

DSC612

Two-Output Low Power MEMS Clock Generator

Features

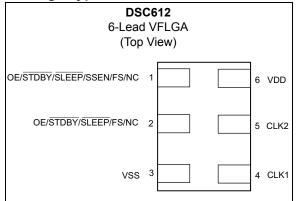
- MEMS-Based Clock Generator Eliminates the Need for External Crystal or Reference Clock
- Two LVCMOS Output Clocks: 2 kHz to 100 MHz
- Low Power Consumption: ~5 mA (Both Outputs Active)
- Wide Supply Voltage Range: 1.71V to 3.63V
- Ultra-Small Package Sizes:
 - 1.6 mm x 1.2 mm
 - 2.0 mm x 1.6 mm
 - 2.5 mm x 2.0 mm
- High Frequency Stability: ±20 ppm, ±25 ppm, ±50 ppm
- Wide Temperature Range:
 - Automotive: -40°C to +125°C
 - Ext. Industrial: -40°C to +105°C
 - Industrial: -40°C to +85°C
 - Commercial: -20°C to +70°C
- Excellent Shock and Vibration Immunity:
 - Shock: Qualified to MIL-STD-883E Method 2002.3. Test Condition G (30,000g)
 - Vibration: Qualified to MIL-STD-883E Method 2007.2, Test Condition C (70g)
- High Reliability
- Lead-Free and RoHS-Compliant
- Automotive Option AEC-Q100 Available

Applications

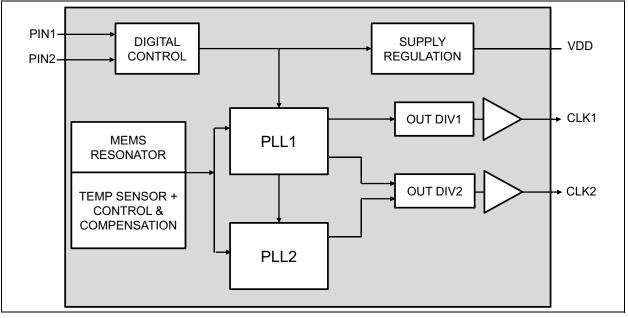
- Low Power/Portable Applications: IoT, Embedded/Smart Devices
- Consumer: Home Healthcare, Fitness Devices, Home Automation
- Industrial: Building/Factory Automation, Surveillance Cameras

General Description

The DSC612 is a MEMS low power, ultra-small footprint, crystal-less family of clock generators. The DSC612 family is factory-configurable and generates up to two independent LVCMOS outputs. Each output can be configured to generate any frequency from 2 kHz to 100 MHz.


The DSC612 implements Microchip's proven PureSilicon[™] MEMS technology to provide low jitter and high stability across a wide range of supply voltages and temperatures. By eliminating the external quartz crystal, Microchip's crystal-less[™] clock generators significantly enhance reliability and accelerate product development.

The DSC612 has two control inputs that can be configured to function as output enable/disable, standby, sleep, spread spectrum enable, and frequency select. The DSC612 is available in space saving 6-pin, 1.6 mm x 1.2 mm, 2.0 mm x 1.6 mm, and 2.5 mm x 2.0 mm VFLGA plastic packages.


The DSC612 spread spectrum function includes both center and down spreading, and is explained further in the Spread Spectrum section.

The DSC612 is a highly configurable device and is factory programmed to meet the customer's needs. Microchip's ClockWorks Configurator must be used to choose the necessary options, create the final part number, data sheet, and order samples.

Package Type

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage	
Input Voltage	–0.3V to V _{DD} + 0.3V
ESD Protection (HBM)	
ESD Protection (MM)	
ESD Protection (CDM)	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics: $V_{DD} = 1.8V \pm 5\%$ to 3.3V $\pm 10\%$; $T_A = -40^{\circ}C$ to $\pm 125^{\circ}C$, unless noted.							
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	
Supply Voltage	V _{DD}	1.71	_	3.63	V	Note 1	
Active Supply Current	I _{DD}	_	5	6	mA	f_{CLK1} = 27 MHz, f_{CLK2} = 25 MHz, V _{DD} = 1.8V, No Load	
Active Supply Current (Sleep Mode, 1 PLL Off)	I _{DDSL}		3	—	mA	CLK2 = SLEEP, f_{CLK1} = 25 MHz, V _{DD} = 1.8V, No Load	
Active Supply Current (32.768 kHz Output Only)	I _{DD32k}		1.4	_	mA	CLK2 = SLEEP, f _{CLK1} = 32.768 kHz, V _{DD} = 1.8V, No Load	
Standby Supply Current,			1.0	—		V _{DD} = 1.8V/2.5V	
Note 2	ISTDBY	_	1.5	—	μA	V _{DD} = 3.3V	
				±20			
Frequency Stability, Note 3	Δf	_	_	±25	ppm	All temperature ranges	
		_	_	±50			
Aging	Δf	_		±5	ppm	1st year @ +25°C	
		_		±1	ppin	Per year after the first year	
Startup Time	t _{SU}	—	—	1.5	ms	From 90% V _{DD} to valid clock output, T = +25°C	
Innut Logic Lougle, Note 4	V _{IH}	0.7 x V _{DD}	_	_	Ň	Input logic high	
Input Logic Levels, Note 4	V _{IL}		l	0.3 x V _{DD}	V	Input logic low	
Output Disable Time	t _{DA}			200 + 2 Periods	ns	Note 5	
Output Enable Time	t _{EN}		1.0	_	μs	Note 6	
Enable Pull-Up Resistor	_	—	300	—	kΩ	Note 7	
Output Logic Levels	V _{OHY}	0.8 x V _{DD}	_	—	V	I = 6 mA (high drive) or I = 3 mA (standard drive)	
	V _{OLY}	_	_	0.2 x V _{DD}	v	I = -6 mA (high drive) or $I = -3 mA$ (standard drive)	

TABLE 1-1: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V_{DD} = 1.8V ±5% to 3.3V ±10%; T_A = -40°C to +125°C, unless noted

TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: V_{DD} = 1.8V ±5% to 3.3V ±10%; T_A = -40°C to +125°C, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
	+ /+	_	1.2	2.0	ns	Standard drive 20% - 80% C _L = 10 pF, V _{DD} = 1.8V
Output Transition Time, Rise	t _{RY1} /t _{FY1}		0.6	1.2	2 ns Standard	Standard drive 20% - 80% C _L = 10 pF, V _{DD} = 2.5V/3.3V
Time/Fall Time	t=> (a/t=> (a		1.0	1.5	ns	High drive 20% - 80% C _L = 15 pF, V _{DD} = 1.8V
	t _{RY2} /t _{FY2}		0.5			High drive 20% - 80% C_L = 15 pF, V _{DD} = 2.5V/3.3V
Frequency	fO	0.002	_	100	MHz	—
Output Duty Cycle	SYM	45		55	%	—
Period Jitter, RMS	J _{PER}		17	—		f _{CLK1} = 24 MHz, f _{CLK2} = 27 MHz, V _{DD} = 1.8V
			14	_	ps	f_{CLK1} = 24 MHz, f_{CLK2} = 27 MHz, V _{DD} = 3.3V
			9	_		f_{CLK1} = 27 MHz, f_{CLK2} = 27 MHz or 32.768 kHz, V_{DD} = 3.3V
	J _{PER}		120	_	ps	f_{CLK1} = 24 MHz, f_{CLK2} = 27 MHz, V _{DD} = 1.8V
Period Jitter, Peak-to-Peak			100	_		f_{CLK1} = 24 MHz, f_{CLK2} = 27 MHz, V_{DD} = 3.3V
		_	80	_		f_{CLK1} = 27 MHz, f_{CLK2} = 27 MHz or 32.768 kHz, V_{DD} = 3.3V
		_	105	—		f_{CLK1} = 24 MHz, f_{CLK2} = 27 MHz, V_{DD} = 1.8V
Cycle-to-Cycle Jitter (peak)	J _{Cy-Cy}		90	_	ps	f_{CLK1} = 24 MHz, f_{CLK2} = 27 MHz, V_{DD} = 3.3V
		-	70	_		f_{CLK1} = 27 MHz, f_{CLK2} = 27 MHz or 32.768 kHz, V_{DD} = 3.3V

Note 1: V_{DD} pin should be filtered with a 0.1 μ F capacitor.

- 2: Excludes input pull-up current.
- 3: Includes frequency variations due to initial tolerance, temperature, and power supply voltage.
- **4:** Input waveform must be monotonic with rise/fall time < 10 ms.
- 5: Output disable time takes up to two Periods of the output waveform, plus 200 ns.
- **6:** For parts configured with OE, not Standby.
- 7: Output is enabled if pad is floated or not connected.

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Junction Operating Temperature	TJ	_	_	+150	°C	—
Storage Temperature Range	Τ _S	-55	_	+150	°C	—
Lead Temperature	—	_	+260		°C	Soldering, 40s

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

2.0 PIN DESCRIPTIONS

The DSC612 is a highly configurable device and can be factory programmed in many different ways to meet the customer's needs. Microchip's ClockWorks Configurator http://clockworks.microchip.com/Timing/ must be used to choose the necessary options, create the final part number, data sheet, and order samples. The descriptions of the pins are listed in Table 2-1.

Pin Number	Pin Name	Description
	OE	Output Enable: H = Active, L = Disabled (High Impedance).
	STDBY	Standby: H = Device is active, L = Device is in standby (Low Power Mode).
	FS	Frequency Select: H = Output Frequency 1, L = Output Frequency 2.
1	SLEEP	Sleep: H= Output Enabled, L= Output and associated PLL Disabled.
	SSEN	Spread Spectrum: H = Enabled, L = Disabled.
	NC	Non-functional, do not connect.
	OE	Output Enable: H = Active, L = Disabled (High Impedance).
	STDBY	Standby: H = Device is active, L = Device is in standby (Low Power Mode).
2	FS	Frequency Select: H = Output Frequency 1, L = Output Frequency 2.
	SLEEP	Sleep: H= Output Enabled, L= Output and associated PLL Disabled
	NC	Non-functional, do not connect.
3	VSS	Ground.
4	CLK1	Factory configurable LVCMOS clock output 1: 2 kHz to 100 MHz, standard drive or high drive.
5	CLK2	Factory configurable LVCMOS clock output 2: 2 kHz to 100 MHz, standard drive or high drive.
6	VDD	Power Supply: 1.71V to 3.63V.

TABLE 2-1: DSC612 PIN FUNCTION TABLE

An explanation of the different options listed in Table 2-1 follows:

2.1 Pin 1 and Pin 2

These are control pins and each may be configured to fulfill one of six different functions. If not actively driven, a 10 k Ω pull-up resistor is recommended.

2.1.1 OUTPUT ENABLE (OE)

Both pin 1 and pin 2 may be configured as Output Enable. Either or both outputs may be turned on and off according to the state of the pins.

2.1.2 STANDBY

Either pin 1 or pin 2 (but not both) may be configured as standby. When the pin is low, both outputs will be off and the device will enter a low power mode.

2.1.3 SLEEP

Either pin 1 or pin 2 (but not both) may be configured as sleep. When the pin is low, one phase lock loop (PLL) will shut down, enabling power saving. Any output driven by that PLL will be turned off.

2.1.4 SPREAD SPECTRUM ENABLE (SSEN)

Only pin 1 may be configured as SSEN. When the pin is high, the associated output will be spread in frequency. When the pin is low, no spreading will occur.

2.1.5 FREQUENCY SELECT (FS)

Both pin 1 and pin 2 may be configured as FS. Each output may be set to one of two pre-programmed frequencies (four pre-programmed frequencies in total).

2.1.6 NC

Both pin 1 and pin 2 may be configured as NC. In this case, the pins are non-functional and the device is programmed and fixed according to the choices in ClockWorks Configurator.

2.2 Pins 3 through 6

Pins 3 and 6 are the supply terminals, V_{SS} and V_{DD} respectively. Pins 4 and 5 are the two clock outputs, CLK1 and CLK2 respectively. CLK1 and CLK2 outputs are programmable to Standard and High Drive strengths settings through ClockWorks Configurator.

3.0 SPREAD SPECTRUM

Spread spectrum is a slow modulation of the clock frequency over time. The PLL inside the MEMS oscillator is modulated with a triangular wave at 33 kHz. With such a slow modulation, the peak spectral energy of both the fundamental and all the harmonics is spread over a wider frequency range. This significantly reduces peak energy density, thus providing an EMI reduction. The triangular wave is chosen because of its flat spectral density.

The DSC612 MEMS oscillator family offers several modulation options: the spreading is either center spread or down spread with respect to the clock frequency. Center spreading ranges from $\pm 0.25\%$ to $\pm 2.5\%$, while down spreading ranges from -0.25% to -3%.

If the clock frequency is 100 MHz and center spreading with $\pm 1\%$ is chosen, the output clock will range from 99 MHz to 101 MHz. If down spreading with -2% is chosen, the output clock will range from 98 MHz to 100 MHz.

Figure 3-1 and Figure 3-2 show a spectrum example of the DSC612 with a 33.333 MHz clock, modulated with central spread of $\pm 1\%$.

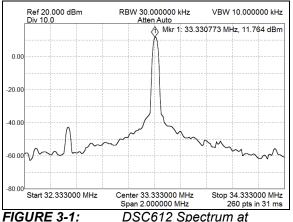
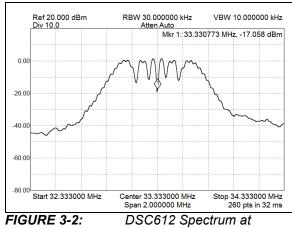



FIGURE 3-1: DSC612 Spectrum at 33.333 MHz with Modulation Turned Off.

33.333 MHz with Modulation Turned On.

It is noticeable that the spread spectrum provides a reduction of about 10 dB from the peak power. Such a reduction may also be estimated by the following equation:

EQUATION 3-1:

EMI Reduction = $10 \times Log 10(|S| \times fc \div RBW)$

Where:

- S Peak-to-peak spread percentage (0.01, this example).
- fc Carrier frequency (33.333 MHz, this example).
- RBW Resolution bandwidth of the spectrum analyzer (30 kHz, this example).

The theoretical calculation for this example provides 10.45 dB, which is consistent with the measurement.

Similarly to the fundamental frequency, all the harmonics are spread and attenuated in similar fashion. Figure 3-3 shows how the DSC612 fundamental at 33.333 MHz and its odd harmonics are attenuated when various types of modulations are selected. For picture clarity, only the center spread options are shown. However, down spread with corresponding percentage provides the same level of harmonic attenuation (e.g. central spread of $\pm 1\%$ provides the same harmonics attenuation of down spread with -2%).

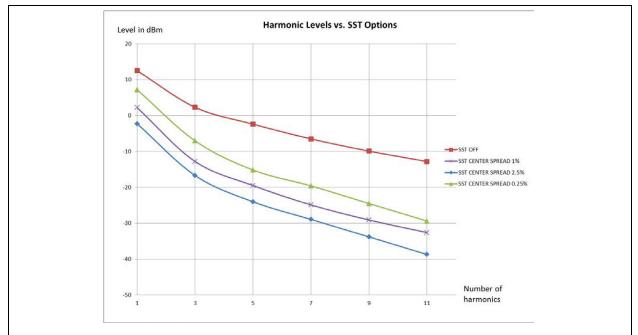
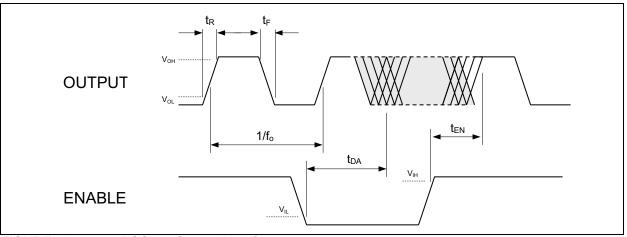
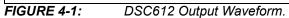




FIGURE 3-3:DSC612 Harmonic Levels with Various Spread Spectrum Options.Visit Microchip's ClockWorks Configurator to select Spread Spectrum options.

4.0 OUTPUT WAVEFORM

5.0 BOARD LAYOUT

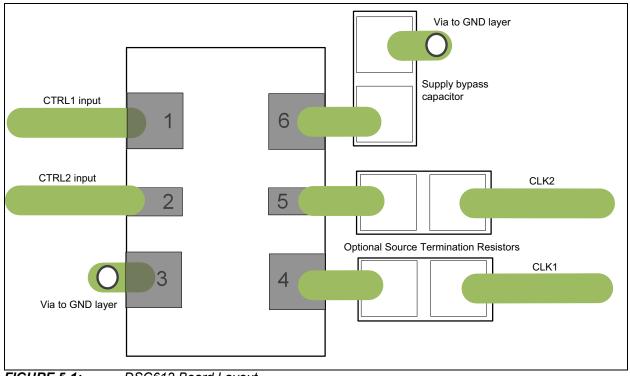
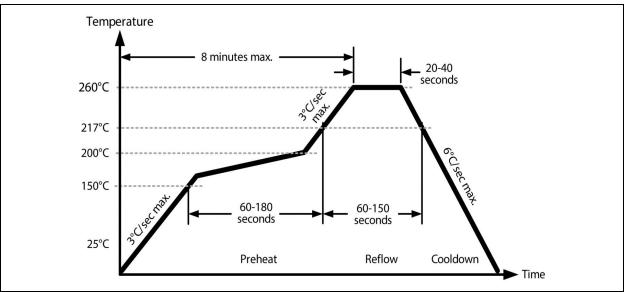



FIGURE 5-1:

DSC612 Board Layout.

6.0 SOLDER REFLOW PROFILE

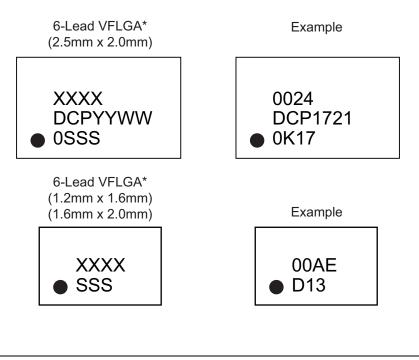
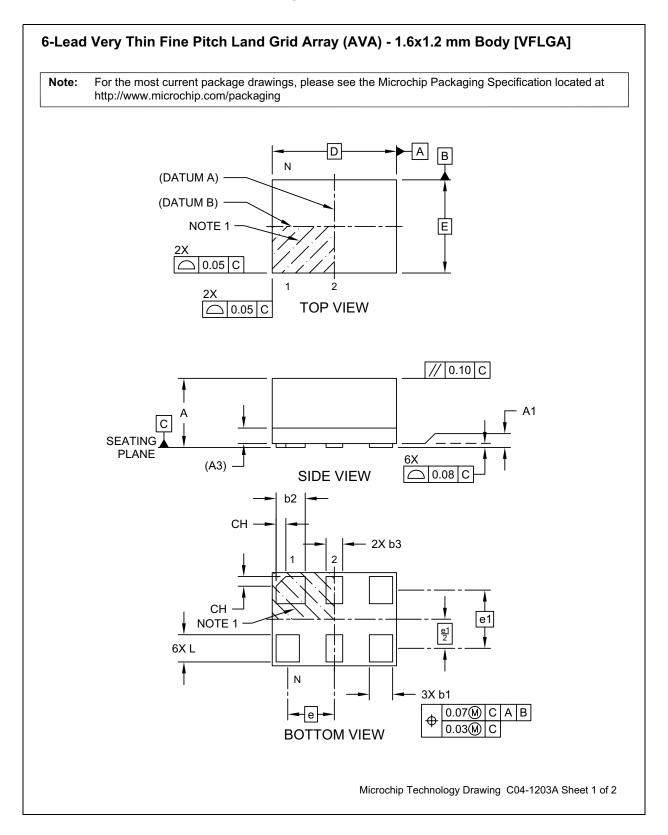
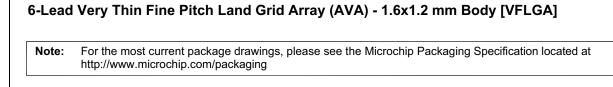
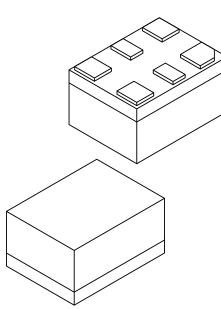

FIGURE 6-1: Solder Reflow Profile.

TABLE 6-1:SOLDER REFLOW

MSL 1 @ 260°C Refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp.)	3°C/sec. max.				
Preheat Time 150°C to 200°C	60 to 180 sec.				
Time Maintained above 217°C	60 to 150 sec.				
Peak Temperature	255°C to 260°C				
Time within 5°C of Actual Peak	20 to 40 sec.				
Ramp-Down Rate	6°C/sec. max.				
Time 25°C to Peak Temperature	8 minutes max.				


7.0 PACKAGING INFORMATION


7.1 Package Marking Information



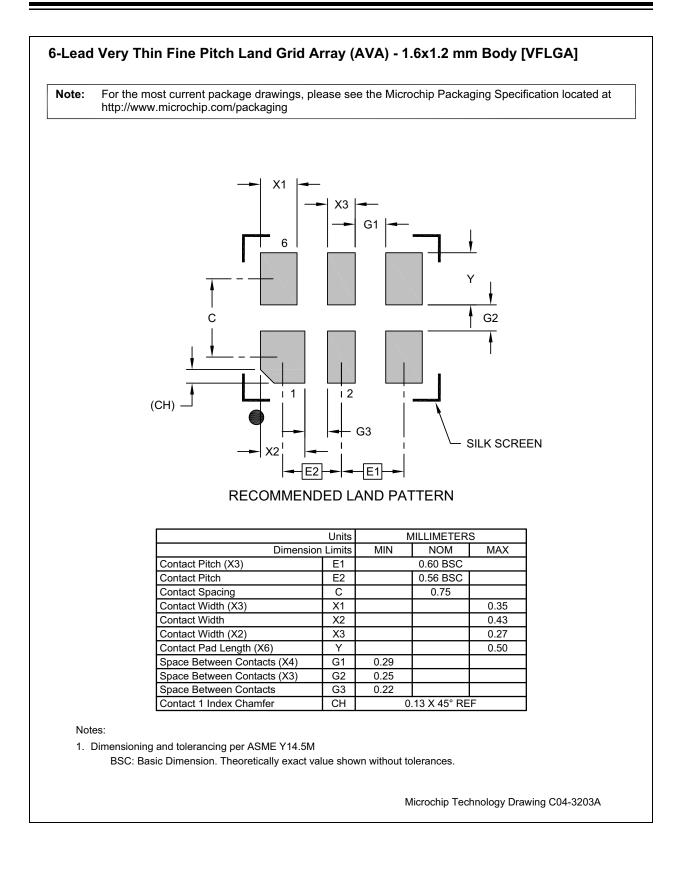
Legenc	Y YY WW NNN @3 *	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carried characters the corpor	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information. Package may or may not include ate logo. (_) and/or Overbar (⁻) symbol may not be to scale.

6-Lead 1.6 mm x 1.2 mm VFLGA Package Outline and Recommended Land Pattern

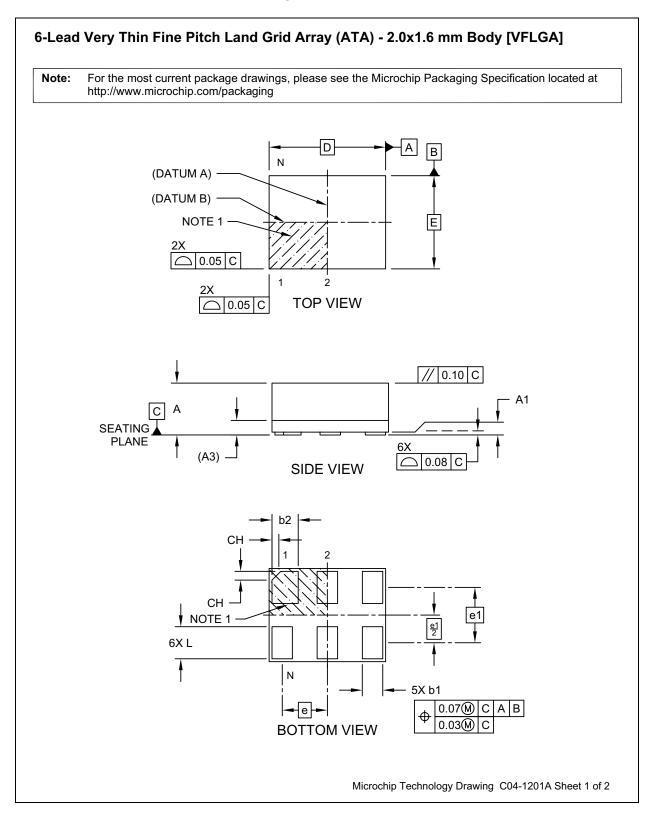
	Units					
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	Ν	6				
Terminal Pitch	е		0.60 BSC			
Terminal Pitch	e1		0.75 BSC			
Overall Height	Α	0.79	0.84	0.89		
Standoff	A1	0.00	0.02	0.05		
Substrate Thickness (with Terminals)	A3		0.20 REF			
Overall Length	D	1.60 BSC				
Overall Width	E	1.20 BSC				
Terminal Width	b1	0.25	0.30	0.35		
Terminal Width	b2	0.325	0.375	0.425		
Terminal Width	b3	0.20	0.25	0.30		
Terminal Length	L	0.30	0.35	0.40		
Terminal 1 Index Chamfer	СН	-	0.125	-		

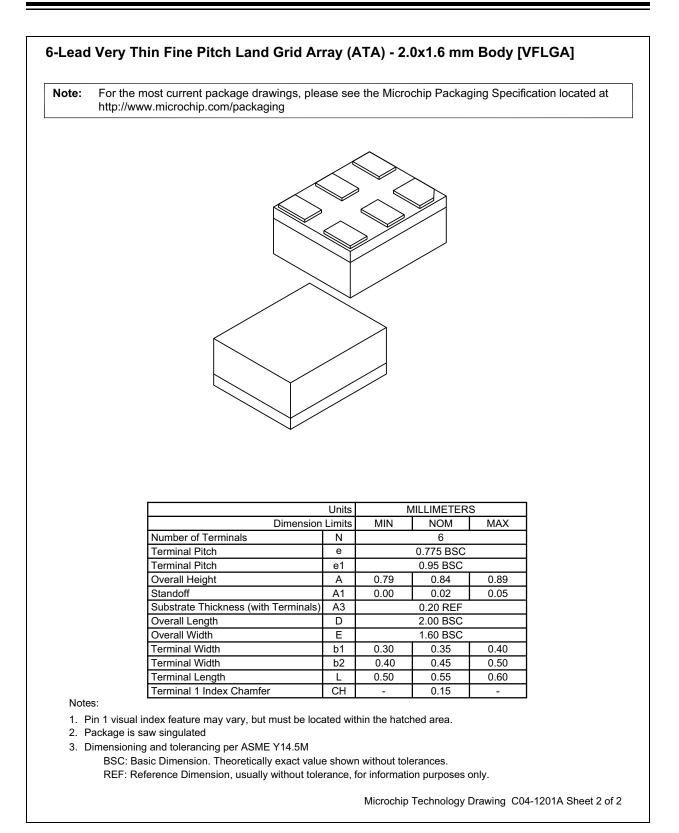
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Package is saw singulated

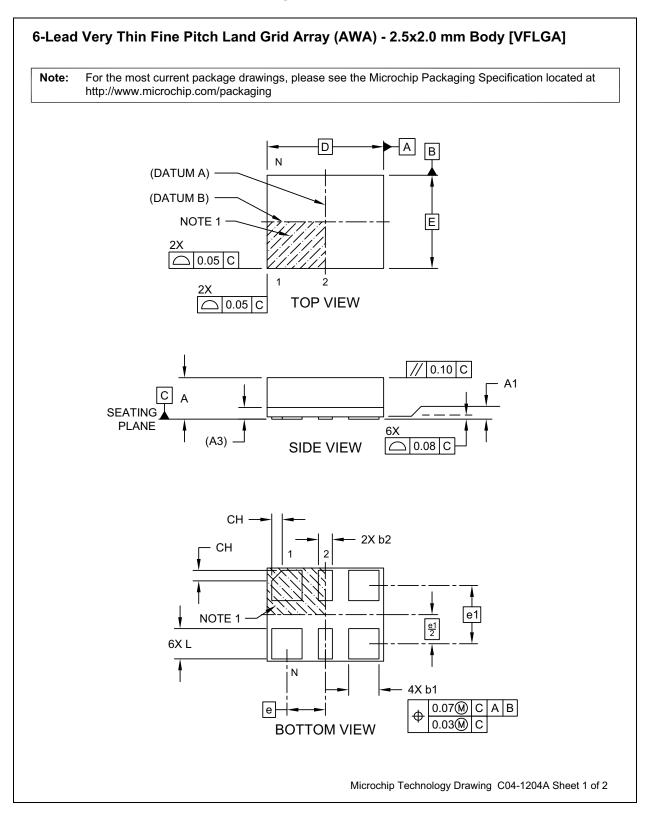
3. Dimensioning and tolerancing per ASME Y14.5M

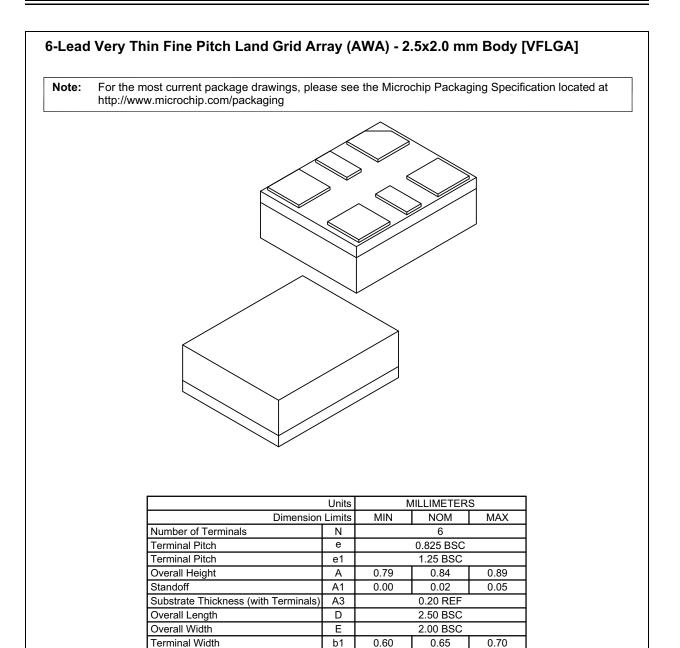

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1203A Sheet 2 of 2

6-Lead 2.0 mm x 1.6 mm VFLGA Package Outline and Recommended Land Pattern





© 2018 Microchip Technology Inc.

6-Lead 2.5 mm x 2.0 mm VFLGA Package Outline and Recommended Land Pattern

0.25

0.60

-

b2

L

СН

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

Terminal Width

Terminal Length

Terminal 1 Index Chamfer

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1204A Sheet 2 of 2

0.35

0.70

-

0.30

0.65

0.225

DSC612

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (October 2018)

• Initial release of DSC612 as Microchip data sheet DS20006023A.

DSC612

NOTES:

PRODUCT IDENTIFICATION SYSTEM

Device	Pa				on Con	figuration #	Special Processing
DSC61 R N P	=	Generator 6-Lead 2.5 mm x 2.0 n 6-Lead 2.0 mm x 1.6 n	nm VFLGA nm VFLGA		a) DSC6 Two-Outr 2.5 mm > Revision, b) DSC6 Two-Outr	12RE1A-0024 put Low Powe < 2.0 mm VFL , 1,000/Reel 12NL2A-2885: put Low Powe	er MEMS Clock Generator, 6-Lea GA, –20°C to +70°C, ±50 ppm, 1 er MEMS Clock Generator, 6-Lea
E I L A					Revision, c) DSC6 ² Two-Out 1.6 mm x	, 100/Bag 12PA3A-8751 put Low Powe < 1.2 mm VFLC	GA, –40°C to +105°C, ±25 ppm, 1 3: er MEMS Clock Generator, 6-Lea GA, –40°C to +125°C, ±20 ppm, 1
1 2 3	= = =	±50 ppm ±25 ppm ±20 ppm			Revision, Note 1:	Tape and Ree catalog part n	el identifier only appears in the umber description. This identifier is
A User-D	= efine	1st Revision ed in the ClockWorks Co	onfigurator			the device pa	ring purposes and is not printed on ckage. Check with your Microchip or package availability with the el option.
	DSC61 R N P E I L A 1 2 3 A User-D <blank: vblank: T</blank: 	Device Pa DSC612: R = R = P = P = = = P = = = I = = = I = = = I = = = I = = = I = = = I = = = I = = = I = = = I = = = I = = = I = = = I = = = I = I = I = I = I = I I I I = I I I I I <	Device Package Temperature Device Package Temperature DSC612: Two-Output Low Pow Generator R = 6-Lead 2.5 mm x 2.0 m N = 6-Lead 2.0 mm x 1.6 m P = 6-Lead 1.6 mm x 1.2 m E = -20° C to $+70^{\circ}$ C I = -40° C to $+85^{\circ}$ C L = -40° C to $+105^{\circ}$ C A = -40° C to $+125^{\circ}$ C 1 = ± 50 ppm 2 = ± 25 ppm 3 = ± 20 ppm A = 1st Revision User-Defined in the ClockWorks Co A = 1st Revision User-Defined in the ClockWorks Co	DevicePackage TemperatureFrequency StabilityDSC612:Two-Output Low Power MEMS Clock GeneratorR=6-Lead 2.5 mm x 2.0 mm VFLGA N=N=6-Lead 2.0 mm x 1.6 mm VFLGA PP=6-Lead 1.6 mm x 1.2 mm VFLGAE=-20°C to +70°C II=-40°C to +85°C LL=-40°C to +125°C1=1=2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=1=1the ClockWorks Configurator <td>DevicePackage TemperatureFrequency StabilityRevisionDSC612:Two-Output Low Power MEMS Clock Generator$R = 6-Lead 2.5 \text{ mm x } 2.0 \text{ mm VFLGA}$ $N = 6-Lead 2.0 \text{ mm x } 1.6 \text{ mm VFLGA}$ $P = 6-Lead 1.6 \text{ mm x } 1.2 \text{ mm VFLGA}E= -20^{\circ}C \text{ to } +70^{\circ}C$ $I = -40^{\circ}C \text{ to } +85^{\circ}C$ $L = -40^{\circ}C \text{ to } +105^{\circ}C$ $A = -40^{\circ}C \text{ to } +125^{\circ}C1= \pm 50 \text{ ppm}$ $2 = \pm 25 \text{ ppm}$ $3 = \pm 20 \text{ ppm}$A$= 1 \text{ st Revision}$User-Defined in the ClockWorks Configurator<blank>=140/Tube (R Package Option) <blank>=<blank>=140/Tube (R Package Option) $< \text{blank} = 100/Bag (N & P Package Option)$</blank></blank></blank></br></td> <td>DevicePackage TemperatureFrequency StabilityRevisionCorDSC612:Two-Output Low Power MEMS Clock Generatora) DSC6 Two-Output 2.5 mm 2a) DSC6 Two-Output 2.5 mm 2R= 6-Lead 2.5 mm x 2.0 mm VFLGA Revision N= 6-Lead 2.0 mm x 1.6 mm VFLGA N = 6-Lead 1.6 mm x 1.2 mm VFLGA DSC6 L= -20°C to +70°C Revision L= -20°C to +70°C Revision C LE= -20°C to +70°C L= -40°C to +85°C C C Lc) DSC6 Two-Output 2.0 mm 21= ± 50 ppm 3= ± 20 ppm Note 1:A= 1 st Revision User-Defined in the ClockWorks Configurator<blank>=140/Tube (R Package Option) <blank>=<blank>=140/Tube (R Package Option) <blank>= T= 1,000/Reel</blank></blank></blank></blank></td> <td>DevicePackage TemperatureFrequency StabilityRevisionConfiguration #DSC612:Two-Output Low Power MEMS Clock Generatora) DSC612RE1A-0024 Two-Output Low Power A = 6-Lead 2.5 mm x 2.0 mm VFLGAa) DSC612RE1A-0024 Two-Output Low Power $2.5 mm x 2.0 mm VFLGA$R= 6-Lead 2.5 mm x 2.0 mm VFLGA P= 6-Lead 2.0 mm x 1.6 mm VFLGAP= 6-Lead 1.6 mm x 1.2 mm VFLGAb) DSC612NL2A-2885: Two-Output Low Power $2.0 mm x 1.6 mm VFLGA$E= -20°C to +70°C I= -40°C to +85°C LCL= -40°C to +105°C A= -40°C to +105°CA= -40°C to +125°CC1= $\pm 50 \text{ ppm}$c) DSC612PA3A-8751H Two-Output Low Power 1.6 mm x 1.2 mm VFLC Revision, 3,000/Reel1= $\pm 50 \text{ ppm}$catalog part n used for order the device pa Sales Office f Tape and ReeA= 1 st RevisionNote 1: Tape and Ree catalog part n used for order the device pa Sales Office f Tape and Ree<math>< \text{blank} >= 140/Tube (R Package Option)$< \text{blank} >= 100/Bag (N & P Package Option)$ T= 1,000/Reel</math></td>	DevicePackage TemperatureFrequency StabilityRevisionDSC612:Two-Output Low Power MEMS Clock 	DevicePackage TemperatureFrequency StabilityRevisionCorDSC612:Two-Output Low Power MEMS Clock Generatora) DSC6 Two-Output 2.5 mm 2a) DSC6 Two-Output 2.5 mm 2R= 6-Lead 2.5 mm x 2.0 mm VFLGA Revision N= 6-Lead 2.0 mm x 1.6 mm VFLGA N = 6-Lead 1.6 mm x 1.2 mm VFLGA DSC6 L= -20°C to +70°C Revision L= -20°C to +70°C Revision C LE= -20°C to +70°C L= -40°C to +85°C C C Lc) DSC6 Two-Output 2.0 mm 21= ± 50 ppm 3= ± 20 ppm Note 1:A= 1 st Revision User-Defined in the ClockWorks Configurator <blank>=140/Tube (R Package Option) <blank>=<blank>=140/Tube (R Package Option) <blank>= T= 1,000/Reel</blank></blank></blank></blank>	DevicePackage TemperatureFrequency StabilityRevisionConfiguration #DSC612:Two-Output Low Power MEMS Clock Generatora) DSC612RE1A-0024 Two-Output Low Power A = 6-Lead 2.5 mm x 2.0 mm VFLGAa) DSC612RE1A-0024 Two-Output Low Power $2.5 mm x 2.0 mm VFLGA$ R= 6-Lead 2.5 mm x 2.0 mm VFLGA P= 6-Lead 2.0 mm x 1.6 mm VFLGAP= 6-Lead 1.6 mm x 1.2 mm VFLGAb) DSC612NL2A-2885: Two-Output Low Power $2.0 mm x 1.6 mm VFLGA$ E= -20°C to +70°C I= -40°C to +85°C LCL= -40°C to +105°C A= -40°C to +105°CA= -40°C to +125°CC1= $\pm 50 \text{ ppm}$ c) DSC612PA3A-8751H Two-Output Low Power 1.6 mm x 1.2 mm VFLC Revision, 3,000/Reel1= $\pm 50 \text{ ppm}$ catalog part n used for order the device pa Sales Office f Tape and Ree A = 1 st RevisionNote 1: Tape and Ree catalog part n used for order the device pa Sales Office f Tape and Ree $< \text{blank} >= 140/Tube (R Package Option)< \text{blank} >= 100/Bag (N & P Package Option)T= 1,000/Reel$

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

DSC612

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-3787-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141

Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-2-2508-8600

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 39-049-7625286

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Japan - Osaka Tel: 81-6-6152-7160 Japan - Tokyo

Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore

Tel: 886-7-213-7830

Taiwan - Taipei

Thailand - Bangkok Tel: 66-2-694-1351

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

DSC612RI1A-012M DSC612PI2A-012Q DSC612RI2A-012P DSC612NL3A-012RT DSC612PI2A-012QT DSC612RI2A-012PT DSC612RI1A-012MT DSC612NL3A-012R DSC612PI3A-010J DSC612PI3A-010K DSC612PI3A-010T DSC612RI3A-010J DSC612NL3A-019AT DSC612NL3A-019A DSC612RA3A-010S DSC612RI3A-010G DSC612RL3A-010K DSC612NA2A-010J DSC612NA2A-010JB DSC612NA2A-010JT DSC612NI3A-010G DSC612NI3A-010GB DSC612NI3A-010GT DSC612NI3A-010T DSC612NI3A-010TB DSC612NI3A-010TT DSC612PI3A-010JB DSC612PI3A-010JT DSC612PI3A-010KT DSC612PI3A-010TB DSC612PI3A-010JB DSC612PI3A-010SB DSC612PI3A-010KT DSC612PI3A-010TB DSC612PI3A-010TT DSC612RA3A-010SB DSC612RA3A-010ST DSC612RI3A-010GB DSC612RI3A-010GT DSC612PI3A-010JB DSC612RI3A-010JT DSC612RA3A-010KB DSC612RI3A-010KT