noted.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions				
OUTPUT SWITCH										
SW Continuous Current	I _{SW(DC)}	_	_	0.7	Α					
SW On Resistance	R _{SW(ON)}	_	1	2	Ω					
SW Leakage Current	I _{SW(LK)}	_	10	_	μA	V _{IN} = 40V				
OVERTEMPERATURE PROTECT	TION									
Overtemperature Trip Limit	T _{OT}	128	140	_	°C	Note 2				
Overtemperature Hysteresis	ΔT_{HYST}	_	60	_	°C	Note 2				
ANALOG CONTROL OF PWM D	IMMING	•	•							
Dimming Frequency	f	130	_	300	Hz	C _{RAMP} = 47 nF				
Diffilling Frequency	f _{RAMP}	550	_	1250	112	C _{RAMP} = 10 nF				
RAMP Threshold, Low	V _{TH(L)}	_	0.1	_	V					
RAMP Threshold, High	V _{TH(H)}	1.8	_	2.1	V					
ADIM Offset Voltage	Vos	-35	_	+35	mV					

Note 1: Limits obtained by design and characterization. Typical values are given at $T_A = 25^{\circ}C$.

2: For design guidance only

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions				
TEMPERATURE RANGE										
Operating Ambient Temperature	T _A	-40	_	+125	°C	Note 2				
Maximum Junction Temperature	$T_{J(ABSMAX)}$	_	_	+150	ç					
Storage Temperature	T_S	-65	_	+150	ů					
PACKAGE THERMAL RESISTANCE										
8-lead 3x3 DFN	θ_{JA}	_	+60	_	°C/W	Note 1				

Note 1: Mounted on an FR-4 board, 25 mm x 25 mm x 1.57 mm

2: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature, and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact device reliability.

HV9918

2.0 PIN DESCRIPTION

The details on the pins of HV9918 8-lead DFN are listed on Table 2-1. Refer to **Package Type** for the location of pins.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	CS	Current sense input. Senses LED string current.
2	VIN	Input voltage 4.5V to 40V DC
3	RAMP	Analog PWM dimming ramp output
4	ADIM	Analog 0V–2V signal input for analog control of PWM dimming
5	DIM	PWM signal input
6	VDD	Internally regulated supply voltage. Connect a capacitor from VDD to ground.
7	GND	Device ground
8	SW	Open Drain Output of an internal 40V 1Ω MOSFET
EP	GND	Exposed backside Pad. Must be wired to pin 7 and GND plane on PCB to maximize the thermal performance of the package

3.0 APPLICATION INFORMATION

3.1 General Description

The HV9918 is a step-down, constant-current, high-brightness LED (HB LED) driver. The device operates from a 4.5V to 40V input voltage range and includes an internal 40V 1 Ω N-channel MOSFET. A high-side current sense resistor sets the output current, and a dedicated PWM dimming input (DIM) allows for a wide range of dimming duty ratios. PWM dimming can also be achieved by applying a DC voltage between 0V and 2V to the analog dimming input (ADIM). In this case, the dimming frequency can be programmed using a single capacitor at the RAMP pin. The high-side current setting and sensing scheme minimizes the number of external components while delivering LED current with $\pm 5\%$ accuracy using a 1% sense resistor.

3.2 Undervoltage Lockout (UVLO)

The HV9918 includes a 3.7V UVLO with 500 mV hysteresis. When V_{IN} falls below 3.7V, switching of SW is disabled. Switching of SW resumes once V_{IN} is 4.5V or higher.

3.3 5V Regulator

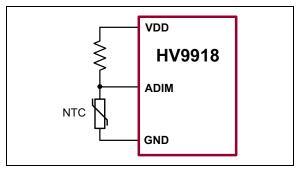
 V_{DD} is the output of a 5V internal regulator capable of sourcing 8 mA. Bypass V_{DD} to GND with a 1 μF capacitor.

3.4 DIM Input

The HV9918 allows dimming with a PWM signal at the DIM input. A logic level below 0.7V at DIM halts SW switching, turning the LED current off. To turn the LED current back on, the logic level at DIM must be at least 2.2V.

3.5 ADIM and RAMP Inputs

The PWM dimming scheme can also be implemented by applying an analog control signal to the ADIM pin. If an analog control signal of 0V–2V is applied to ADIM, the device compares this analog input to a voltage ramp to pulse-width modulate the LED current. Connecting an external capacitor across RAMP and GND programs the PWM dimming ramp frequency. See Equation 3-1.


EQUATION 3-1:

$$f_{PWM} = \frac{1}{C_{RAMP} \times 120 k\Omega}$$

The DIM and ADIM inputs can be used simultaneously. In such case, a $f_{PWM(MAX)}$ lower than the frequency of the dimming signal at DIM must be selected. The smaller dimming duty cycle of ADIM and DIM will determine the SW signal.

When the analog control of the PWM dimming feature is not used, RAMP must be wired to GND and ADIM should be connected to $V_{\rm DD}$.

One possible application of the ADIM feature may include protection of the LED load from overtemperature by connecting an NTC thermistor to ADIM as shown in Figure 3-1.

FIGURE 3-1: Overtemperature Protection using ADIM Pin.

3.6 Setting LED Current with the External Resistor (R_{SENSE})

The output current in the LED is determined by the external current sense resistor (R_{SENSE}) connected between V_{IN} and CS. Disregarding the effect of the propagation delays, the sense resistor can be calculated as seen in Equation 3-2.

EQUATION 3-2:

$$R_{SENSE} \approx \left(\frac{1}{2}\right) \times \left(\frac{V_{RS(HI)} + V_{RS(LO)}}{I_{LED}}\right) = \frac{200\,m\,V}{I_{LED}}$$

3.7 Selecting Buck Inductor (L)

The HV9918 regulates the LED output current using an input comparator with hysteresis. (See Figure 3-2.) As the current through the inductor ramps up and the voltage across the sense resistor reaches the upper threshold, the internal MOSFET at SW turns off. Then the inductor current ramps down through the freewheeling diode until the voltage across the sense resistor equals the lower threshold and the MOSFET turns on again.

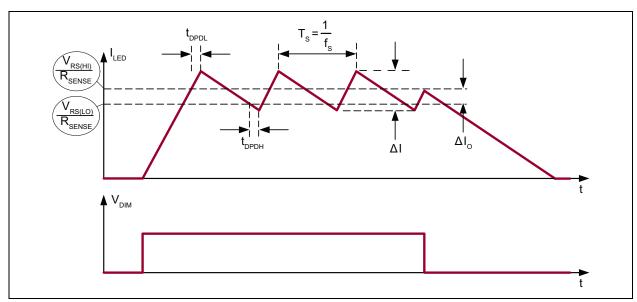


FIGURE 3-2: Inductor Current Waveform.

Equation 3-3 shows how to determine the inductor value for a desired operating frequency (f_S)

EQUATION 3-3:

$$L = \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{f_S V_{IN} \Delta I_O} - \frac{(V_{IN} - V_{OUT}) \times t_{DPDL}}{\Delta I_O} - \frac{V_{OUT} t_{DPDH}}{\Delta I_O}$$
 Where:
$$\Delta I_O = \frac{V_{RS(HI)} - V_{RS(LO)}}{R_{SENSE}}$$
 and t_{DPDL} and t_{DPDH} are the propagation delays.

Note that the current ripple (ΔI_L) in the inductor (L) is greater than ΔI_Q .

The current ripple in the inductor (L) can be calculated with Equation 3-4.

EQUATION 3-4:

$$\Delta I_L = \Delta I_O + \frac{(V_{IN} - V_{OUT}) \times t_{DPDL}}{L} + \frac{V_{OUT} t_{DPDH}}{L}$$

For proper inductor selection, note that the maximum switching frequency occurs at the highest V_{IN} and V_{OUT} = V_{IN} / 2.

3.8 Thermal Shutdown

The HV9918's thermal shutdown feature turns off the SW driver when the junction temperature exceeds +140°C. The SW driver turns back on when the junction temperature drops +60°C below the shutdown temperature threshold.

3.9 Freewheeling Diode Selection

The forward voltage of the freewheeling diode should be as low as possible for better efficiency. A Schottky diode is a good choice as long as the breakdown voltage is high enough to withstand the maximum operating voltage. The forward current rating of the diode must be at least equal to the maximum LED current.

3.10 LED Current Ripple

The LED current ripple is equal to the inductor current ripple. In cases when a lower LED current ripple is needed, a capacitor can be placed across the LED terminals.

3.11 PCB Layout Guidelines

Careful PCB layout is critical to achieving low switching losses and stable operation. Use a multilayer board whenever possible for better noise immunity. Minimize

ground noise by connecting high-current ground returns, the input bypass capacitor ground lead and the output filter ground lead to a single point (star ground configuration). The fast di/dt loop is formed by the input capacitor C_{IN} , the freewheeling diode and the HV9918 switching MOSFET. To minimize noise interaction, this loop area should be as small as possible. Place R_{SENSE} extremely close to the input filter and V_{IN} . For better noise immunity, a Kelvin connection is strongly recommended between CS and R_{SENSE} . Connect the exposed pad of the IC to a large area ground plane for improved power dissipation.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

8-lead DFN

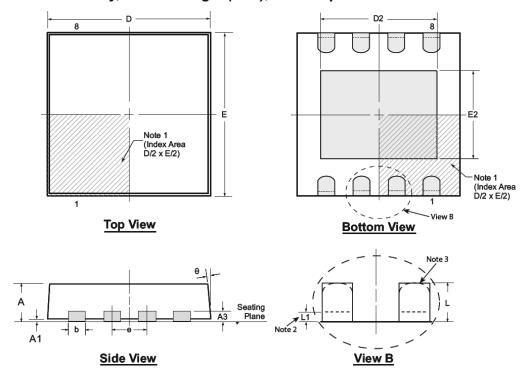
Example

9918 1913 888

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code


e3 Pb-free JEDEC® designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

8-Lead DFN Package Outline (K7)

3.00x3.00mm body, 0.80mm height (max), 0.65mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present. The inner tip of the lead may be either rounded or square.

Symb	ol	Α	A1	А3	b	D	D2	E	E2	е	L	L1	θ
	MIN	0.70	0.00		0.25	2.85*	1.60	2.85*	1.35		0.30	0.00*	0°
Dimension (mm)	NOM	0.75	0.02	0.20 REF	0.30	3.00	-	3.00	1	0.65 BSC	0.40	-	-
()	MAX	0.80	0.05		0.35	3.15*	2.50	3.15*	1.75		0.50	0.15	14 ⁰

JEDEC Registration MO-229, Variation WEEC-2, Issue C, Aug. 2003.

* This dimension is not specified in the JEDEC drawing.

Drawings not to scale.

Н	V	/9	9	1	8
	•	•	•	•	•

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2019)

- Converted Supertex Doc# DSFP-HV9918 to Microchip DS20005722A
- Changed the package marking format
- Changed the packaging quantity of 8-lead DFN from 3000/Reel to 3300/Reel
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	xx		- <u>X</u> - <u>X</u>	Exa	ample:	
Device	Package Options		Environmental Media Type	a)	HV9918K7-G:	Hysteretic Buck High-Brightness LED Driver with High-Side Current Sensing, 8-lead WDFN Package, 3300/Reel
Device:	HV9918	=	Hysteretic Buck High-Brightness LED Driver with High-Side Current Sensing			
Package:	K7	=	8-lead WDFN			
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package			
Media Type:	(blank)	=	3300/Reel for a K7 Package			
<u> </u>						

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKiT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5012-2

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com
Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **Sweden - Gothenberg**

Tel: 46-31-704-60-40

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

HV9918K7-G