

HV7802

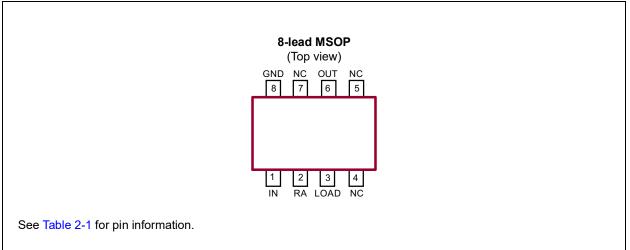
High-Side Current Monitor 8V to 450V Configurable Output

Features

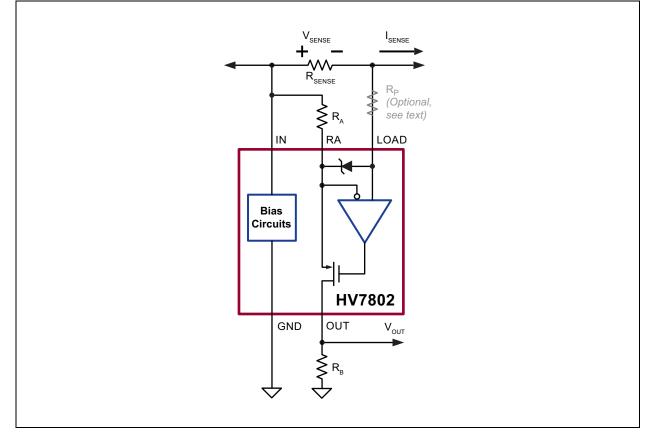
- 8V to 450V Supply Voltage
- Configurable as a Current or Voltage Output Device
- 15 mV Maximum Sense Amplifier Offset
- 500 mV Maximum V_{SENSE}
- 700 ns to 2 µs Fast Rise and Fall Time
- 50 µA Maximum Quiescent Current

Applications

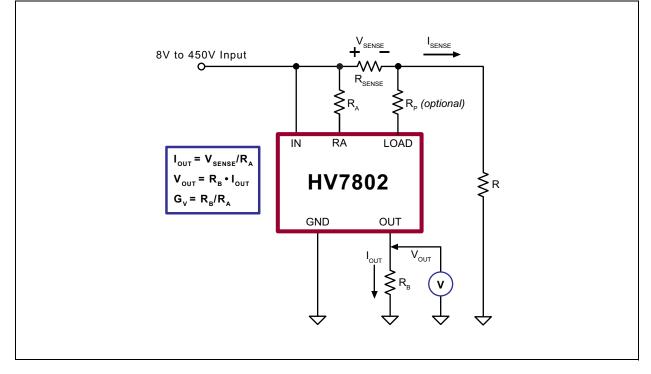
- · Switch Mode Power Supply Current Monitor
- Battery Current Monitor
- Motor Controls


General Description

The HV7802 high-side current monitor IC contains a transconductance amplifier which translates a high-side current measurement voltage into an output current with resistor-programmable transconductance gain. An optional second resistor transforms this output current into an output voltage with an overall voltage gain set by the ratio of the two resistors.


The measurement voltage typically originates at a current sense resistor, which is located in a "high-side" circuit. An example is a circuit not directly associated with ground.

This monitor IC features a very wide input voltage range, configurable gain, small size, low component count, low-power consumption, ease of use and low cost. Offline, battery and portable applications can be served equally well due to the wide input voltage range and the low quiescent current.


Package Type

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage, V _{IN} , V _{LOAD} (Note 1)	–0.5V to +460V
Output Voltage V _{OUT} (Note 1)	–0.5V to +10V
Sense Voltage, V _{SENSE} (Note 2)	
Current Load, I _{LOAD} (Note 2)	±10 mA
Operating Ambient Temperature, T_A	
Operating Junction Temperature, T ₁	–40°C to +125°C
Storage Temperature, T _S	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: Referenced to GND

2: $V_{\text{SENSE}} = V_{\text{IN}} - V_{\text{LOAD}}$

ELECTRICAL CHARACTERISTICS

Electrical Specifications: T _A = 25°C unless otherwise noted. V _{SENSE} = V _{IN} -V _{LOAD} , V _{IN} = 8V to 450V									
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions			
SUPPLY									
Supply Voltage	V _{IN}	8	—	450	V	Note 1			
Quiescent Supply Current	Ι _Q	_	_	50	μA	V _{IN} = 8V to 450V, V _{SENSE} = 0 mV			
INPUT AND OUTPUT									
Output Current	I _{OUT}	_	—	200	μA				
	V _{OUT}	0	—	15	mV	V _{SENSE} = 0 mV			
Output Voltage,		79	—	121	mV	V _{SENSE} = 100 mV			
$R_A = R_B = 5 k\Omega$		177	—	223	mV	V _{SENSE} = 200 mV			
		470	-	530	mV	V _{SENSE} = 500 mV			
DYNAMIC CHARACTERISTICS									
Output Diag Time, 10% to 00%	+		0.7	_	μs	V _{SENSE} = Step 5 mV to 500 mV			
Output Rise Time, 10% to 90%	t _r		—	2	μs	V _{SENSE} = Step 0 mV to 500 mV			
Output Fall Time, 90% to 10%	t _f	_	0.7	2	μs	V _{SENSE} = Step 500 mV to 0 mV			

Note 1: Values apply over the full temperature range.

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions		
TEMPERATURE RANGE								
Operating Ambient Temperature	Τ _Α	-40	—	+85	°C			
Operating Junction Temperature	Τ _J	-40	—	+125	°C			
Storage Temperature	Τ _S	-65	—	+150	°C			
PACKAGE THERMAL RESISTANCE								
8-lead MSOP	θ_{JA}	—	216	_	°C/W	Note 1		

Note 1: Thermal test board per JEDEC JESD51-7

2.0 **PIN DESCRIPTION**

The details on the pins of HV7802 are listed in Table 2-1. Refer to **Package Type** for the location of pins.

Pin Number	Pin Name	Description
1	IN	Sense amplifier input and supply
2	RA	Provides gain setting of the transconductance amplifier. Connect gain setting resistor (R_A) between Pin 1 and Pin 2.
3	LOAD	Sense amplifier input. High-impedance input with Zener diode protection. Add an external protection resistor in series with LOAD if V_{SENSE} exceeds the range of -600 mV to +5V.
4	NC	No Connect. This pin must be left floating for proper operation.
5	NC	No Connect. This pin must be left floating for proper operation.
6	OUT	Output of the transconductance amplifier. Output current to output voltage conversion can be accomplished through the addition of an external resistor (R_B) at this pin. Overall voltage gain is determined by the ratio of R_B to R_A .
7	NC	No Connect. This pin must be left floating for proper operation.
8	GND	Supply return

TABLE 2-1: PIN FUNCTION TABLE

3.0 APPLICATION INFORMATION

3.1 General

The HV7802 high-side current monitor IC features accurate current sensing, small size, low component count, low-power consumption, exceptional input voltage range, ease of use and low cost.

The part typically performs the measurement of line or load current for overcurrent protection, metering, and current regulation.

High-side current sensing, as opposed to ground-referenced or low-side current sensing, is desirable or required when:

- The current to be measured does not flow in a circuit associated with ground.
- The measurement at ground level can lead to ambiguity due to changes in the grounding arrangement during field use.
- Introduction of a sense resistor in the system ground is undesirable due to issues with safety, electromagnetic interference (EMI) or signal degradation caused by common impedance coupling.

3.2 Principle of Operation

The operational amplifier forces the voltage across R_A to track V_{SENSE} , therefore, $V_{RA} = V_{SENSE}$. Transconductance gain is equal to $(1/R_A)$.

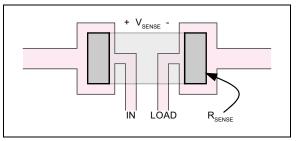
 IR_A flows from the OUT pin to low-side circuitry. Current-to-voltage conversion can be accomplished by a resistor, R_B , as shown in the **Functional Block Diagram** with a transimpedance gain equal to R_B .

Typically we would like to exploit the full current capability of the transimpedance amplifier. An RA of 5 k Ω will provide this current, assuming a full-scale sense voltage of 500 mV and a full-scale sense current of 100 μ A.

In a voltage output application, the output resistor R_B is determined by the desired overall voltage gain of (R_B/R_A). For example, an R_B of 10 k Ω results in a voltage gain of two.

3.3 OUT Pin Loading Effects

Note that the output is not buffered, having an output impedance equal to R_B . Loading the output causes the voltage gain to drop and the rise/fall time to increase.


For example, assume a gain of one, using $R_A = R_B = 5 \text{ k}\Omega$. In this case, the load resistance should exceed 5 M Ω in order to limit the gain drop to 1 part in 1000.

Assuming an output resistance of 5 k Ω , a capacitive load of 20 pF results in a load pole with a time constant of 100 ns, not enough to materially affect the output rise and fall time (about 700 ns).

3.4 Sense Resistor Considerations

Limit the sense resistor voltage to 500 mV during normal operating conditions. Limit the power dissipation in the sense resistor to suit the application. A high-sense voltage benefits accuracy but may increase power dissipation.

Consider the use of Kelvin connections for applications where significant voltage drops may occur in the PCB traces. A layout pattern that minimizes voltage drops across the sense lines is shown in Figure 3-1.

FIGURE 3-1: Kelvin Connection for the Sense Resistor.

Choose a low-inductance type of sense resistor if preservation of bandwidth is important. The use of Kelvin connections helps by minimizing the inductive voltage drops as well. The inductive voltage drop may be substantial when operating at high frequency.

A trace or component inductance of 10 nH contributes an impedance of 6.2 m Ω at 100 kHz, which constitutes a 6% error when using a 100 m Ω sense resistor.

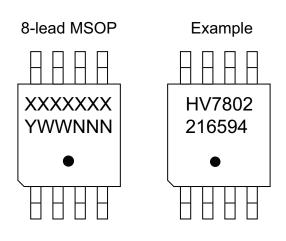
3.5 Transient Protection

Add a protection resistor (R_p) in series with the load pin if V_{SENSE} can exceed 5V in a positive sense or 600 mV in a negative sense, whether in a Steady state or in transient conditions.

A large V_{SENSE} may occur during system startup or shutdown due to the charging and discharging of bulk storage capacitors. V_{SENSE} may be large due to Fault conditions, such as Short Circuit or a broken or missing sense resistor.

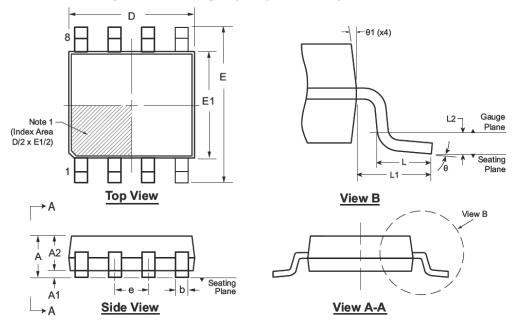
An internal 5V Zener diode with a current rating of 10 mA protects the sense amplifier inputs. The block diagram shows the orientation of this diode. The Zener diode provides clamping at 5V for a positive V_{SENSE} and at 600 mV for a negative V_{SENSE} .

Under worst-case conditions, limit the Zener current to 10 mA. A 100 k Ω resistor limits the Zener diode current to 4.5 mA when V_{SENSE} is 450V, whether positive or negative. Note that the protection resistor may affect


the bandwidth. The resistor forms an RC network with the trace and pin capacitance at the load pin. A capacitance of 5 pF results in a time constant of 500 ns.

The protection resistor may cause an offset due to bias current at the load input. Under worst-case bias current (1 nA), a 100 k Ω protection resistor could cause an offset of 100 μV or 0.2% of full scale. Note that the bias current is nominally zero as the LOAD is a high-impedance CMOS input, resulting in zero bias current induced offset voltage.

HV7802


4.0 PACKAGE MARKING INFORMATION

4.1 Packaging Information

Legend	: XXX Y YY WW NNN (e3) *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for product code or customer-specific information. Package may or e the corporate logo.

8-Lead MSOP Package Outline (MG) 3.00x3.00mm body, 1.10mm height (max), 0.65mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	А	A1	A2	b	D	E	E1	е	L	L1	L2	θ	θ1
	MIN	0.75*	0.00	0.75	0.22	2.80*	4.65*	2.80*		0.40			0 0	5 ⁰
Dimension (mm)	NOM	-	-	0.85	-	3.00	4.90	3.00	0.65 BSC	0.60	0.95 REF	0.25 BSC	-	-
()	MAX	1.10	0.15	0.95	0.38	3.20*	5.15*	3.20*	200	0.80			8 ⁰	15 ⁰

JEDEC Registration MO-187, Variation AA, Issue E, Dec. 2004. * This dimension is not specified in the JEDEC drawing. Drawings are not to scale.

HV7802

NOTES:

_

APPENDIX A: REVISION HISTORY

Revision A (October 2022)

- Converted Supertex Doc# DSFP-HV7802 to Microchip DS20005901A
- Changed the package marking format
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>	- <u>x</u> - <u>x</u>	Example:	
Device	Package Options	Environmental Media Type	a) HV7802MG-G:	High-Side Current Monitor 8V to 450V Configurable Output, 8-lead MSOP, 2500/Reel
Device:	HV7802 =	High-Side Current Monitor 8V to 450V Configurable Output		
Package:	MG =	8-lead MSOP		
Environmental:	G =	Lead (Pb)-free/RoHS-compliant Package		
Media Type:	(blank) =	2500/Reel for an MG Package		

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc c}}$ 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-1347-3

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

HV7802MG-G